IF detector IC for 900MHz spread spectrum cordless phones BH4127FV The BH4127FV is a mixer, IF amplifier, and FM detector IC developed for use with 900MHz spread spectrum cordless phones # Applications 900MHz spread spectrum cordless phones ### Features - Built-in mixer circuit, IF circuit, RSSI circuit, and FM detector circuit. - Operates at mixer input frequencies ranging from 20 to 300 MHz. - 3) Equipped with a battery save function. - 4) FM detector circuit demodulates up to ±750kHzdev. - 5) FM detector circuit demodulates up to 2.6Mbps. # ● Absolute maximum ratings (Ta = 25°C, with the measurement circuit) | Parameter | Symbol | Limits | Unit | |----------------------|--------|------------------|------| | Power supply voltage | Vcc | 7.0 | ٧ | | Power dissipation | P□ | 350* | mW | | Storage temperature | Tstg | −55∼ +125 | ° | ^{*} Reduced by 3.5mW for each increase in Ta of 1℃ over 25℃. # Recommended operating conditions | Parameter | Symbol | Limits | Unit | |-----------------------|--------|-----------------|------| | Power supply voltage | Vcc | 2.3~5.5 | V | | Operating temperature | Topr | −40 ~+85 | ° | # ●Block diagram # ●Pin descriptions | Pin No. | Function | Internal peripheral circuit | DC voltage (V) | |---------|---|---|----------------| | 1 | Local oscillator pin (base) Connect crystal resonator and capacitor | Voc
vos
vos
vos | Vcc-0.6 | | 2 | Local oscillator pin (emitter) Connect crystal resonator or inject from external capacitor | 1 To MIXER | Vcc | | 3 | Battery save pin Pin 3 voltage ≤ 0.2V: Battery save 2V ≤ pin 3 voltage ≤ Vcc: Active | 30k | _ | | 4 | Mixer output pin Connect ceramic filter Output impedance: 330 Ω | 270 Voc | Vcc-1.5 | | 5 | Ground pin | GND for IF stage and FM detection stage | GND | | 6 | IF amplifier bypass pin Connect capacitor | V∞ ↑ ** ** ** ** ** ** ** ** ** | Vcc | | 7 | IF amplifier input pin Connect ceramic filter Input impedance: 330 Ω | 7 | Vcc | | 8 | Vcc pin 1 | Vcc for MIX stage and IF early stage | Vcc | | 9 | Vcc pin 2 | Vcc for IF later stage and FM detection stage | Vcc | | Pin No. | Function | Internal peripheral circuit | DC voltage(V) | |----------|--|-----------------------------|---------------| | 10 | RSSI output pin Connect capacitor | 10 You | 0.1 | | 11
12 | IF amplifier output pin Pins 11 and 12 are opposite-phase output | 100 Vcc | Vcc-1 | | 13 | Discriminator pin Connect phase shift coil or ceramic discriminator | 500
13 Voc | Vcc | | 14 | FM demodulated signal output pin Output impedance is 360Ω | 330
14 | 0.9 | | 15 | Ground pin | GND for MIX stage | GND | | 16 | Mixer pin Connect first IF signal from DC cutoff | Voc | 1.0 | •Electrical characteristics (unless otherwise noted, Ta = 25°C, Vcc = 3.0V) Signal source: $f_{\text{IN (MIX)}} = 254.4 \text{MHz}$, $f_{\text{IN (LO)}} = 243.2 \text{MHz}$, 100dBμV, $f_{\text{IN (IF)}} = 11.2 \text{MHz}$ AC level to be indicated by termination | Parameter | Symbol | Min. | Тур. | Max. | Unit | Conditions | | |--------------------------------------|--------------------|------|------------|------|------------------|---|--| | Quiescent current | lα | 4.4 | 5.5 | 6.6 | mA | With local oscillation OFF | | | Current during battery save | IQ(BS) | - | 0 | 5 | μΑ | _ | | | Datter and frontian in the land | Vтн-н | 2 | _ | Vcc | ٧ | Active | | | Battery save function input voltage | V _{TH} -L | GND | _ | 0.2 | ٧ | Battery save | | | ⟨MIX—oscillator⟩ | ⟨MIX—oscillator⟩ | | | | | | | | Mixer operating frequency | fмıx | 20 | _ | 300 | MHz | _ | | | Mixer conversion gain | Gvc | 16 | 20 | 24 | dB | $V_{IN(MIX)}$ =60dB μ V | | | -1dB compression output level | Vом | _ | 103 | _ | dB μV | _ | | | 3rd order intercept point | IP₃ | _ | 110 | _ | dB μV | f1=248.75MHz, f2=249.05MHz | | | Noise index | NF | _ | 9.7 | _ | dB | LC matching input | | | Mixer input admittance | YIN(MIX) | - | 1.25+j7.47 | _ | ms | f=250MHz | | | Mixer output resistance | R o(міх) | _ | 330 | _ | Ω | _ | | | Local oscillator operating frequency | fLO | 20 | _ | 120 | MHz | _ | | | Local input level | VIN(LO) | 95 | 100 | 105 | dB μV | _ | | | Local input admittance | YIN(LO) | _ | 1.36+j9.72 | _ | ms | f=250MHz | | | ⟨IF section⟩ | | | | | | | | | IF operating frequency | fır | 4 | _ | 15 | MHz | _ | | | IF amplifier gain | Gv | _ | 75 | _ | dB | _ | | | IF input resistance | RIN(IF) | _ | 330 | _ | Ω | _ | | | IF output level | Voif | 0.4 | 0.5 | 0.6 | V _{P-P} | $V_{IN(IF)}$ =80dB μ V | | | IF output duty ratio | DR | 40 | 50 | 60 | % | V _{IN(IF)} =80dB μ V, C _L =10pF | | | ⟨RSSI section⟩ | | • | | | | | | | Output voltage 1 | VRSSI1 | - | 0.15 | 0.4 | ٧ | No input | | | Output voltage 2 | VRSSI2 | 1.0 | 1.2 | 1.4 | ٧ | $V_{IN(IF)}=70dB \mu V$ | | | Output voltage 3 | VRSSI3 | 1.8 | 2.0 | 2.2 | ٧ | $V_{IN(IF)}=100dB \mu V$ | | | Dynamic range | DR | _ | 70 | _ | dB | _ | | | Output resistance | Ro(RSSI) | 12 | 15 | 18 | kΩ | _ | | | Rise time at power on | Ton | - | 20 | _ | μs | CL=100pF, VIN(MIX)=60dB μV | | | Fall time at power off | Toff | - | 5 | _ | μs | C _L =100pF, V _{IN(MIX)} =60dB μ V | | | RSSI rise time | TR | _ | 9 | _ | μS | CL=100pF, VIN(MIX)=60dB μV | | | RSSI fall time | TF | _ | 11 | _ | μS | CL=100pF, VIN(MIX)=60dB μ V | | Signal source: $f_{\text{IN (IF)}}$ = 11.2MHz, Δf = $\pm 100 \text{kHz}$ dev, fm = 1kHz AC level to be indicated by termination | Parameter | Symbol | Min. | Тур. | Max. | Unit | Conditions | | | |------------------------|----------|------|-------|------|----------|--|--|--| | ⟨Detector section⟩ | | | | | | | | | | Detection sensitivity | SDET | _ | 1.243 | _ | mV / kHz | $V_{IN (IF)} = 80 dB \mu V$ | | | | Detection output level | Vo | 63 | 87 | 120 | mVrms | $V_{IN (IF)} = 80 dB \mu V$ | | | | Detection frequency | fDET | _ | 1.3 | _ | MHz | $V_{IN (IF)} = 80 dB \mu V$ | | | | 12dB SINAD sensitivity | S (12dB) | 12 | 16 | 20 | dB μV | | | | | S / N ratio | S/N | _ | 70 | _ | dB | $V_{IN (IF)} = 80 dB \mu V$ | | | | AM rejection ratio | AMR | _ | 60 | _ | dB | $V_{IN (IF)} = 80 dB \mu V, AM = 30\%$ | | | # Measurement circuit Fig.1 # Application example Fig.2 ●External dimensions (Units: mm) # **Notes** - No technical content pages of this document may be reproduced in any form or transmitted by any means without prior permission of ROHM CO.,LTD. - The contents described herein are subject to change without notice. The specifications for the product described in this document are for reference only. Upon actual use, therefore, please request that specifications to be separately delivered. - Application circuit diagrams and circuit constants contained herein are shown as examples of standard use and operation. Please pay careful attention to the peripheral conditions when designing circuits and deciding upon circuit constants in the set. - Any data, including, but not limited to application circuit diagrams information, described herein are intended only as illustrations of such devices and not as the specifications for such devices. ROHM CO.,LTD. disclaims any warranty that any use of such devices shall be free from infringement of any third party's intellectual property rights or other proprietary rights, and further, assumes no liability of whatsoever nature in the event of any such infringement, or arising from or connected with or related to the use of such devices. - Upon the sale of any such devices, other than for buyer's right to use such devices itself, resell or otherwise dispose of the same, no express or implied right or license to practice or commercially exploit any intellectual property rights or other proprietary rights owned or controlled by - ROHM CO., LTD. is granted to any such buyer. - Products listed in this document use silicon as a basic material. Products listed in this document are no antiradiation design. The products listed in this document are designed to be used with ordinary electronic equipment or devices (such as audio visual equipment, office-automation equipment, communications devices, electrical appliances and electronic toys). Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of with would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), please be sure to consult with our sales representative in advance. About Export Control Order in Japan Products described herein are the objects of controlled goods in Annex 1 (Item 16) of Export Trade Control Order in Japan. In case of export from Japan, please confirm if it applies to "objective" criteria or an "informed" (by MITI clause) on the basis of "catch all controls for Non-Proliferation of Weapons of Mass Destruction.