ON Semiconductor

Is Now

To learn more about onsemi™, please visit our website at www.onsemi.com

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application,

2-Bit Translating Bus Switch

7WBD3125

The 7WBD3125 is an advanced high-speed low-power 2-bit translating bus switch in ultra-small footprints.

Features

- High Speed: $t_{PD} = 0.25 \text{ ns (Max)} @ V_{CC} = 4.5 \text{ V}$
- 3 Ω Switch Connection Between 2 Ports
- Power Down Protection Provided on Inputs
- Zero Bounce
- TTL-Compatible Control Inputs
- Ultra-Small Pb-Free Packages
- NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable
- These are Pb-Free Devices

ON Semiconductor®

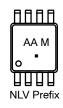
www.onsemi.com

MARKING DIAGRAMS

UDFN8 MU SUFFIX CASE 517AJ

UDFN8 1.95 x 1.0 CASE 517CA

Micro8 DM SUFFIX CASE 846A


UQFN8 MU SUFFIX CASE 523AN

US8 US SUFFIX CASE 493

Y = Year Code
W = Week Code
Week Code
Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 7 of this data sheet.

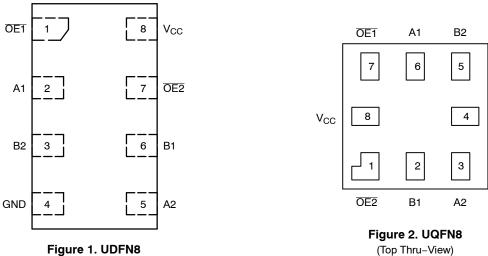


Figure 1. UDFN8 (Top Thru-View)

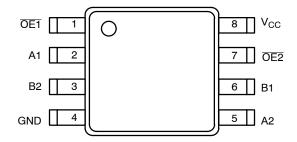


Figure 3. US8/Micro8 (Top View)

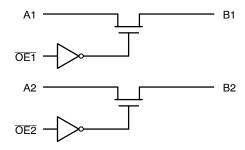


Figure 4. Logic Diagram

FUNCTION TABLE

Input OEn	Function
L	Bn = An
Н	Disconnect

GND

MAXIMUM RATINGS

Symbol	Parameter		Value	Unit	
V _{CC}	DC Supply Voltage		-0.5 to +7.0	V	
V _{IN}	Control Pin Input Voltage		-0.5 to +7.0	V	
V _{I/O}	Switch Input / Output Voltage		-0.5 to +7.0	V	
I _{IK}	Control Pin DC Input Diode Current	V _{IN} < GND	-50	mA	
l _{ok}	Switch I/O Port DC Diode Current	V _{I/O} < GND	-50	mA	
Io	ON-State Switch Current		± 128	mA	
	Continuous Current Through V _{CC} or GND		± 150	mA	
I _{CC}	DC Supply Current Per Supply Pin		± 150	mA	
I _{GND}	DC Ground Current per Ground Pin		± 150	mA	
T _{STG}	Storage Temperature Range		-65 to +150	°C	
TL	Lead Temperature, 1 mm from Case for 10 Seco	nds	260	°C	
TJ	Junction Temperature Under Bias		150	°C	
θ _{JA}	Thermal Resistance	US8 (Note 1) UDFN8 UQFN8 Micro8	251 111 208 392	°C/W	
P _D	Power Dissipation in Still Air at 85°C	US8 UDFN8 UQFN8 Micro8	498 1127 601 319	mW	
MSL	Moisture Sensitivity		Level 1		
F _R	Flammability Rating Oxygen Index: 28 to 34		UL 94 V-0 @ 0.125 in		
V _{ESD}	ESD Withstand Voltage Human Body Mode (Note 2) Machine Model (Note 3) Charged Device Model (Note 4)		> 2000 > 200 N/A	V	
I _{LATCHUP}	Latchup Performance Above V _{CC} and Below GN	D at 125°C (Note 5)	±200	mA	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

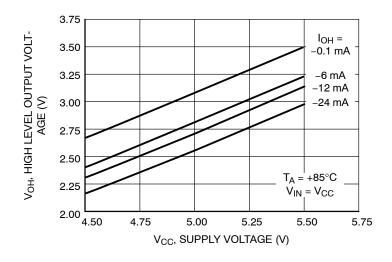
- 1. Measured with minimum pad spacing on an FR4 board, using 10 mm-by-1 inch, 2 ounce copper trace no air flow.
- 2. Tested to EIA / JESD22-A114-A.
- 3. Tested to EIA / JESD22-A115-A.
- 4. Tested to JESD22-C101-A.
- 5. Tested to EIA / JESD78.

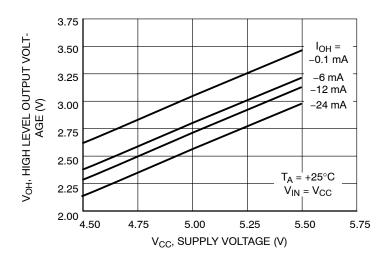
RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter			Max	Unit
V _{CC}	Positive DC Supply Voltage		4.0	5.5	V
V _{IN}	Control Pin Input Voltage		0	5.5	V
V _{I/O}	Switch Input / Output Voltage		0	5.5	V
T _A	Operating Free-Air Temperature		-55	+125	°C
Δt / ΔV	Input Transition Rise or Fall Rate Control Input Switch I/C		0 0	5 DC	nS/V

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

DC ELECTRICAL CHARACTERISTICS


			V _{CC}	T _A = 25°C		T _A = -55°C to +125°C			
Symbol	Parameter	Conditions	(V)	Min	Тур	Max	Min	Max	Unit
V _{IK}	Clamp Diode Voltage	I _{I/O} = -18 mA	4.5			-1.2		-1.2	V
V _{IH}	High-Level Input Voltage (Control)		4.0 to 5.5	2.0			2.0		V
V _{IL}	Low-Level Input Voltage (Control)		4.0 to 5.5			0.8		0.8	V
V _{OH}	Output Voltage High	See Figure 5							
I _{IN}	Input Leakage Current	$0 \le V_{IN} \le 5.5 V$	5.5			±0.1		±1.0	μΑ
l _{OFF}	Power Off Leakage Current	V _{I/O} = 0 to 5.5 V	0			±0.1		±1.0	μΑ
I _{CC}	Quiescent Supply Current		5.5			±1.0 ±0.1		±1.0 ±1.0	mA μA
Δl _{CC}	Increase in Supply Current (Control Pin)	One input at 3.4 V; Other inputs at V _{CC} or GND	5.5					2.5	mA
R _{ON}	Switch ON Resistance	$V_{I/O} = 0,$ $I_{I/O} = 64 \text{ mA}$ $I_{I/O} = 30 \text{ mA}$	4.5		3 3	7 7		7 7	Ω
		$V_{I/O} = 2.4,$ $I_{I/O} = 15 \text{ mA}$			15	50		50	
		$V_{I/O} = 2.4,$ $I_{I/O} = 15 \text{ mA}$	4.0		50	70		70	


Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

AC ELECTRICAL CHARACTERISTICS

			V _{CC}	T _A = 25 °C		T _A = -55°C to +125°C			
Symbol	Parameter	Test Condition	(V)	Min	Тур	Max	Min	Max	Unit
t _{PD}	Propagation Delay, Bus to Bus	See Figure 6	4.0 to 5.5			0.25		0.25	ns
t _{EN}	Output Enable Time	See Figure 6	4.5 to 5.5	0.8	2.5	4.2	0.8	4.2	ns
			4.0	0.8	3.0	4.6	0.8	4.6	
t _{DIS}	Output Disable Time		4.5 to 5.5	0.8	3.0	4.8	0.8	4.8	ns
			4.0	0.8	2.9	4.4	0.8	4.4	
C _{IN}	Control Input Capacitance	V _{IN} = 5 or 0 V	5.0		2.5				pF
C _{IO(ON)}	Switch On Capacitance	Switch ON	5.0		10				pF
C _{IO(OFF)}	Switch Off Capacitance	Switch OFF	5.0		5				pF

TYPICAL DC CHARACTERISTICS

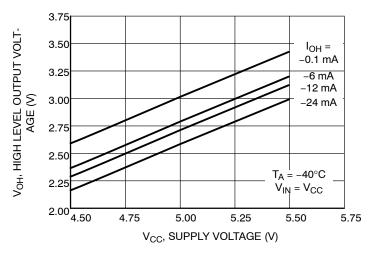
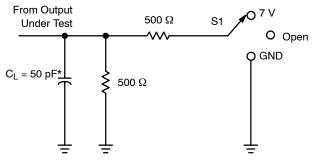
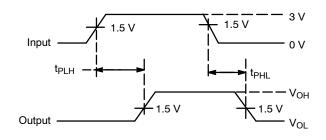
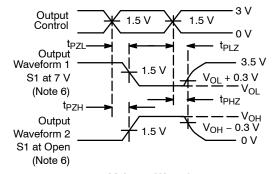



Figure 5. Output Voltage High vs Supply Voltage


AC LOADING AND WAVEFORMS


Parameter Measurement Information

Test	S1
t _{PD}	Open
t _{PLZ} /t _{PZL}	7 V
t _{PHZ} /t _{PZH}	Open

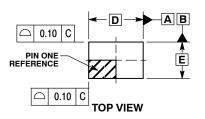
^{*}CL includes probes and jig capacitance.

