IGBT This Insulated Gate Bipolar Transistor (IGBT) features a robust and cost effective Field Stop (FS) Trench construction, and provides superior performance in demanding switching applications, offering both low on state voltage and minimal switching loss. #### **Features** - Extremely Efficient Trench with Field Stop Technology - $T_{Jmax} = 175^{\circ}C$ - Soft Fast Reverse Recovery Diode - Optimized for High Speed Switching - 5 µs Short–Circuit Capability - These are Pb-Free Devices # **Typical Applications** - Solar Inverters - Uninterruptible Power Supplies (UPS) - Welding #### **ABSOLUTE MAXIMUM RATINGS** | Rating | Symbol | Value | Unit | |--|------------------|-------------|------| | Collector-emitter voltage | V _{CES} | 600 | V | | Collector current @ Tc = 25°C @ Tc = 100°C | I _C | 100
75 | A | | Diode Forward Current
@ Tc = 25°C
@ Tc = 100°C | I _F | 100
75 | А | | Diode Pulsed Current T _{PULSE} Limited by T _J Max | I _{FM} | 200 | Α | | Pulsed collector current, T _{pulse} limited by T _{Jmax} | I _{CM} | 200 | Α | | Short–circuit withstand time $V_{GE} = 15 \text{ V}, V_{CE} = 400 \text{ V},$ $T_{J} \le +150^{\circ}\text{C}$ | t _{SC} | 5 | μS | | Gate-emitter voltage | V_{GE} | ±20 | V | | Transient gate-emitter voltage (T _{PULSE} = 5 μ s, D < 0.10) | | ±30 | V | | Power Dissipation @ Tc = 25°C @ Tc = 100°C | P _D | 595
265 | W | | Operating junction temperature range | TJ | –55 to +175 | °C | | Storage temperature range | T _{stg} | -55 to +175 | °C | | Lead temperature for soldering, 1/8" from case for 5 seconds | T _{SLD} | 260 | °C | Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. # ON Semiconductor® www.onsemi.com 75 A, 600 V V_{CEsat} = 1.70 V E_{OFF} = 1.0 mJ # **MARKING DIAGRAM** A = Assembly Location Y = Year WW = Work Week G = Pb-Free Package #### **ORDERING INFORMATION** | Device | Package | Shipping | |----------------|---------------------|-----------------| | NGTB75N60FL2WG | TO-247
(Pb-Free) | 30 Units / Rail | # THERMAL CHARACTERISTICS | Rating | Symbol | Value | Unit | |--|----------------|-------|------| | Thermal resistance junction-to-case, for IGBT | $R_{ heta JC}$ | 0.28 | °C/W | | Thermal resistance junction-to-case, for Diode | $R_{ heta JC}$ | 0.62 | °C/W | | Thermal resistance junction–to–ambient | $R_{ hetaJA}$ | 40 | °C/W | ### **ELECTRICAL CHARACTERISTICS** (T_{.1} = 25°C unless otherwise specified) | Parameter | Test Conditions | Symbol | Min | Тур | Max | Unit | |---|--|----------------------|-----------|--------------|------------|------| | STATIC CHARACTERISTIC | | | | | | ı | | Collector–emitter breakdown voltage, gate–emitter short–circuited | $V_{GE} = 0 \text{ V, } I_{C} = 500 \mu\text{A}$ | V _{(BR)CES} | 600 | - | - | V | | Collector-emitter saturation voltage | V _{GE} = 15 V, I _C = 75 A
V _{GE} = 15 V, I _C = 75 A, T _J = 175°C | V _{CEsat} | 1.50
- | 1.75
2.30 | 2.00 | V | | Gate-emitter threshold voltage | $V_{GE} = V_{CE}, I_{C} = 350 \mu A$ | V _{GE(th)} | 4.5 | 5.5 | 6.5 | V | | Collector–emitter cut–off current, gate–
emitter short–circuited | V _{GE} = 0 V, V _{CE} = 600 V
V _{GE} = 0 V, V _{CE} = 600 V, T _{J =} 175°C | I _{CES} | _
_ | -
- | 0.1
4.0 | mA | | Gate leakage current, collector–emitter short–circuited | $V_{GE} = 20 \text{ V}$, $V_{CE} = 0 \text{ V}$ | I _{GES} | _ | _ | 200 | nA | | DYNAMIC CHARACTERISTIC | | | | | | 1 | | Input capacitance | | C _{ies} | _ | 7500 | _ | pF | | Output capacitance | V _{CE} = 20 V, V _{GE} = 0 V, f = 1 MHz | C _{oes} | _ | 300 | _ | | | Reverse transfer capacitance | | C _{res} | _ | 190 | - | | | Gate charge total | | Qg | _ | 310 | - | nC | | Gate to emitter charge | $V_{CE} = 480 \text{ V}, I_{C} = 75 \text{ A}, V_{GE} = 15 \text{ V}$ | Q _{ge} | _ | 60 | - | | | Gate to collector charge | | Q _{gc} | _ | 150 | _ | | | SWITCHING CHARACTERISTIC, INDUCT | TIVE LOAD | J. | | | | | | Turn-on delay time | | t _{d(on)} | _ | 110 | _ | ns | | Rise time | | t _r | _ | 48 | - | | | Turn-off delay time | T _J = 25°C | t _{d(off)} | _ | 270 | - | | | Fall time | $V_{CC} = 400 \text{ V}, I_{C} = 75 \text{ A}$ | t _f | _ | 70 | - | | | Turn-on switching loss | $R_g = 10 \Omega$
