

LOW POWER AND LOW VOLTAGE 16-BIT, SINGLE-ENDED ANALOG INPUT/OUTPUT STEREO AUDIO CODEC

FEATURES

- 16-Bit Delta-Sigma ADC and DAC
- Stereo ADC:
 - Single-Ended Voltage Input
 - Anti-Aliasing Filter Included
 - High Performance
 - THD+N: –84 dB
 - SNR: 88 dB
 - Dynamic Range: 88 dB
 - 1/64× Decimation Digital Filter
 - Passband Ripple: $\pm 0.05 \text{ dB}$
 - Stopband Attenuation: –65 dB
 - Digital HPF Included
- Stereo DAC:
 - Single-Ended Voltage Output
 - Analog LPF and FIR Filter Included
 - High Performance
 - THD+N: –88 dB
 - SNR: 92 dB
 - Dynamic Range: 92 dB
 - 8× Oversampling Digital Filter
 - Passband Ripple: ±0.1 dB
 - Stopband Attenuation: -43 dB
- Audio Data Format:
 - ADC: 16-bit, Left-Justified
 - DAC: 16-bit, Right-Justified
- Special Built-In Functions:
 - Digital De-Emphasis: 32, 44.1, 48 kHz
 - ADC/DAC Independent Power Down With Pop-Noise Free Muting
- Sampling Rate: 8 kHz to 48 kHz
- System Clock: 256f_S, 384f_S, 512f_S
- Low Voltage Power Supply:
 2.4 V TYP, 2.1 V MIN to 3.6 V MAX
- Low Power Dissipation:
 32 mW at V_{CC} = 2.4 V
- Package: 16-Pin TSSOP

APPLICATIONS

- Digital Video Camera
- Portable MD Player
- Other Portable System

DESCRIPTION

The PCM3008 is a low cost single chip 16-bit stereo audio codec with single-ended analog voltage input and output.

Both ADCs and DACs employ delta-sigma modulation with 64-times oversampling. ADCs include a digital decimation filter and digital high pass filter. DACs include an 8-times oversampling digital interpolation filter, digital de-emphasis filter and pop-noise free muting which works during the power down ON/OFF sequence. The PCM3008 accepts left-justified format for ADC, and right-justified format for DAC. Independent power-down modes for ADC and DAC are provided.

The PCM3008 is suitable for a wide variety of cost-sensitive consumer applications where good performance is required. It is fabricated using a highly advanced CMOS process and is available in a small 16-pin TSSOP package.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

SLAS332 - APRIL 2001

PACKAGE/ORDERING INFORMATION

PRODUCT PACKAGE	PACKAGE	DRAWING NUMBER	OPERATION TEMPERATURE RANGE	PACKAGE MARKING	ORDERING NUMBER(1)	TRANSPORT MEDIA
DOMOCONT	T000D 40	77000	25 °C to 195 °C	DOMOSOST	PCM3008T	Rails
PCM3008T	TSSOP-16	ZZ363T	–25 °C to +85 °C	PCM3008T	PCM3008T/2K	Tape and Reel

[†]TI equivalent no. 4040064.

NOTE: Models with a slash (/) are available only in tape and reel in the quantities indicated (e.g., /2K indicates 2000 devices per reel). Ordering 2000 pieces of PCM3008T/2K will get a single 2000-piece tape and reel.

block diagram

SLAS332 - APRIL 2001

Figure 1. Analog Front-End (right-channel)

TERMIN	AL		DECODURTION
NAME	NO.	I/O	DESCRIPTION
VCOM	1	-	ADC/DAC common decouple (see Note 1)
VINR	2	Ι	ADC analog input, R-channel.
VINL	3	Ι	ADC analog input, L-channel.
GND	4	-	Ground.
V _{CC}	5	-	Power supply.
DEM0	6	I	De-emphasis control 0 (see Note 2)
DEM1	7	I	De-emphasis control 1 (see Note 2)
DOUT	8	0	Data output
DIN	9	I	Data input (see Note 2)
LRCK	10	I	Sampling clock input (see Note 2)
SYSCK	11	I	System clock input (see Note 2)
BCK	12	I	Bit clock input (see Note 2)
PDAD	13	I	ADC power down, active low (see Note 2)
PDDA	14	I	DAC power down, active low (see Note 2)
VOUTL	15	0	DAC analog output, L-channel.
VOUTR	16	0	DAC analog output, R-channel.

NOTES: 1. Connect decouple capacitor to GND.

2. Schmitt trigger input, open state can not be allowed because of no internal pullup or pulldown.

absolute maximum ratings over operating free-air temperature (unless otherwise noted)[†]

Supply voltage, V _{CC}	4 V
Digital input voltage: DEM0, DEM1, DIN, LRCK, SYSCK, BCK, PDAL, PDDA	
DOUT	$\dots \dots -0.3$ V to V _{CC} +0.3 V
Analog input voltage	$\dots \dots -0.3$ V to V _{CC} +0.3 V
Input current (any pins except supplies)	±10 mA
Ambient temperature under bias	–40°C to 125°C
Storage temperature	
Junction temperature	
Lead temperature (soldering)	
Package temperature (IR reflow, peak)	235°C, 10 s

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

electrical characteristics, all specifications at T_A = 25°C, V_{CC} = 2.4 V, f_s = 44.1 kHz, system clock = $384f_s$, f_{IN} = 1 kHz, 16-bit data, (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	F	PCM3008T		UNI
	PARAMETER	TEST CONDITIONS	MIN	ТҮР	MAX	UNI
	L INPUT/OUTPUT					
V _{IH} (3)	land lands land		0.7 V _{CC}		3.6	
V _{IL} (3)	Input logic level				0.3VCC	VDO
I _{IN} (3)	Input logic current				±10	μA
^V ОН ⁽⁴)	I _O = -400 μA	V _{CC} -0.2			
VOL ⁽⁴⁾	Output logic level	I _O = 400 μA			0.2	VDO
CLOC	K FREQUENCY					
	Sampling frequency		8	44.1	48	kHz
,		256 f _S	2.0480	11.2896	12.2880	
f _s	System clock frequency	384 f _S	3.0720	16.9344	18.4320	МН
		512 f _S	4.0960	22.5792	24.5760	
ADC C	HARACTERISTICS					
	Resolution			16		Bits
DC AC	CURACY		-			
	Gain mismatch channel to channel			±1	±5	
	Gain error			±2	±10	% (FS
	Bipolar zero error			±0		1 01
DYNA	MIC PERFORMANCE ⁽⁵⁾	•				
		$V_{IN} = -0.5 \text{ dB}$		-84	-74	
	THD+N	$V_{IN} = -60 \text{ dB}$		-26		
	Dynamic range	A-weighted	82	88		dB
	S/N ratio	A-weighted	82	88		
	Channel separation		80	86		
ANAL	DG INPUT	·	-			
	Input voltage			0.6 V _{CC}		V _{p-}
	Center voltage			0.5 VCC		V
	Input impedance			30		kΩ
		-3 dB		150		kH
	Antialiasing filter frequency response	f _{IN} = 20 kHz		-0.08		dB
DIGITA	L FILTER PERFORMANCE	-	I			L
	Passband				0.454 f _S	
	Stopband		0.583 f _S			Hz
	Passband ripple				±0.05	
	Stopband attenuation		-65			dB
	Delay time			17.4 f _s		s
	HPF frequency response	-3 dB		0.078 f _s		mH
DACC	HARACTERISTICS		1			
	Resolution	Ì		16		Bit

NOTES: 3. Pins 6, 7, 9, 10–14: DEMO, DEMI, DIN, LRCK, SYSCK, BCK, PDAD, PDDA, (Schmitt trigger input, 3.3 V tolerant.

4. Pin 8: DOUT

5. f_{IN} = 1 kHz, using audio precision system II, RMS mode with 20 kHz LPF, 400 Hz HPF in calculation.

electrical characteristics, all specifications at $T_A = 25^{\circ}C$, $V_{CC} = 2.4$ V, $f_s = 44.1$ kHz, system clock = $384f_s$, $f_{IN} = 1$ kHz, 16-bit data, (unless otherwise noted) (continued)

		TERT CONDITI		PC	PCM3008T			
	PARAMETER	TEST CONDITIO	ONS	MIN	TYP	MAX	UNIT	
DC AC	CURACY			-				
	Gain mismatch channel to channel				±1	±5		
	Gain error				±2	±10	%of FSR	
	Bipolar zero error				±2			
DYNAN	IIC PERFORMANCE ⁽⁶⁾							
		$V_{OUT} = 0 dB$			-88	-78		
	THD+N	$V_{OUT} = -60 \text{ dB}$			-30			
	Dynamic range	EIAJ, A-weighted		86	92		dB	
	S/N ratio	EIAJ, A-weighted		86	92			
	Channel separation			84	90			
ANALO	OG OUTPUT			-				
	Output voltage				0.6 VCC		V _{p-l}	
	Center voltage				0.5 VCC		V	
	Load impedance	AC coupling		10			kΩ	
		–3 dB			250		kHz	
	LPF frequency response fIN = 20 kHz			-0.03		dB		
DIGITA	L FILTER PERFORMANCE			•				
	Passband					0.445 f _S		
	Stopband			0.555 f _S			Hz	
	Passband ripple					±0.1		
	Stopband attenuation			-43			dB	
	Delay time				14.3 f _s		S	
POWER	R SUPPLY REQUIREMENTS							
√cc	Voltage range			2.1	2.4	3.6	VDC	
		ADC, DAC operation,			13.2	17		
		ADC operation	1		8.1	10.5	mA	
	Supply current	DAC operation	$V_{CC} = 2.4 V$		5.6	7.5		
		ADC, DAC power down(7)	1		20	50	μA	
		ADC, DAC operation,			31.7	40.8		
		ADC operation	1		19.4	25.2	m٧	
Power dissipation	Power dissipation	DAC operation	V _{CC} = 2.4 V		13.4	18		
		ADC, DAC power down(7)	1		48	120	μW	
ГЕМРЕ	RATURE RANGE	•	•	•				
			f _S > 24 kHz	-25		85		
	Operation temperature	$V_{CC} = V_{MIN}$ to V_{MAX}	f _S < 24 kHz	-25		70	0°C	
θJA	Thermal resistance	16-pin TSSOP	-		150		°C/V	

6. f_{IN} = 1 kHz, using audio precision system II, RMS mode with 20 kHz LPF, 400 Hz HPF. 7. SYSCK, BCK, LRCK are stopped.

theory of operation

ADC section

The PCM3008 ADC consists of a reference circuit, a stereo single-to-differential converter, a stereo fully differential 5th-order delta-sigma modulator, a digital decimation filter with high pass filter function and a serial interface circuit. The block diagram in this data sheet illustrates the architecture of the ADC section and Figure 1 shows the single-to-differential converter.

An internal reference circuit with one external capacitor provides all reference voltages required by the ADC and DAC. The internal single-to-differential voltage converter saves the design, space and extra parts needed for external circuitry required by many delta-sigma converters. The internal full-differential signal processing architecture provides a wide dynamic range and excellent power supply rejection performance. The input signal is sampled at 64× oversampling rate, eliminating the need for a sample-and-hold circuit, and simplifying anti-alias filtering requirements. The 5th-order delta-sigma noise shaper consists of five integrators that use a switched-capacitor topology, a comparator and a feedback loop consisting of a one-bit DAC. The delta-sigma modulator shapes the quantization noise, shifting it out of the audio band in the frequency domain.

The $64f_s$ one-bit data stream from the modulator is converted to $1f_s$ 16-bit data words by the decimation filter, which also acts as a low pass filter to remove the shaped quantization noise. The dc components are removed by a high pass filter function contained within the decimation filter.

