74HC366-Q100; 74HCT366-Q100 Hex buffer/line driver; 3-state; inverting Rev. 2 — 17 February 2021 **Product data sheet** ### 1. General description The 74HC366-Q100; 74HCT366-Q100 is a hex inverting buffer/line driver with 3-state outputs controlled by the output enable inputs (\overline{OEn}). A HIGH on \overline{OEn} causes the outputs to assume a high impedance OFF-state. Inputs include clamp diodes. This enables the use of current limiting resistors to interface inputs to voltages in excess of V_{CC} . This product has been qualified to the Automotive Electronics Council (AEC) standard Q100 (Grade 1) and is suitable for use in automotive applications. #### 2. Features and benefits - Automotive product qualification in accordance with AEC-Q100 (Grade 1) - Specified from -40 °C to +85 °C and from -40 °C to +125 °C - Wide supply voltage range from 2.0 V to 6.0 V - · CMOS low power dissipation - High noise immunity - Latch-up performance exceeds 100 mA per JESD 78 Class II Level B - · Complies with JEDEC standards: - JESD8C (2.7 V to 3.6 V) - JESD7A (2.0 V to 6.0 V) - Inverting outputs - Input levels: - For 74HC366-Q100: CMOS level - For 74HCT366-Q100: TTL level - ESD protection: - MIL-STD-883, method 3015 exceeds 2000 V - HBM JESD22-A114F exceeds 2000 V - MM JESD22-A115-A exceeds 200 V (C = 200 pF, R = 0 Ω) ## 3. Ordering information **Table 1. Ordering information** | Table 1: Ordering into | mation | | | | | | | | |------------------------|-------------------|---------|--|----------|--|--|--|--| | Type number | Package | Package | | | | | | | | | Temperature range | Name | Description | Version | | | | | | 74HC366D-Q100 | -40 °C to +125 °C | SO16 | plastic small outline package; 16 leads; | SOT109-1 | | | | | | 74HCT366D-Q100 | | | body width 3.9 mm | | | | | | | 74HC366PW-Q100 | -40 °C to +125 °C | TSSOP16 | plastic thin shrink small outline package; | SOT403-1 | | | | | | 74HCT366PW-Q100 | 1 | | 16 leads; body width 4.4 mm | | | | | | | | | | | | | | | | ## 4. Functional diagram ## 5. Pinning information #### 5.1. Pinning ### 5.2. Pin description Table 2. Pin description | Symbol | Pin | Description | | | | | | | |------------------------|---------------------|----------------------------------|--|--|--|--|--|--| | OE1, OE2 | 1, 15 | output enable input (active LOW) | | | | | | | | 1A, 2A, 3A, 4A, 5A, 6A | 2, 4, 6, 10, 12, 14 | data input | | | | | | | | 1Y, 2Y, 3Y, 4Y, 5Y, 6Y | 3, 5, 7, 9, 11, 13 | data output | | | | | | | | GND | 8 | ground (0 V) | | | | | | | | V _{CC} | 16 | supply voltage | | | | | | | ## 6. Functional description #### Table 3. Function table H = HIGH voltage level; L = LOW voltage level; X = don't care; Z = high-impedance OFF-state. | | | Input | Output | |-----|-----|-------|--------| | OE1 | OE2 | nA | nY | | L | L | L | Н | | L | L | Н | L | | X | Н | X | Z | | Н | X | X | Z | ## 7. Limiting values #### **Table 4. Limiting values** In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V). | Symbol | Parameter | Conditions | Min | Max | Unit | |------------------|-------------------------|---|------|------|------| | V _{CC} | supply voltage | | -0.5 | +7 | V | | I _{IK} | input clamping current | $V_{I} < -0.5 \text{ V or } V_{I} > V_{CC} + 0.5 \text{ V}$ | - | ±20 | mA | | I _{OK} | output clamping current | V_{O} < -0.5 V or V_{O} > V_{CC} + 0.5 V | - | ±20 | mA | | Io | output current | $V_{O} = -0.5 \text{ V to } (V_{CC} + 0.5 \text{ V})$ | - | ±35 | mA | | I _{CC} | supply current | | - | 70 | mA | | I _{GND} | ground current | | - | -70 | mA | | T _{stg} | storage temperature | | -65 | +150 | °C | | P _{tot} | total power dissipation | [1] | - | 500 | mW | ^[1] For SOT109-1 (SO16) package: P_{tot} derates linearly with 12.4 mW/K above 110 °C. For SOT403-1 (TSSOP16) package: P_{tot} derates linearly with 8.5 mW/K above 91 °C. ## 8. Recommended operating conditions #### Table 5. Recommended operating conditions Voltages are referenced to GND (ground = 0 V) | Symbol | Parameter | Conditions | 74HC366-Q100 | | | 74H | 74HCT366-Q100 | | | | |------------------|-------------------------------------|-------------------------|--------------|------|-----------------|-----|---------------|-----------------|------|--| | | | | Min | Тур | Max | Min | Тур | Max | | | | V _{CC} | supply voltage | | 2.0 | 5.0 | 6.0 | 4.5 | 5.0 | 5.5 | V | | | VI | input voltage | | 0 | - | V _{CC} | 0 | - | V _{CC} | V | | | Vo | output voltage | | 0 | - | V _{CC} | 0 | - | V _{CC} | V | | | T _{amb} | ambient temperature | | -40 | +25 | +125 | -40 | +25 | +125 | °C | | | Δt/ΔV | input transition rise and fall rate | V _{CC} = 2.0 V | - | - | 625 | - | - | - | ns/V | | | | | V _{CC} = 4.5 V | - | 1.67 | 139 | - | 1.67 | 139 | ns/V | | | | | V _{CC} = 6.0 V | - | - | 83 | - | - | - | ns/V | | ## 9. Static characteristics #### Table 6. Static characteristics 74HC366-Q100 At recommended operating conditions; voltages are referenced to GND (ground = 0 V). | Symbol | Parameter | Conditions | Min | Тур | Max | Unit | |----------------------|---------------------------|--|------|------|------|------| | T _{amb} = 2 | 5 °C | | | | | | | V _{IH} | HIGH-level input voltage | V _{CC} = 2.0 V | 1.5 | 1.2 | - | V | | | | V _{CC} = 4.5 V | 3.15 | 2.4 | - | V | | | | V _{CC} = 6.0 V | 4.2 | 3.2 | - | V | | V _{IL} | LOW-level input voltage | V _{CC} = 2.0 V | - | 0.8 | 0.5 | V | | | | V _{CC} = 4.5 V | - | 2.1 | 1.35 | V | | | | V _{CC} = 6.0 V | - | 2.8 | 1.8 | V | | V _{OH} | HIGH-level output voltage | $V_I = V_{IH}$ or V_{IL} | - | - | - | | | | | I _O = -20 μA; V _{CC} = 2.0 V | 1.9 | 2.0 | - | V | | | | I _O = -20 μA; V _{CC} = 4.5 V | 4.4 | 4.5 | - | V | | | | I _O = -20 μA; V _{CC} = 6.0 V | 5.9 | 6.0 | - | V | | | | I _O = -6.0 mA; V _{CC} = 4.5 V | 3.98 | 4.32 | - | V | | | | I _O = -7.8 mA; V _{CC} = 6.0 V | 5.48 | 5.81 | - | V | | V _{OL} | LOW-level output voltage | $V_I = V_{IH}$ or V_{IL} | | | | | | | | I _O = 20 μA; V _{CC} = 2.0 V | - | 0 | 0.1 | V | | | | I _O = 20 μA; V _{CC} = 4.5 V | - | 0 | 0.1 | V | | | | I _O = 20 μA; V _{CC} = 6.0 V | - | 0 | 0.1 | V | | | | I _O = 6.0 mA; V _{CC} = 4.5 V | - | 0.15 | 0.26 | V | | | | I _O = 7.8 mA; V _{CC} = 6.0 V | - | 0.16 | 0.26 | V | | I | input leakage current | $V_I = V_{CC}$ or GND; $V_{CC} = 6.0 \text{ V}$ | - | - | ±0.1 | μA | | l _{OZ} | OFF-state output current | $V_I = V_{IH}$ or V_{IL} ; $V_O = V_{CC}$ or GND; $V_{CC} = 6.0 \text{ V}$ | - | - | ±0.5 | μA | | I _{CC} | supply current | $V_I = V_{CC}$ or GND; $I_O = 0$ A; $V_{CC} = 6.0$ V | - | - | 8.0 | μA | | Cı | input capacitance | | - | 3.5 | - | pF | | Symbol | Parameter | Conditions | Min | Тур | Max | Unit | |-----------------------------------|---------------------------|--|------|-----|--|------| | T _{amb} = -4 | 40 °C to +85 °C | | | | | • | | V _{IH} | HIGH-level input voltage | V _{CC} = 2.0 V | 1.5 | - | - | V | | | | V _{CC} = 4.5 V | 3.15 | - | - | V | | | | V _{CC} = 6.0 V | 4.2 | - | - | V | | V _{IL} | LOW-level input voltage | V _{CC} = 2.0 V | - | - | 0.5 | V | | | | V _{CC} = 4.5 V | - | - | 1.35 | V | | | | V _{CC} = 6.0 V | - | - | 1.8 | V | | V _{OH} | HIGH-level output voltage | $V_I = V_{IH}$ or V_{IL} | | | | | | | | I _O = -20 μA; V _{CC} = 2.0 V | 1.9 | - | - | V | | | | I _O = -20 μA; V _{CC} = 4.5 V | 4.4 | - | - | V | | | | I _O = -20 μA; V _{CC} = 6.0 V | 5.9 | - | - | V | | | | I _O = -6.0 mA; V _{CC} = 4.5 V | 3.84 | - | - | V | | | | I _O = -7.8 mA; V _{CC} = 6.0 V | 5.34 | - | - | V | | V _{OL} | LOW-level output voltage | $V_I = V_{IH}$ or V_{IL} | | | | | | | | I _O = 20 μA; V _{CC} = 2.0 V | - | - | 0.1 | V | | | | I _O = 20 μA; V _{CC} = 4.5 V | - | - | 0.1 | V | | | | I _O = 20 μA; V _{CC} = 6.0 V | - | - | 0.1 | V | | | | I _O = 6.0 mA; V _{CC} = 4.5 V | - | - | 0.33 | V | | | | I _O = 7.8 mA; V _{CC} = 6.0 V | - | - | 0.33 | V | | Iı | input leakage current | $V_I = V_{CC}$ or GND; $V_{CC} = 6.0 \text{ V}$; | - | - | ±1.0 | μA | | l _{oz} | OFF-state output current | $V_I = V_{IH}$ or V_{IL} ; $V_O = V_{CC}$ or GND; $V_{CC} = 6.0 \text{ V}$ | - | - | ±5.0 | μA | | Icc | supply current | $V_1 = V_{CC}$ or GND; $I_0 = 0$ A; $V_{CC} = 6.0$ V | - | - | 80 | μA | | | 40 °C to +125 °C | | | | 1 | 1 | | V _{IH} | HIGH-level input voltage | V _{CC} = 2.0 V | 1.5 | - | - | V | | | | V _{CC} = 4.5 V | 3.15 | - | - | V | | | | V _{CC} = 6.0 V | 4.2 | - | ±1.0
±5.0
80
-
-
-
0.5
1.35 | V | | V _{IL} | LOW-level input voltage | V _{CC} = 2.0 V | - | - | 0.5 | V | | - | | V _{CC} = 4.5 V | - | - | 1.35 | V | | | | V _{CC} = 6.0 V | - | _ | 1.8 | V | | V _{OH} | HIGH-level output voltage | | | | 1.35 1.8 | | | 011 | | I _O = -20 μA; V _{CC} = 2.0 V | 1.9 | - | - | V | | | | I _O = -20 μA; V _{CC} = 4.5 V | 4.4 | - | - | V | | | | I _O = -20 μA; V _{CC} = 6.0 V | 5.9 | - | - | V | | | | $I_{O} = -6.0 \text{ mA}; V_{CC} = 4.5 \text{ V}$ | 3.7 | - | - | V | | | | $I_{\rm O}$ = -7.8 mA; $V_{\rm CC}$ = 6.0 V | 5.2 | _ | _ | V | | V _{OL} | LOW-level output voltage | V _I = V _{IH} or V _{IL} | - | | | | | OL | | $I_O = 20 \mu\text{A}; V_{CC} = 2.0 \text{V}$ | _ | _ | 0.1 | V | | | | I _O = 20 μA; V _{CC} = 4.5 V | _ | _ | | V | | | | I _O = 20 μA; V _{CC} = 6.0 V | - | _ | | V | | | | I _O = 6.0 mA; V _{CC} = 4.5 V | - | _ | | V | | | | $I_O = 7.8 \text{ mA; } V_{CC} = 4.0 \text{ V}$ | - | _ | | V | | _ | input leakage current | $V_1 = V_{CC}$ or GND; $V_{CC} = 6.0 \text{ V}$ | _ | _ | | μA | | lı . | mpat rounage ourront | • • • • • • • • • • | - | _ | 1.0 | ۳, ۲ | | I _I
I _{OZ} | OFF-state output current | $V_I = V_{IH}$ or V_{IL} ; $V_O = V_{CC}$ or GND; $V_{CC} = 6.0 \text{ V}$ | _ | _ | +10 0 | μΑ | Table 7. Static characteristics 74HCT366-Q100 At recommended operating conditions; voltages are referenced to GND (ground = 0 V). | Symbol | Parameter | Conditions | Min | Тур | Max | Unit | |-----------------------|---------------------------|--|------|------|------|------| | T _{amb} = 2 | 5 °C | | | | | | | V _{IH} | HIGH-level input voltage | V _{CC} = 4.5 V to 5.5 V | 2.0 | 1.6 | - | V | | V _{IL} | LOW-level input voltage | V _{CC} = 4.5 V to 5.5 V | - | 1.2 | 8.0 | V | | V _{OH} | HIGH-level output | $V_I = V_{IH}$ or V_{IL} ; $V_{CC} = 4.5 \text{ V}$ | | | | | | | voltage | I _O = -20 μA | 4.4 | 4.5 | - | V | | | | I _O = -6.0 mA | 3.98 | 4.32 | - | V | | V _{OL} | LOW-level output voltage | $V_I = V_{IH}$ or V_{IL} ; $V_{CC} = 4.5 \text{ V}$ | | | | | | | | I _O = 20 μA | - | 0 | 0.1 | V | | | | I _O = 6.0 mA | - | 0.16 | 0.26 | V | | l _l | input leakage current | $V_I = V_{CC}$ or GND; $V_{CC} = 5.5 \text{ V}$ | - | - | ±0.1 | μΑ | | l _{OZ} | OFF-state output current | $V_I = V_{IH}$ or V_{IL} ; $V_O = V_{CC}$ or GND; $V_{CC} = 5.5 \text{ V}$ | - | - | ±0.5 | μΑ | | I _{CC} | supply current | $V_I = V_{CC}$ or GND; $I_O = 0$ A; $V_{CC} = 5.5$ V | - | - | 8.0 | μΑ | | ΔI _{CC} | additional supply current | $V_I = V_{CC}$ - 2.1 V; other inputs at V_{CC} or GND; $I_O = 0$ A | | | | | | | | pins nA | - | 100 | 360 | μΑ | | | | pin OE1 | - | 100 | 360 | μΑ | | | | pin OE2 | - | 90 | 320 | μΑ | | Cı | input capacitance | | - | 3.5 | - | pF | | T _{amb} = -4 | 40 °C to +85 °C | | | | | | | V _{IH} | HIGH-level input voltage | V _{CC} = 4.5 V to 5.5 V | 2.0 | - | - | V | | V _{IL} | LOW-level input voltage | V _{CC} = 4.5 V to 5.5 V | - | - | 0.8 | V | | V _{OH} | HIGH-level output voltage | $V_I = V_{IH}$ or V_{IL} ; $V_{CC} = 4.5 \text{ V}$ | | | | | | | | I _O = -20 μA | 4.4 | - | - | V | | | | I _O = -6.0 mA | 3.84 | - | - | V | | V _{OL} | LOW-level output voltage | $V_I = V_{IH}$ or V_{IL} ; $V_{CC} = 4.5 \text{ V}$ | | | | | | | | Ι _Ο = 20 μΑ | - | - | 0.1 | V | | | | I _O = 6.0 mA | - | - | 0.33 | V | | I _I | input leakage current | $V_I = V_{CC}$ or GND; $V_{CC} = 5.5 \text{ V}$ | - | - | ±1.0 | μΑ | | l _{OZ} | OFF-state output current | $V_I = V_{IH}$ or V_{IL} ; $V_O = V_{CC}$ or GND; $V_{CC} = 5.5 \text{ V}$ | | | ±5.0 | μΑ | | I _{CC} | supply current | $V_I = V_{CC}$ or GND; $I_O = 0$ A; $V_{CC} = 5.5$ V | - | - | 80 | μΑ | | ΔI _{CC} | additional supply current | $V_I = V_{CC}$ - 2.1 V; other inputs at V_{CC} or GND; $I_O = 0$ A | | | | | | | | pins nA | - | - | 450 | μΑ | | | | pin OE1 | - | - | 450 | μΑ | | | | pin OE2 | - | - | 400 | μΑ | | Symbol | Parameter | Conditions | Min | Тур | Max | Unit | |--|---------------------------|--|-----|-----|-------|------| | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | | | | | | V _{IH} | HIGH-level input voltage | V _{CC} = 4.5 V to 5.5 V | 2.0 | - | - | V | | V _{IL} | LOW-level input voltage | V _{CC} = 4.5 V to 5.5 V | - | - | 0.8 | V | | V _{OH} | HIGH-level output voltage | $V_I = V_{IH}$ or V_{IL} ; $V_{CC} = 4.5 V$ | | | | | | | | I _O = -20 μA | 4.4 | - | - | V | | | | I _O = -6.0 mA | 3.7 | - | - | V | | V _{OL} | LOW-level output voltage | $V_I = V_{IH}$ or V_{IL} ; $V_{CC} = 4.5 V$ | | | | | | | | Ι _Ο = 20 μΑ | - | - | 0.1 | V | | | | I _O = 6.0 mA | - | - | 0.4 | V | | I _I | input leakage current | $V_I = V_{CC}$ or GND; $V_{CC} = 5.5 \text{ V}$ | - | - | ±1.0 | μΑ | | l _{OZ} | OFF-state output current | $V_I = V_{IH}$ or V_{IL} ; $V_O = V_{CC}$ or GND; $V_{CC} = 5.5 \text{ V}$ | - | - | ±10.0 | μΑ | | I _{CC} | supply current | $V_{I} = V_{CC}$ or GND; $I_{O} = 0$ A; $V_{CC} = 5.5$ V | - | - | 160 | μΑ | | ΔI _{CC} | additional supply current | $V_I = V_{CC}$ - 2.1 V; other inputs at V_{CC} or GND; $I_O = 0$ A | | | | | | | | pins nA | - | - | 490 | μΑ | | | | pin OE1 | - | - | 490 | μΑ | | | | pin OE2 | - | - | 441 | μΑ | ## 10. Dynamic characteristics #### Table 8. Dynamic characteristics 74HC366-Q100 Voltages are referenced to GND (ground = 0 V); C_L = 50 pF unless otherwise specified; see test circuit Fig. 8. | Symbol | Parameter | Conditions | | Min | Тур | Max | Unit | |----------------------|-------------------------------|---|-----|-----|--|-----|------| | T _{amb} = 2 | 5 °C | | , | | ' | • | | | t _{pd} | propagation delay | nA to nY; see Fig. 6 | [1] | | | | | | | | V _{CC} = 2.0 V | | - | 33 1
12 2
10 10 10 10 10 10 10 10 10 10 10 10 10 1 | 100 | ns | | | | V _{CC} = 4.5 V | | - | | 20 | ns | | | | V _{CC} = 5 V; C _L = 15 pF | | - | 10 | - | ns | | | | V _{CC} = 6.0 V | | - | 10 | 17 | ns | | t _{en} | enable time | OEn to nY; see Fig. 7 | [2] | | | | | | | | V _{CC} = 2.0 V | | - | 44 | 150 | ns | | | | V _{CC} = 4.5 V | | - | 16 | 30 | ns | | | | V _{CC} = 6.0 V | | - | 13 | 26 | ns | | t _{dis} | disable time | OEn to nY; see Fig. 7 | [3] | | | | | | | | V _{CC} = 2.0 V | | - | 55 | 150 | ns | | | | V _{CC} = 4.5 V | | - | 20 | 30 | ns | | | | V _{CC} = 6.0 V | | - | 16 | 26 | ns | | t _t | transition time | see Fig. 6 | [4] | | | | | | | | V _{CC} = 2.0 V | | - | 14 | 60 | ns | | | | V _{CC} = 4.5 V | | - | 5 | 12 | ns | | | | V _{CC} = 6.0 V | | - | 4 | 10 | ns | | C _{PD} | power dissipation capacitance | per buffer; V_I = GND to V_{CC} | [5] | - | 30 | - | pF | | Symbol | Parameter | Conditions | | Min | Тур | Max | Unit | |-----------------------|-------------------|-------------------------|-----|-----|------|-----|------| | T _{amb} = -4 | 40 °C to +85 °C | | | | | • | | | t _{pd} | propagation delay | nA to nY; see Fig. 6 | [1] | | | | | | | | V _{CC} = 2.0 V | | - | - | 125 | ns | | | | V _{CC} = 4.5 V | | - | - | 25 | ns | | | | V _{CC} = 6.0 V | | - | - | 21 | ns | | t _{en} | enable time | OEn to nY; see Fig. 7 | [2] | | | | | | | | V _{CC} = 2.0 V | | - | - | 190 | ns | | | | V _{CC} = 4.5 V | | - | - | 38 | ns | | | | V _{CC} = 6.0 V | | - | - | 33 | ns | | t _{dis} | disable time | OEn to nY; see Fig. 7 | [3] | | | | | | | | V _{CC} = 2.0 V | | - | - | 190 | ns | | | | V _{CC} = 4.5 V | | - | - | 38 | ns | | | | V _{CC} = 6.0 V | | - | - | 33 | ns | | t _t | transition time | see <u>Fig. 6</u> | [4] | | | | | | | | V _{CC} = 2.0 V | | - | - | 75 | ns | | | | V _{CC} = 4.5 V | | - | - | 15 | ns | | | | V _{CC} = 6.0 V | | - | - | 13 | ns | | T _{amb} = -4 | 40 °C to +125 °C | | | | | | | | t _{pd} | propagation delay | nA to nY; see Fig. 6 | [1] | | | | | | | | V _{CC} = 2.0 V | | - | - | 150 | ns | | | | V _{CC} = 4.5 V | | - | - | 30 | ns | | | | V _{CC} = 6.0 V | | - | - | 26 | ns | | t _{en} | enable time | OEn to nY; see Fig. 7 | [2] | | | | | | | | V _{CC} = 2.0 V | | - | - | 225 | ns | | | | V _{CC} = 4.5 V | | - | - | 45 | ns | | | | V _{CC} = 6.0 V | | - | - | 38 | ns | | t _{dis} | disable time | OEn to nY; see Fig. 7 | [3] | | | | | | | | V _{CC} = 2.0 V | | - | - | 225 | ns | | | | V _{CC} = 4.5 V | | | 45 | ns | | | | | V _{CC} = 6.0 V | | - | - 38 | 38 | ns | | t _t | transition time | see Fig. 6 | [4] | | | | 1 | | | | V _{CC} = 2.0 V | | - | - | 90 | ns | | | | V _{CC} = 4.5 V | | - | - | 18 | ns | | | | V _{CC} = 6.0 V | | _ | - | 15 | ns | ^[1] $\;\;t_{pd}$ is the same as t_{PHL} and $t_{PLH}.$ f_i = input frequency in MHz; f_o = output frequency in MHz; C_L = output load capacitance in pF; V_{CC} = supply voltage in V; N = number of inputs switching; $\Sigma(C_L \times V_{CC}^2 \times f_0) = \text{sum of outputs.}$ t_{en} is the same as t_{PZH} and t_{PZL} . ^[3] t_{dis} is the same as t_{PHZ} and t_{PLZ} . t_{dis} is the same as t_{THL} and t_{TLH}. C_{PD} is used to determine the dynamic power dissipation (P_D in μW). P_D = C_{PD} x V_{CC}² x f_i x N + Σ(C_L x V_{CC}² x f_o) where: #### Table 9. Dynamic characteristics 74HCT366-Q100 Voltages are referenced to GND (ground = 0 V); C_L = 50 pF unless otherwise specified; see test circuit Fig. 8. | Symbol | Parameter | Conditions | | Min | Тур | Max | Unit | |-----------------------|-------------------------------|--|-----|-----|-----|-----|------| | T _{amb} = 2 | 5 °C | | | | • | | | | t _{pd} | propagation delay | nA to nY; see Fig. 6 | [1] | | | | | | | | V _{CC} = 4.5 V | | - | 13 | 24 | ns | | | | V _{CC} = 5 V; C _L = 15 pF | | - | 11 | - | ns | | t _{en} | enable time | OEn to nY; V _{CC} = 4.5 V; see Fig. 7 | [2] | - | 16 | 35 | ns | | t _{dis} | disable time | OEn to nY; V _{CC} = 4.5 V; see Fig. 7 | [3] | - | 20 | 35 | ns | | t _t | transition time | V _{CC} = 4.5 V; see <u>Fig. 6</u> | [4] | - | 5 | 12 | ns | | C _{PD} | power dissipation capacitance | per buffer; V_I = GND to (V_{CC} - 1.5 V) | [5] | - | 30 | - | pF | | T _{amb} = -4 | 40 °C to +85 °C | | | | | | | | t _{pd} | propagation delay | nA to nY; V _{CC} = 4.5 V; see <u>Fig. 6</u> | [1] | - | - | 30 | ns | | t _{en} | enable time | OEn to nY; V _{CC} = 4.5 V; see Fig. 7 | [2] | - | - | 44 | ns | | t _{dis} | disable time | OEn to nY; V _{CC} = 4.5 V; see Fig. 7 | [3] | - | - | 44 | ns | | t _t | transition time | V _{CC} = 4.5 V; see <u>Fig. 6</u> | [4] | - | - | 15 | ns | | T _{amb} = -4 | 40 °C to +125 °C | | | | | | | | t _{pd} | propagation delay | nA to nY; V _{CC} = 4.5 V; see <u>Fig. 6</u> | [1] | - | - | 36 | ns | | t _{en} | enable time | OEn to nY; V _{CC} = 4.5 V; see Fig. 7 | [2] | - | - | 53 | ns | | t _{dis} | disable time | OEn to nY; V _{CC} = 4.5 V; see Fig. 7 | [3] | - | - | 53 | ns | | t _t | transition time | V _{CC} = 4.5 V; see <u>Fig. 6</u> | [4] | - | - | 18 | ns | - [1] t_{pd} is the same as t_{PHL} and t_{PLH} . - [2] t_{en} is the same as t_{PZH} and t_{PZL} . - [3] t_{dis} is the same as t_{PHZ} and t_{PLZ} . - tdis is the same as t_{PHZ} and t_{PLZ}. t_t is the same as t_{THL} and t_{TLH}. C_{PD} is used to determine the dynamic power dissipation (P_D in μW). P_D = C_{PD} x V_{CC}² x f_i x N + Σ(C_L x V_{CC}² x f_o) where: f_i = input frequency in MHz; f_o = output frequency in MHz; C_L = output load capacitance in pF; V_{CC} = supply voltage in V; N = number of inputs switching; $\Sigma(C_L \times V_{CC}^2 \times f_0) = \text{sum of outputs.}$ #### 10.1. Waveforms and test circuit Fig. 7. 3-state enable and disable times **Table 10. Measurement points** | Туре | Input | Output | | | | | |---------------|--------------------|--------------------|-----------------------|-----------------------|--|--| | | V _M | V _M | V _X | V _Y | | | | 74HC366-Q100 | 0.5V _{CC} | 0.5V _{CC} | 0.1 x V _{CC} | 0.9 x V _{CC} | | | | 74HCT366-Q100 | 1.3 V | 1.3 V | 0.1 x V _{CC} | 0.9 x V _{CC} | | | 001aad983 Test data is given in Table 11. Definitions test circuit: R_T = Termination resistance should be equal to output impedance Z_o of the pulse generator C_L = Load capacitance including jig and probe capacitance R_L = Load resistance S1 = Test selection switch Fig. 8. Test circuit for measuring switching times Table 11. Test data | Туре | Input | | Load | | S1 position | | | | |---------------|-----------------|---------------------------------|--------------|-------|-------------------------------------|-------------------------------------|-----------------------|--| | | V _I | t _r , t _f | CL | R_L | t _{PHL} , t _{PLH} | t _{PZH} , t _{PHZ} | t_{PZL} , t_{PLZ} | | | 74HC366-Q100 | V _{CC} | 6 ns | 15 pF, 50 pF | 1 kΩ | open | GND | V _{CC} | | | 74HCT366-Q100 | 3 V | 6 ns | 15 pF, 50 pF | 1 kΩ | open | GND | V _{CC} | | ## 11. Package outline #### SO16: plastic small outline package; 16 leads; body width 3.9 mm SOT109-1 | UNIT | A
max. | A ₁ | A ₂ | A ₃ | bp | С | D ⁽¹⁾ | E ⁽¹⁾ | е | HE | L | Lp | Q | v | w | у | Z ⁽¹⁾ | θ | |--------|-----------|-----------------------|----------------|----------------|--------------|------------------|------------------|------------------|------|----------------|-------|----------------|----------------|------|------|-------|------------------|----| | mm | 1.75 | 0.25
0.10 | 1.45
1.25 | 0.25 | 0.49
0.36 | 0.25
0.19 | 10.0
9.8 | 4.0
3.8 | 1.27 | 6.2
5.8 | 1.05 | 1.0
0.4 | 0.7
0.6 | 0.25 | 0.25 | 0.1 | 0.7
0.3 | 8° | | inches | 0.069 | 0.010
0.004 | 0.057
0.049 | 0.01 | | 0.0100
0.0075 | 0.39
0.38 | 0.16
0.15 | 0.05 | 0.244
0.228 | 0.041 | 0.039
0.016 | 0.028
0.020 | 0.01 | 0.01 | 0.004 | 0.028
0.012 | 0° | 1. Plastic or metal protrusions of 0.15 mm (0.006 inch) maximum per side are not included. | OUTLINE | | REFER | EUROPEAN | ISSUE DATE | | | |----------|--------|--------|----------|------------|------------|---------------------------------| | VERSION | IEC | JEDEC | JEITA | | PROJECTION | ISSUE DATE | | SOT109-1 | 076E07 | MS-012 | | | | 99-12-27
03-02-19 | Fig. 9. Package outline SOT109-1 (SO16) TSSOP16: plastic thin shrink small outline package; 16 leads; body width 4.4 mm SOT403-1 #### Notes - 1. Plastic or metal protrusions of 0.15 mm maximum per side are not included. - 2. Plastic interlead protrusions of 0.25 mm maximum per side are not included. | OUTLINE | | REFER | EUROPEAN | ISSUE DATE | | | |----------|-----|--------|----------|------------|------------|---------------------------------| | VERSION | IEC | JEDEC | JEITA | | PROJECTION | ISSUE DATE | | SOT403-1 | | MO-153 | | | | 99-12-27
03-02-18 | Fig. 10. Package outline SOT403-1 (TSSOP16) ## 12. Abbreviations #### **Table 12. Abbreviations** | Acronym | Description | |---------|---| | CMOS | Complementary Metal Oxide Semiconductor | | DUT | Device Under Test | | ESD | ElectroStatic Discharge | | НВМ | Human Body Model | | MIL | Military | | MM | Machine Model | ## 13. Revision history #### **Table 13. Revision history** | Document ID | Release date | Data sheet status | Change notice | Supersedes | |----------------------|---|--|-------------------|----------------------| | 74HC_HCT366_Q100 v.2 | 20210217 | Product data sheet | - | 74HC_HCT366_Q100 v.1 | | Modifications: | Nexperia. Legal texts have Section 1 and Section 7: Derivative Sec | his data sheet has been redes
we been adapted to the new co
Section 2 updated.
ating values for P _{tot} total powe
tions for I _{OZ} have changed for | ompany name where | appropriate. | | 74HC_HCT366_Q100 v.1 | 20120807 | Product data sheet | - | - | ## 14. Legal information #### **Data sheet status** | Document status [1][2] | Product
status [3] | Definition | |--------------------------------|-----------------------|---| | Objective [short] data sheet | Development | This document contains data from the objective specification for product development. | | Preliminary [short] data sheet | Qualification | This document contains data from the preliminary specification. | | Product [short]