$V_{GE} = 0 \text{ V/ } 15 \text{ V}$ | E _{on} | _ | 2.2 | - | mJ | | Turn-off switching loss | | E _{off} | - | 1.1 | - | | | Total switching loss | | E _{ts} | _ | 3.3 | - | | | Turn-on delay time | | t _{d(on)} | _ | 100 | - | ns | | Rise time | | t _r | - | 50 | - | | | Turn-off delay time | T _J = 150°C | t _{d(off)} | - | 280 | - | | | Fall time | $V_{CC} = 400 \text{ V}, I_{C} = 75 \text{ A}$ $R_{q} = 10 \Omega$ | t _f | - | 100 | - | | | Turn-on switching loss | V _{GE} = 0 V/ 15 V | E _{on} | - | 2.8 | - | mJ | | Turn-off switching loss | | E _{off} | - | 1.6 | - | | | Total switching loss | | E _{ts} | - | 4.4 | - | | | DIODE CHARACTERISTIC | | | | | | | | Forward voltage | V _{GE} = 0 V, I _F = 75 A
V _{GE} = 0 V, I _F = 75 A, T _J = 175°C | V _F | 1.70
– | 2.20
2.40 | 2.90 | V | | Reverse recovery time | T _J = 25°C | t _{rr} | - | 80 | - | ns | | Reverse recovery charge | $I_F = 75 \text{ A}, V_R = 400 \text{ V}$ | Q _{rr} | _ | 0.40 | _ | μС | | Reverse recovery current | di _F /dt = 200 A/μs | I _{rrm} | _ | 8 | - | Α | | Reverse recovery time | T _{.1} = 175°C | t _{rr} | _ | 143 | _ | ns | | Reverse recovery charge | $I_F = 75 \text{A}, V_R = 400 \text{V}$ | Q _{rr} | _ | 1.45 | _ | μС | | Reverse recovery current | di _F /dt = 200 A/μs | I _{rrm} | _ | 16 | _ | Α | Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. #### **TYPICAL CHARACTERISTICS** 10 20 30 40 50 V_{CF}, COLLECTOR-EMITTER VOLTAGE (V) Figure 6. Typical Capacitance 60 100 125 150 175 200 -25 25 50 75 T_J, JUNCTION TEMPERATURE (°C) Figure 5. V_{CE(sat)} vs. T_J Figure 7. Diode Forward Characteristics Figure 8. Typical Gate Charge Figure 9. Switching Loss vs. Temperature Figure 10. Switching Time vs. Temperature Figure 11. Switching Loss vs. I_C Figure 12. Switching Time vs. I_C Figure 13. Switching Loss vs. Rg Figure 14. Switching Time vs. Rg Figure 15. Switching Loss vs. V_{CE} Figure 16. Switching Time vs. V_{CE} Figure 17. Safe Operating Area Figure 18. Reverse Bias Safe Operating Area Figure 23. IGBT Transient Thermal Impedance Figure 24. Diode Transient Thermal Impedance Figure 25. Test Circuit for Switching Characteristics Figure 26. Definition of Turn On Waveform Figure 27. Definition of Turn Off Waveform **DATE 17 MAR 2017** - NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETERS. 3. SLOT REQUIRED, NOTCH MAY BE ROUNDED. - DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED 0.13 PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTERMOST EXTREME OF THE PLASTIC BODY - LEAD FINISH IS UNCONTROLLED IN THE REGION DEFINED BY - ©P SHALL HAVE A MAXIMUM DRAFT ANGLE OF 1.5° TO THE TOP OF THE PART WITH A MAXIMUM DIAMETER OF 3.91. DIMENSION A1 TO BE MEASURED IN THE REGION DEFINED | | MILLIMETERS | | | |-----|-------------|-------|--| | DIM | MIN | MAX | | | Α | 4.70 | 5.30 | | | A1 | 2.20 | 2.60 | | | b | 1.07 | 1.33 | | | b2 | 1.65 | 2.35 | | | b4 | 2.60 | 3.40 | | | С | 0.45 | 0.68 | | | D | 20.80 | 21.34 | | | E | 15.50 | 16.25 | | | E2 | 4.32 | 5.49 | | | е | 5.45 BSC | | | | F | 2.655 | | | | L | 19.80 20.80 | | | | L1 | 3.81 | 4.32 | | | P | 3.55 | 3.65 | | | Q | 5.40 6.20 | | | | S | 6.15 BSC | | | #### **GENERIC MARKING DIAGRAM*** XXXXX = Specific Device Code Α = Assembly Location Υ = Year WW = Work Week = Pb-Free Package *This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present. | I DOCHMENT NUMBER I CONCNICATOR I | | Electronic versions are uncontrolled except when accessed directly from
Printed versions are uncontrolled except when stamped "CONTROLLED" | · , , , , , , , , , , , , , , , , , , , | | | |-----------------------------------|--------|---|---|--|--| | DESCRIPTION: | TO-247 | | PAGE 1 OF 1 | | | ON Semiconductor and unare trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others. onsemi, ONSEMI., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems. or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. #### ADDITIONAL INFORMATION TECHNICAL PUBLICATIONS: $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$ onsemi Website: www.onsemi.com ONLINE SUPPORT: www.onsemi.com/support For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales