

PRODUCT/PROCESS CHANGE NOTIFICATION

PCN IPG-DIS/14/8630 Dated 01 Aug 2014

Assembly and testing transfer from ST China plant to subcontractor in China and ECOPACK2 conversion and leadframe rationalization

Table 1. Change Implementation Schedule

Forecasted implementation date for change	25-Jul-2014
Forecasted availability date of samples for customer	25-Jul-2014
Forecasted date for STMicroelectronics change Qualification Plan results availability	25-Jul-2014
Estimated date of changed product first shipment	31-Oct-2014

Table 2. Change Identification

Product Identification (Product Family/Commercial Product)	ACSwitches in DPAK and IPAK packages
Type of change	Package assembly location change
Reason for change	to optimize our industrial capacity and process and give a better service
Description of the change	see the document attached
Change Product Identification	marking, internal codification and QA number
Manufacturing Location(s)	

Table 3. List of Attachments

Customer Part numbers list	
Qualification Plan results	

Customer Acknowledgement of Receipt	PCN IPG-DIS/14/8630
Please sign and return to STMicroelectronics Sales Office	Dated 01 Aug 2014
Qualification Plan Denied	Name:
Qualification Plan Approved	Title:
	Company:
🗖 Change Denied	Date:
Change Approved	Signature:
Remark	

Name	Function
Paris, Eric	Marketing Manager
Duclos, Franck	Product Manager
Cazaubon, Guy	Q.A. Manager

DOCUMENT APPROVAL

(1) IPG: Industrial & Power Group - ASD: Application Specific Device – IPAD™: Integrated Passive and Active Devices

PCN **Product/Process Change Notification AC Switches** Change 1: Assembly and testing transfer from ST China plant to subcontractor in China Change 2: ECOPACK2 conversion and leadframe rationalization Notification number: Issue Date 25/07/2014 IPG-DIS/14/8630 Issued by Aline AUGIS Product series affected by the change DPAK ACST210-8B ACST210-8BTR ACS120-7SB ACS120-7SB-TR **IPAK** TN22-1500H Type of change Package assembly location change Description of the change

	Before					After				
		Ba	ack-End		Feenady 2	Back-End			Ecopack	
	Name	Туре	Country	Marking	Ecopack 2	Name	Туре	Country	Marking	2
	LGG ST Ch	China	G4	N for ACS120	NFME-	subco	China	GF	Y	
DPAK Thyristors		China		Y for ACST2						
& Triacs	STS	STS ST	China	GK	N	Matrix				
	NFME -STD	Subco	China	GF	Ν					
IPAK Thyristors & Triacs	LGG	ST	China	G4	Ν	NFME- STD	subco	China	GF	Y

Reason for change

Change 1: The change is performed in order to optimize our industrial capacity.

<u>Change 2:</u> ST upgrades its AC Switches housed in DPAK and IPAK packages with frame matrix and ECOPACK2 conversion in order to optimize its industrial process and give a better service to customers.

Former versus changed product:	The changed products do not present modified electrical, parameters, leaving unchanged the current information published in the product datasheet, except for the package information.
	The Moisture Sensitivity Level of the part (according to the

STMicroelectronics IPG - ASD & IPAD[™] Division¹ BU Thyristors and Triacs

(1) IPG: Industrial & Power Group - ASD: Application Specific Device – IPAD™: Integrated Passive and Active Devices

	IPC/JEDE	EC JSTD-020D standard) remains unchanged.			
	The footp	rint recommended by ST remains the same.			
		no change in the packing modes and the standard juantities either.			
		ucts are now in full compliance with the ST K®2 grade ("halogen-free").			
Disposition of former products					
Deliveries of former product will continu product stocks last.	ue while the transfer is b	brought to completion and as long as former			
Marking and traceability					
Traceability for the implemented change.	ge will be ensured by th	ne marking , an internal codification and by the			
For ECOPACK2 conversion a letter "G	" printed to the right of t	the "e3" symbol on the marking.			
Qualification complete date	2	22-07-2014			
Forecasted sample availability					
Samples are available now upon reque	st				
Change implementation schedule					
Sales types	Estimated product	tion start Estimated first shipments			
All	Week 34 - 20	014 Week 44 - 2014			
Comments:					
Customer's feedback					
notification. Absence of acknowledgement of this P	CN within 30 days of re	ontact for requests concerning this change eccipt will constitute acceptance of the change is PCN will constitute acceptance of the change			
Qualification program and results		QRP14097.Rev 2			

External Reliability Report

Qualification of DPAK/IPAK package at china subcontractor

Gener	al Information	Loca	tions
Product Lines	AC Switches	Wafer fab	STMicroelectronics Tours
Products Description	ACS/TRIAC/Thyristor	Assembly plant	China Subcontractor (998G)
Product Group	IPG	Reliability Lab	STMicroelectronics Tours
Product division	ASD&IPAD	Reliability assessment	Passed
Package	DPAK/IPAK		

DOCUMENT INFORMATION

Version	Date	Pages	Prepared by	Approved by	Comment
Rev. 1	May	14	Gilles DUTRANNOY	Jean-Paul REBRASSE	First issue
Rev. 2	July	16	Gilles DUTRANNOY	Jean-Paul REBRASSE	Second issue

Note: This report is a summary of the reliability trials performed in good faith by STMicroelectronics in order to evaluate the potential reliability risks during the product life using a set of defined test methods.

This report does not imply for STMicroelectronics expressly or implicitly any contractual obligations other than as set forth in STMicroelectronics general terms and conditions of Sale. This report and its contents shall not be disclosed to a third party without previous written agreement from STMicroelectronics.

TABLE OF CONTENTS

1	APPLICABLE AND REFERENCE DOCUMENTS	
2	GLOSSARY	
	RELIABILITY EVALUATION OVERVIEW	
	3.1 OBJECTIVES	
	3.2 CONCLUSION	
	Devices Characteristics	5
	3.3 DEVICES DESCRIPTION	
4	TESTS RESULTS SUMMARY	
	4.1 Test vehicles	12
	4.2 TEST PLAN AND RESULTS SUMMARY	
5	ANNEXES	
	5.1 DEVICE DETAILS	
	5.2 TESTS DESCRIPTION	

1 APPLICABLE AND REFERENCE DOCUMENTS

Document reference	Short description	
JESD 47	Stress-Test-Driven Qualification of Integrated Circuits	
MIL-STD-750C	est method for semiconductor devices	
SOP 2614	Reliability requirements for product qualification (ST internal document)	
SOP 267	Product maturity levels (ST internal document)	
0061692	Reliability tests and criteria for qualifications (ST internal document)	

2 GLOSSARY

BOM	Bill Of Materials			
DUT	Device Under Test			
F/G	Finished Good			
HTRB	High Temperature Reverse Bias			
PCT	Pressure Cooker Test			
P/N	Part Number			
RH	Relative Humidity			
SS	Sample Size			
ТСТ	Temperature Cycling Test			
ТНВ	Temperature Humidity Bias			

<u>3 RELIABILITY EVALUATION OVERVIEW</u>

3.1 Objectives

Qualification of DPAK/IPAK package at china subcontractor.

3.2 Conclusion

Qualification Plan requirements have been fulfilled without exception. Reliability tests have shown that the devices behave correctly against environmental tests (no failure). Moreover, the stability of electrical parameters during the accelerated tests demonstrates the robustness of the product which is consequently expected during their lifetime

Devices Characteristics

3.3 Devices description

Overvoltage protected AC switch

Datasheet - production data

Description

The ACST4 series belongs to the ACS™/ACST power switch family. This high performance device is suited to home appliances or industrial systems and drives loads up to 4A.

This ACST4 switch embeds a Triac structure with a high voltage clamping device to absorb the inductive turn-off energy and withstand line transients such as those described in the IEC 61000-4-5 standards. The ACST410 needs a low gate current to be activated ($I_{\rm GT}$ < 10 mA) and still shows a high electrical noise immunity complying with IEC standards such as IEC 61000-4-4 (fast transient burst test).

Figure 1. Functional diagram

Features

DPAK

ACST410-8B ACST435-8B

- · Triac with overvoltage protection
- Low I_{GT} (<10 mA) or high immunity (I_{GT}<35 mA) version
- High noise immunity: static dV/dt > 1000 V/µs

TO-220FPAB ACST410-8FP ACST435-8FP

TO-220FPAB insulated package: 1500 V rms

Benefits

- Enables equipment to meet IEC 61000-4-5
- · High off-state reliability with planar technology
- Needs no external overvoltage protection
- · Reduces the power passive component count
- High immunity against fast transients described in IEC 61000-4-4 standards

Applications

- AC mains static switching in appliance and industrial control systems
- Drive of medium power AC loads such as:
 Universal motor of washing machine drum
 - Compressor for fridge or air conditioner

G COM

Table 1. Device summary

Symbol	Value	Unit
I _{T(RMS)}	4	A
VDRM/VRRM	800	v
IGT(ACST410)	10	mA
IGT(ACST435)	35	mA

TM: ACS is a trademark of STMicroelectronics

May 2014

This is information on a product in full production.

DocID8766 Rev 6

1/14

ST Restricted

IPG (Industrial & Power Group) ASD & IPAD division Quality and Reliability

TN12_TS12_TYNX12

Sensitive and standard 12 A SCRs

Datasheet - production data

Description

Available either in sensitive (TS1220) or standard (TN1215 / TYNX12) gate triggering levels, the 12A SCR series is suitable to fit all modes of control, found in applications such as overvoltage crowbar protection, motor control circuits in power tools and kitchen aids, inrush current limiting circuits, capacitive discharge ignition and voltage regulation circuits.

Available in through-hole or surface-mount packages, they provide an optimized performance in a limited space.

Table 1. Device summary

	re Av pa
TO-220AB DTPAK	
T81220-XXXT TN 1215-XXXG	in
TN 1220-XXXG	
PAK THI215-XXH TSI220-XXH DPAK THI215-XXB TSI220-XXB	T T T T

Features

4

- On-state rms current, I_{T(RMS)} 12A
- Repetitive peak off-state voltage, V_{DRM}/V_{RRM} 600 and 1000 V
- Triggering gate current, I_{GT} 0.2 to 15 mA

Voltage (x00) Order V_{DRM}/V_{RRM} IGT Package code 600 700 800 1000 TN1215 х х DPAK 15 mA -xxxB TN1215 D²PAK х х 15 mA -xxxG TN1215 х х 15 mA IPAK -xxxH TS1220 х х 0.2 mA DPAK -xxxB TS1220 х 0.2 mA IPAK -xxxH TS1220 х 0.2 mA TO-220AB -xxxT TYNx12 х х х 15 mA TO-220AB RG TYNx12 х х х 5 mA TO-220AB TRG

May 2014

This is information on a product in full production.

DocID7475 Rev 8

1/18 www.sl.com

IPG (Industrial & Power Group) ASD & IPAD division Quality and Reliability

BTA08, BTB08 and T8 Series

Snubberless™, logic level and standard 8 A Triacs

Datasheet - production data

Description

Available either in through-hole or surface-mount packages, the BTA08, BTB08 and T8 Triac series is suitable for general purpose AC switching. They can be used as an ON/OFF function in applications such as static relays, heating regulation, induction motor starting circuits... or for phase control operation in light dimmers, motor speed controllers,...

The Snubberless versions (BTA/BTB...W and T8 series) are specially recommended for use on inductive loads, thanks to their high commutation performances.

Logic level versions are designed to interface directly with low power drivers such as microcontroller.

By using an internal ceramic pad, the BTA series provides voltage insulated tab (rated at 2500 VRMS) complying with UL standards (file ref.: E81734).

Features

On-state rms current, I_{T(RMS)} 8 A

This is information on a product in full production.

- Repetitive peak off-state voltage, V_{DRM}/V_{RRM} 600 to 800 V
- Triggering gate current, I_{GT (Q1)} 5 to 50 mA

May 2014

DocID7472 Rev 8

1/18 www.st.com

TN805, TN815, TS820, TYN608

Sensitive and standard 8 A SCRs

Datasheet - production data

Description

Available either in sensitive (TS8) or standard (TN8 / TYN) gate triggering levels, the 8 A SCR series is suitable to fit all modes of control found in applications such as overvoltage crowbar protection, motor control circuits in power tools and kitchen aids, inrush current limiting circuits, capacitive discharge ignition and voltage regulation circuits.

Available in through-hole or surface-mount packages, they provide an optimized performance in a limited space.

Table 1. Device summary

	re
TO-220AB TO-220FPAB	
TS820-600FP TS820-600FP	Av
PAK T5820-900H DPAK TN805-600B	pa in 1 1
TN815-X00B	
TS820-600B	
	T

Features

- On-state rms current, I_{T(RMS)} 8 A
- Repetitive peak off-state voltage, V_{DRM}/V_{RRM} 600 and 800 V
- Triggering gate current, I_{GT} 0.2 to 15 mA

Order code	Voltag V _{DRM}	e (x00) IV _{RRM}	Sensitivity	Package	
	600 V	800 V	Чат		
TS820-600B	x		0.2 mA	DPAK	
TS820-600H	x		0.2 mA	IPAK	
TS820-600T	x		0.2 mA	TO- 220AB	
TS820-600FP	x		0.2 mA	TO- 220FPA B	
TN805-600B	х		5 mA	DPAK	
TN815-x00B	х	х	15 mA	DPAK	
TYN608RG	x		15 mA	TO- 220AB	

May 2014

This is information on a product in full production.

DocID7476 Rev 8

1/17 www.st.com ST Restricted

IPG (Industrial & Power Group) ASD & IPAD division Quality and Reliability

ACST2

COM G DPAK TO -220PPAB COM

Features

- Triac with overvoltage crowbar technology
- High noise immunity: static dV/dt > 500 V/µs
- ACST210-8FP, in the TO-220FPAB package, provides insulation voltage rated at 1500 V rms

Benefits

- Enables equipment to meet IEC 61000-4-5
- · High off-state reliability with planar technology
- Needs no external overvoltage protection
- Reduces component count
- Interfaces directly with the micro-controller
- High immunity against fast transients described in IEC 61000-4-4 standards

Applications

- AC on/off static switching in appliances and industrial control systems
- Driving low power highly inductive loads like solenoid, pump, fan, and micro-motor

Overvoltage protected AC switch

Datasheet - production data

Description

The ACST2 series belongs to the ACS™/ACST power switch family. This high performance device is suited to home appliances or industrial systems and drives loads up to 2 A.

This ACST2 switch embeds a Triac structure with a high voltage clamping device to absorb the inductive turn-off energy and withstand line transients such as those described in the IEC 61000-4-5 standards. The component needs a low gate current to be activated ($I_{GT} < 10 \text{ mA}$) and still shows a high electrical noise immunity complying with IEC standards such as IEC 61000-4-4 (fast transient burst test).

Figure 1. Functional diagram

Table 1. Device summary

Symbol	Value	Unit		
I _{T(RMS)}	2	A		
V _{DRM} /V _{RRM}	800	v		
IGT	10	mA		

TM: ACS is a trademark of STMicroelectronics

May 2014	DodD13304 Rev 4	

This is information on a product in full production.

ST Restricted

IPG (Industrial & Power Group) ASD & IPAD division Quality and Reliability

TO-220FPAB

AC \$120-75FP

July 22th, 2014 Report ID: 14097

ACS120

AC line switch

Datasheet - production data

Applications

- AC static switching in appliance control systems
- Drive of low power high inductive or resistive loads like:
 - relay, valve, solenoid, dispenser
 - pump, fan, micro-motor
 - defrost heater

Description

COM

OUT

6

The ACS120 belongs to the AC line switch family. This high performance switch circuit is able to control a load of up to 2 A.

The AC switch embeds a high voltage clamping structure to absorb the inductive turn off energy and a gate level shifter driver to separate the digital controller from the main switch. It is triggered with a negative gate current flowing out of the gate pin.

Figure 1. Functional diagram

白

COM

to the mains Output to connect to the load.

Common drive reference to connect

Gate input to connect to the controller through gate resistor

DPAK ACS210-7SB

Blocking voltage: V_{DRM} / V_{RRM} = +/- 700 V

TO-220AB

ACS120-7ST

- Avalanche controlled: V_{cL} typ. = 1100 V
- Nominal conducting current: I_{T(RMS)} = 2A
- Gate triggering current: I_{gt} < 10mA
- Switch integrated driver
- High noise immunity: static dV/dt > 500 V/µs

Benefits

- Needs no more external protection snubber or varistor
- Enables equipment to meet IEC 61000-4-5
- Reduces component count up to 80%
- Interfaces directly with the micro controller
- Eliminates any gate kick back on the microcontroller
- Allows straightforward connection of several AC switches on same cooling pad.

May 2014

DocID9469 Rev 3

1/16

This is information on a product in full production.

IPG (Industrial & Power Group) ASD & IPAD division Quality and Reliability

TN22

Fluorescent tube lamp starter SCR

Features

- High clamping voltage structure (1200 to 1500 V)
- Low gate triggering current for direct drive from line (< 1.5 mA)
- High holding current (> 175 mA), ensuring high striking energy

Datasheet - production data

Description

The TN22 has been specifically developed for use in tube lamp electronic starter circuits.

Used in conjunction with a sensitive SCR, it provides high energy striking characteristics with low triggering power.

Thanks to the optimized characteristics of the TN22, starters based on this device can offer high reliability levels and extended life time of the fluorescent tube lamps.

Jun	e	20	14

DocID3768 Rev 4

1/14

This is information on a product in full production.

4 TESTS RESULTS SUMMARY

4.1 <u>Test vehicles</u>

5 test vehicles were chosen:

- T835-600B-TR assembled in DPAK package
- ACST410-8BTR assembled in DPAK package
- TN1215-800B-TR assembled in DPAK package
- ACST210-8BTR assembled in DPAK package
- ACS120-7SB-TR assembled in DPAK package
- T835-600H assembled in IPAK package
- TS820-600H assembled in IPAK package
- TN22-1500H assembled in IPAK package

Lot #	Part number	Process/ Package	Comments
L1	T835-600B-TR	DPAK	
L2	ACST410-8BTR	DPAK	Qualification
L3	TN1215-800B-TR	DPAK	lot
L4	ACST210-8BTR	DPAK	
L5	ACS120-7SB-TR	DPAK	
L6	T835-600H	IPAK	Qualification
L7	TS820-600H	IPAK	Qualification lot
L8	TN22-1500H	IPAK	iOt

The results are detailed in the next sections.

4.2 Test plan and results summary

Test	РС	Std ref.	Conditions	ss	Stone				Failu	re/SS				Note							
Test	PC	Stu rei.	conditions	33	Steps	Lot 1	Lot 2	Lot 3	Lot 4	Lot 5	Lot 6	Lot 7	Lot 8	Note							
		JESD22 A-108			168 h	0/77	0/77	0/77	0/77	0/77	0/77	0/77	0/77								
HTRB	N	MIL- STD-	T _j = 125 °C VAC	385	500 h	0/77	0/77	0/77	0/77	0/77	0/77	0/77	0/77								
		750C method 1040			1000 h	0/77	0/77	0/77	0/77	0/77	0/77	0/77	N/A*								
					168 h	0/25	0/25	0/25	0/25	0/25	0/25	0/25	0/25								
тнв	Y	JESD22 A-101	85 °C 85% RH V _r = 100 V	85% RH	85% RH	85% RH	85% RH	85% RH	85% RH 12	SD22 85% RH	125	500 h	0/25	0/25	0/25	0/25	0/25	0/25	0/25	0/25	
												·		•	·			1000 h	0/25	0/25	0/25
РСТ	Y	JESD22 A-102	121°C 2bar 100% RH	125	96 h	0/25	0/25	0/25	0/25	0/25	0/25	0/25	0/25								
тс	Y	JESD22 A-104	-65 °C/+150 °C 2 cycles/h	125	500 cycles	0/25	0/25	0/25	0/25	0/25	0/25	0/25	0/25								
RSH	Ν	JESD22 B-106-A	260°C 10S 2 immersions	60	2 dipping	0/12	0/12	0/12	0/12	0/12	0/12	0/12	0/12								

*note: Based on mission profile switching requirements, test duration applies is equal to 500h.

5 ANNEXES

5.1 <u>Device details</u>

5.1.1 Package outline/Mechanical data for DPAK

5.1.2 -Package outline/Mechanical data for IPAK

	Dimensions							
Ref.		Millimeters			Inches			
	Min.	Тур.	Max.	Min.	Тур.	Max.		
A	2.20		2.40	0.086		0.094		
A1	0.90		1.10	0.035		0.043		
b	0.64		0.90	0.025		0.035		
b2			0.95			0.037		
b4	5.20		5.43	0.204		0.213		
с	0.45		0.60	0.017		0.023		
c2	0.46		0.60	0.018		0.023		
D	6		6.20	0.236		0.244		
E	6.40		6.70	0.252		0.263		
e		2.28			0.090			
e1	4.40		4.60	0.173		0.181		
н		16.10			0.634			
L	9		9.60	0.354		0.377		
L1	0.8		1.20	0.031		0.047		
L2		0.80	1.25		0.031	0.049		
V1		10*			10*			

5.2 <u>Tests Description</u>

Test name	Description	Purpose
	Die-oriented test	
HTRB (AC mode) High Temperature	The device is stressed here in AC mode, trying to satisfy as much as possible the following conditions: - Low power dissipation.	To determine the effects of bias conditions and temperature on solid state devices over time. It simulates the devices operating condition in an accelerated way. To maximize the electrical field across either
Reverse Bias	- Peak supply voltage compatible with diffusion process and internal circuitry limitations.	reverse-biased junctions or dielectric layers, in order to investigate the failure modes linked to mobile contamination, oxide aging, layout sensitivity to surface effects.
	Die and Package-orient	ed test
THB Temperature Humidity Bias	The device is biased in static configuration minimizing its internal power dissipation, and stored at controlled conditions of ambient temperature, and relative humidity.	To evaluate the package moisture resistance with electrical field applied, both electrolytic and galvanic corrosion are put in evidence.
TC Temperature Cycling	The device is submitted to cycled temperature excursions, between a hot and a cold chamber in air atmosphere.	To investigate failure modes related to the thermo-mechanical stress induced by the different thermal expansion of the materials interacting in the die-package system. Typical failure modes are linked to metal displacement, dielectric cracking, molding compound delamination, wire-bonds failure, die-attach layer degradation.
RSH	Device is submitted to a dipping in a solder bath at 260°C with a dwell time of 10s. Only for through hole mounted devices.	This test is used to determine whether solid state devices can withstand the effects of the temperature to which they will be subjected during soldering of their leads. The heat is conducted through the leads into the device package from solder heat at the reverse side of the board. This procedure does not simulate wave soldering or reflow heat exposure on the same side of the board as the package body.
PCT Pressure Cooker Test	The device is unbiased under 121 °C, and a 2 bars air atmosphere during 96 hours.	The PCT is performed to evaluate the reliability of non-hermetic packaged solid-state devices in humid environments. It employs severe conditions of temperature, humidity, and pressure which accelerate the penetration of