DAC section

The PCM3008 DAC consists of a serial interface circuit, a 8× digital interpolation filter with de-emphasis filter function, a stereo 5th-order delta-sigma modulator, and a stereo analog FIR filter with LPF and output buffer amplifier. The block diagram in this data sheet illustrates the architecture of the DAC section. $1f_s$ 16-bit audio data is converted to $8f_s$ 18-bit data by an 8× oversampling interpolation filter, and then converted to $64f_s$ one-bit data by delta-sigma modulator. One-bit digital data is converted to an analog signal by a current source D to A, and then high frequency components of the shaped quantization noise out of band is reduced by the analog FIR filter and LPF. The fade in, fade out function in digital domain, and V_{OUT} control circuit in analog domain provide a pop-noise free muting function that is required for the power down on/off control sequence.

system clock

The system clock for PCM3008 must be either $256f_S$, $384f_S$ or $512f_S$, where f_S is the audio sampling frequency. The system clock must be supplied on SYSCK (pin 11). PCM3008 also has a system clock detection circuit that automatically senses $256f_S$, $384f_S$ or $512f_S$ mode, and when $384f_S$ or $512f_S$ system clock is used, the clock is divided into $256f_S$ automatically. The $256f_S$ clock is used to operate the digital filter and the modulator. The system clock must be supplied whenever power is applied and either PDAD or PDDA is HIGH, as the PCM3008 uses dynamic circuits internally. Table 1 lists the relationship of typical sampling frequency and system clock frequency, and Figure 2 illustrates the system clock timing.

SYMBOL	DEFINITION	MIN	UNIT
^t SCKH	System clock pulse width HIGH	15	ns
^t SCKL	System clock pulse width LOW	15	ns

Figure 2. System Clock Timing

system clock (continued)

SAMPLING RATE FREQUENCY	SYSTEM	I CLOCK FREG (MHz)	UENCY
(kHz)	256f _S	384f _S	512f _S
32.0	8.1920	12.2880	16.3840
44.1	11.2896	16.9340	22.5792
48.0	12.2880	18.4320	24.5760

Table 1. System Clock Frequencies

reset

The ADC and DAC portions of the PCM3008 can be reset simultaneously by the power down control pins, \overrightarrow{PDAD} and \overrightarrow{PDDA} . This external reset using \overrightarrow{PDAD} and \overrightarrow{PDDA} must be always done at least once after the power is applied. Internal state is kept in reset during \overrightarrow{PDAD} = low and \overrightarrow{PDDA} = low and for 1024 system clock counts after \overrightarrow{PDAD} = high or \overrightarrow{PDDA} = high, and then the initialization sequence for ADC and DAC is started. For the ADC, DOUT is kept in ZERO during the initialization sequence and DOUT outputs normal data corresponding to the input analog signal after $t_{ADCDLY1}$. In the case of the DAC, the fade-in function is started, the signal level on V_{OUT} increases gradually and reaches to full level corresponding to the input digital signal after $t_{ADCDLY1}$. The following figure illustrates the reset timing for power-on and the ADC/DAC output response for the power-on and reset sequence.

PCM audio interface

Digital audio data is interfaced to the PCM3008 on LRCK (pin 10), BCK (pin 12), DIN (pin 9), and DOUT (pin 8). PCM3008 can accept 16-bit standard format, right-justified 16 bit for DAC and left-justified 16 bit for ADC. PCM3008 accepts 3 types of BCK and LRCK combination, with 64, 48 or 32 clocks of BCK in one clock of LRCK. The following figures illustrate audio data input/output format and timing.

SYMBOL	DEFINITION	MIN	ITP	MAX	UNIT
^t RSTB	\overline{PDAD} = LOW and \overline{PDDA} = LOW pulse width	40			ns
tADCDLY1	Initial delay time		2240/f _S		S
^t DACDLY1	Fade in, fade out time		2080/f _S		S

Figure 3. Power-On Reset Timing

SLAS332 – APRIL 2001

PCM audio interface (continued)

SYMBOL	DEFINITION	MIN	TYP	MAX	UNITS
^t BCY	BCK pulse cycle time	300			ns
^t BCH	BCK pulse width high	120			ns
^t BCL	BCK pulse width low	120			ns
t _{BL}	BCK rising edge to LRCK edge	40			ns
t _{LB}	LRCK edge to BCK rising edge	40			ns
^t LRP	LRCK pulse width	^t BCY			
^t DIS	DIN setup time	40			ns
^t DIH	DIN hold time	40			ns
^t BDO	DOUT delay time to BCK falling edge			40	ns
^t LDO	DOUT delay time to LRCK edge			40	ns
^t R	Rising time of all signals			20	ns
tF	Falling time of all signals			20	ns

Figure 5. Audio Data Input/Output Timing

synchronization with digital audio system

PCM3008 operates with LRCK synchronized to the system clock. PCM3008 does not need a specific phase relationship between LRCK and system clock, but does require the synchronization of LRCK and system clock. If the relationship between system clock and LRCK changes more than \pm 4 BCK during one sample period, internal operation of DAC halts within 1/f_s, and analog output is held at the last data until re-synchronization between system clock and LRCK is completed, and t_{DACDLY2} has elapsed.

Internal operation of ADC also halts within $1/f_s$, and digital output is forced into ZERO code until re-synchronization between system clock and LRCK is completed and $t_{ADCDLY2}$ has elapsed. In case of changes less than ± 4 BCK, re-synchronization does not occur and the above analog/digital output control and discontinuity do not occur. The following figure illustrates the DAC analog output and ADC digital output for loss of synchronization. During undefined data periods, some noise may be generated in the audio signal. Also, the transition of normal to undefined data and undefined data to normal makes a discontinuity of data on analog and digital output, which also may generate some noise in the audio signal.

SLAS332 - APRIL 2001

synchronization with digital audio system (continued)

SYMBOL	DEFINITION	MIN	TYP	MAX	UNIT
^t ADCDLY2	Delay time from synchronization		32/f _S		S
^t DACDLY2	Delay time from synchronization		32/f _S		S

SYMBOL	DEFINITION	MIN	TYP	MAX	UNIT
tADCDLY1	Initial delay time		2240/f _S		S
^t DACDLY1	Fade in, fade out time		2080/f _S		S

Figure 7. ADC and DAC Output for Power Down Control

function control

The PCM3008 has the following functions which are controlled by PDAD (pin 13), PDDA (pin 14), DEM0 (pin 6) and DEM1 (pin 7).

power-down control

PDAD: ADC power-down control pin places the ADC portion in the lowest power consumption mode. The ADC operation is stopped by disabling the clock and bias to the ADC portion, and DOUT is forced to zero during ADC power-down mode. Figure 7 illustrates the ADC DOUT response for ADC power-down ON/OFF. This does not affect the DAC operation.

PDAD	ADC OPERATION MODE
Low	ADC power down mode enable
High	ADC power down mode disable

PDDA: DAC power-down control pin places the DAC portion in the lowest power consumption mode. The DAC operation is stopped by disabling the clock and bias to the DAC portion, and V_{OUT} is forced to V_{COM} (0.5 V_{CC}) during DAC power-down mode. Figure 7 illustrates the DAC V_{OUT} response for DAC power-down ON/OFF. This does not affect the ADC operation.

	PDDA	DAC OPERATION MODE
L	.OW	DAC power down mode enable
Н	ligh	DAC power down mode disable

 \overline{PDAD} = low and \overline{PDDA} = low places PCM3008 into reset state and either \overline{PDAD} = high or \overline{PDDA} = high returns PCM3008 to operational state.

de-emphasis control

DEM1, DEM0: DAC de-emphasis control pins select the de-emphasis mode as shown below.

DEM1	DEM0	DE-EMPHASIS MODE
Low	Low	De-emphasis 44.1 kHz ON
Low	High	De-emphasis OFF
High	Low	De-emphasis 48 kHz ON
High	High	De-emphasis 32 kHz ON

TYPICAL CHARACTERISTICS

typical circuit connection

The following figure illustrates a typical PCM3008 circuit connection.

NOTES: A. C₁: 0.1 μF ceramic and 1 μF chemical typical, gives settling time with 15 ms (1 μF × 15 kΩ) time constant in power on period.
 B. C₂, C₃: 0.47 μF typical, gives 11 Hz cutoff frequency of input HPF in normal operation and gives settling time with 14 ms (0.47 μF × 30 kΩ) time constant in power on and power down off period.