data sheet | Production | This document contains the product specification. | - Please consult the most recently issued document before initiating or completing a design. - [2] The term 'short data sheet' is explained in section "Definitions". - The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the internet at https://www.nexperia.com. #### **Definitions** **Draft** — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information. Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail. Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between Nexperia and its customer, unless Nexperia and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the Nexperia product is deemed to offer functions and qualities beyond those described in the Product data sheet. #### **Disclaimers** Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Nexperia takes no responsibility for the content in this document if provided by an information source outside of Nexperia. In no event shall Nexperia be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory. Notwithstanding any damages that customer might incur for any reason whatsoever, Nexperia's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of Nexperia. Right to make changes — Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof. **Suitability for use in automotive applications** — This Nexperia product has been qualified for use in automotive applications. Unless otherwise agreed in writing, the product is not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an Nexperia product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Nexperia and its suppliers accept no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer's own triple. **Quick reference data** — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding. **Applications** — Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification. Customers are responsible for the design and operation of their applications and products using Nexperia products, and Nexperia accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the Nexperia product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products. Nexperia does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using Nexperia products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). Nexperia does not accept any liability in this respect. Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device. Terms and conditions of commercial sale — Nexperia products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nexperia.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Nexperia hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of Nexperia products by customer. No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights. **Export control** — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities. **Translations** — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions. #### **Trademarks** Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners. ## **Contents** | 1. General description | 1 | |-------------------------------------|----| | 2. Features and benefits | 1 | | 3. Ordering information | 1 | | 4. Functional diagram | 2 | | 5. Pinning information | 3 | | 5.1. Pinning | 3 | | 5.2. Pin description | 3 | | 6. Functional description | 3 | | 7. Limiting values | 4 | | 8. Recommended operating conditions | 4 | | 9. Static characteristics | 5 | | 10. Dynamic characteristics | 8 | | 10.1. Waveforms and test circuit | 11 | | 11. Package outline | 13 | | 12. Abbreviations | 15 | | 13. Revision history | 15 | | 14. Legal information | 16 | | | | For more information, please visit: http://www.nexperia.com For sales office addresses, please send an email to: salesaddresses@nexperia.com Date of release: 17 February 2021 [©] Nexperia B.V. 2021. All rights reserved