Appendix List of product involved in this qualification

ср	pkdescr	ср	pkdescr	ср	pkdescr
ACST410-8B	TO 252 DPAK	T410-800B-TR	TO 252 DPAK	TN1215-600H	IPAK TO-251
ACST410-8BTR	TO 252 DPAK	T410-800H	IPAK TO-251	TN1215-800B-TR	TO 252 DPAK
ACST435-8B	TO 252 DPAK	T435-600B	TO 252 DPAK	TN1215-800H	IPAK TO-251
ACST435-8BTR	TO 252 DPAK	T435-600B-TR	TO 252 DPAK	TN1515-600B-TR	TO 252 DPAK
FLC01-200B-TR	TO 252 DPAK	T435-600H	IPAK TO-251	TN805-600B-TR	TO 252 DPAK
FLC01-200H	IPAK TO-251	T435-700B-TR	TO 252 DPAK	TN815-600B-TR	TO 252 DPAK
FLC01-200HEL	IPAK TO-251	T435-800B-TR	TO 252 DPAK	TN815-800B-TR	TO 252 DPAK
FLC10-200B	TO 252 DPAK	T435-800H	IPAK TO-251	TN815-800H	IPAK TO-251
LIC01-215B-TR	TO 252 DPAK	T810-600B	TO 252 DPAK	TN815-9BAS	TO 252 DPAK
LIC01-215H	IPAK TO-251	T810-600B-TR	TO 252 DPAK	TN815-9BAS-TR	TO 252 DPAK
T405-600B	TO 252 DPAK	T810-800B-TR	TO 252 DPAK	TS1220-600B	TO 252 DPAK
T405-600B-TR	TO 252 DPAK	T835-600B	TO 252 DPAK	TS1220-600B-TR	TO 252 DPAK
Т405-600Н	IPAK TO-251	T835-600B-TR	TO 252 DPAK	TS1220-600H	IPAK TO-251
T405-700B-TR	TO 252 DPAK	T835-600H	IPAK TO-251	TS410-600BCTR	TO 252 DPAK
T405-800B-TR	TO 252 DPAK	T835-800B	TO 252 DPAK	TS420-600B	TO 252 DPAK
T405-800H	IPAK TO-251	T835-800B-TR	TO 252 DPAK	TS420-600BCTR	TO 252 DPAK
T405Q-600B-TR	TO 252 DPAK	TC05A6I	IPAK TO-251	TS420-600B-TR	TO 252 DPAK
T405Q-600H	IPAK TO-251	TN1205T-600B	TO 252 DPAK	TS420-600H	IPAK TO-251
T410-600B	TO 252 DPAK	TN1205T-600B-TR	TO 252 DPAK	TS450-600BCTR	TO 252 DPAK
T410-600B-TR	TO 252 DPAK	TN1215-600B	TO 252 DPAK	TS820-600B	TO 252 DPAK
T410-600H	IPAK TO-251	TN1215-600B-TR	TO 252 DPAK	TS820-600B-TR	TO 252 DPAK
TS820-600H	IPAK TO-251	TS820-700B-TR	TO 252 DPAK	TS820-800BM-TF	TO 252 DPAK
ACST210-8B	TO 252 DPAK	ACST210-8BTR	TO 252 DPAK	ACS120-7SB	TO 252 DPAK
ACS120-7SB-TR	TO 252 DPAK	TN22-1500H	IPAK TO-251		

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

RESTRICTIONS OF USE AND CONFIDENTIALITY OBLIGATIONS:

THIS DOCUMENT AND ITS ANNEXES CONTAIN ST PROPRIETARY AND CONFIDENTIAL INFORMATION. THE DISCLOSURE, DISTRIBUTION, PUBLICATION OF WHATSOEVER NATURE OR USE FOR ANY OTHER PURPOSE THAN PROVIDED IN THIS DOCUMENT OF ANY INFORMATION CONTAINED IN THIS DOCUMENT AND ITS ANNEXES IS SUBMITTED TO ST PRIOR EXPRESS AUTHORIZATION. ANY UNAUTHORIZED REVIEW, USE, DISCLOSURE OR DISTRIBUTION OF SUCH INFORMATION IS EXPRESSLY PROHIBITED.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners

© 2014 STMicroelectronics - All rights reserved.

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com