- C. C₄: 0.1 µF ceramic and 10 µF chemical typical, depending on power supply quality and pattern layout.
- D. C₅, C₆: 1 μF typical, gives 16 Hz cut-off frequency of output HPF in normal operation and gives settling time with 10 ms (1 μF × 10 kΩ) time constant in power on period.
- E. Post low pass filter with $R_{IN} > 10 k\Omega$, depending on requirement of system performance.
- F. Power on reset circuit in case of no power-down control requirement.

board design and layout considerations

power supply and grounding (V_{CC}, GND)

The analog and digital power supply lines are internally tied, and the analog and digital grounds are internally tied due to pin count limitation. The power supply V_{CC} pin must be bypassed to the GND pin with 0.1 μ F ceramic and 10 μ F chemical capacitors as close to the pins as possible to maximize the dynamic performance of ADC and DAC.

V_{IN} pins

A chemical capacitor from 0.47 μ F to 4.7 μ F is recommended as an ac coupling capacitor. Capacitance of 0.47 μ F gives 11 Hz cut-off frequency at input HPF. If higher full scale input voltage is required, it can be adjusted by adding only one series resistor to V_{IN} pins.

V_{COM} input

A 0.1 μ F ceramic and a 1 μ F or larger chemical capacitor are recommended between V_{COM} and GND to ensure low source impedance of ADC and DAC common voltage. This capacitor should be located as close as possible to the V_{COM} pin to reduce dynamic errors on the ADC and DAC common voltage.

TYPICAL CHARACTERISTICS

system clock

Dynamic performance may be influenced by the quality of SYSCK. Therefore the duty cycle, jitter and threshold voltage at the SYSCK pin must be carefully managed. The SYSCK and BCK, LRCK must be supplied whenever the power is applied and either PDAD or ODDA is HIGH, as the PCM3008 uses dynamic circuits internally.

reset control

The PCM3008 does not have an internal power-on reset circuit. Therefore external reset control by PDAD and PDDA must always done at least once after the power is turned on. If neither PDAD nor PDDA is needed in the application, the standard reset circuit which consists of one resistor, one capacitor and one diode is recommended on PDAD and PDDA pins.

external mute control

Although the PCM3008 has an internal muting function for power-down ON/OFF control, if external muting control is required, the recommended control sequence is described by External Mute ON, CODEC Power Down ON, SYSCK stop and resume if necessary, CODEC Power Down OFF and External Mute OFF.

TYPICAL CHARACTERISTICS

ADC

SLAS332 - APRIL 2001

TYPICAL CHARACTERISTICS

DAC

TYPICAL CHARACTERISTICS

ADC

DAC

SLAS332 - APRIL 2001

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

TEXAS INSTRUMENTS www.ti.com

SLAS332 - APRIL 2001

TYPICAL CHARACTERISTICS

ADC digital decimation filter frequency response

ji,

7 Texas Istruments

www.ti.com

TYPICAL CHARACTERISTICS

digital high pass filter frequency response

SLAS332 - APRIL 2001

22

TYPICAL CHARACTERISTICS

DAC digital interpolation and de-emphasis filter frequency response

TYPICAL CHARACTERISTICS

DAC digital interpolation and de-emphasis filter frequency response (continued)

SLAS332 - APRIL 2001

TYPICAL CHARACTERISTICS

analog low pass filter frequency response

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Customers are responsible for their applications using TI components.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, license, warranty or endorsement thereof.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations and notices. Representation or reproduction of this information with alteration voids all warranties provided for an associated TI product or service, is an unfair and deceptive business practice, and TI is not responsible nor liable for any such use.

Resale of TI's products or services with <u>statements different from or beyond the parameters</u> stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service, is an unfair and deceptive business practice, and TI is not responsible nor liable for any such use.

Also see: Standard Terms and Conditions of Sale for Semiconductor Products. www.ti.com/sc/docs/stdterms.htm

Mailing Address:

Texas Instruments Post Office Box 655303 Dallas, Texas 75265

Copyright © 2001, Texas Instruments Incorporated