Voltage Waveforms Propagation Delay Times

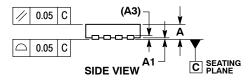
Voltage Waveforms Enable and Disable Times

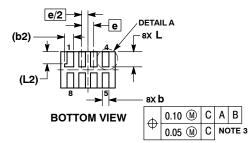
- 6. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control
- 7. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_0 = 50 Ω , $t_r \leq$ 2.5 ns, $t_f \leq$ 2.5 ns. 8. The outputs are measured one at a time, with one transition per measurement.
- 9. t_{PLZ} and t_{PHZ} are the same as t_{DIS}.
- 10. t_{PZL} and t_{PZH} are the same as t_{EN}.
 11. t_{PHL} and t_{PLH} are the same as t_{PD}.

Figure 6. t_{PD}, t_{EN}, t_{DIS} Loading and Waveforms


ORDERING INFORMATION

Device	Package	Shipping [†]
7WBD3125USG	US8 (Pb-Free)	3000 / Tape & Reel
NLV7WBD3125USG*	US8 (Pb-Free)	3000 / Tape & Reel
7WBD3125MUTAG	UDFN8 (Pb-Free)	3000 / Tape & Reel
7WBD3125AMUTCG	D3125AMUTCG UQFN8 (Pb-Free)	
7WBD3125DMR2G Micro8 (Pb–Free)		4000 / Tape & Reel
7WBD3125DMUTCG	UDFN8, 1.95 x 1.0, 0.5P (Pb-Free)	3000 / Tape & Reel


[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
*NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable.

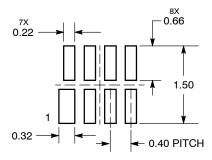

PACKAGE DIMENSIONS

UDFN8 1.8 x 1.2, 0.4P CASE 517AJ ISSUE O

- NOTES:

 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.

 2. CONTROLLING DIMENSION: MILLIMETERS.

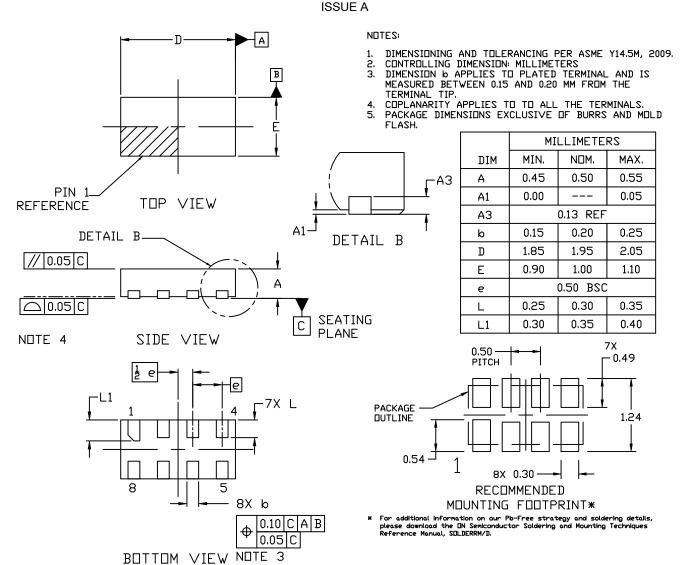

 3. DIMENSION & APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.30 mm FROM TERMINAL TIP.

 4. MOLD FLASH ALLOWED ON TERMINALS ALONG EOGE OF PACKAGE, FLASH MAY NOT EXCEED 0.03 ONTO BOTTOM SURFACE OF TERMINALS.

 5. DETAIL A SHOWS OPTIONAL CONSTRUCTION FOR TERMINALS.

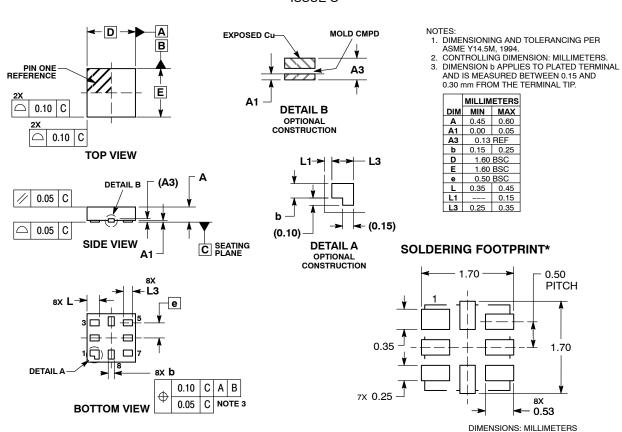
	MILLIMETERS					
DIM	MIN MA					
Α	0.45	0.55				
A 1	0.00 0.05					
А3	0.127	REF				
b	0.15	0.25				
b2	0.30	REF				
ם	1.80 BSC					
Е	1.20 BSC					
Φ	0.40 BSC					
L	0.45 0.55					
L	0.00	0.03				
L2	0.40 RFF					

MOUNTING FOOTPRINT* SOLDERMASK DEFINED



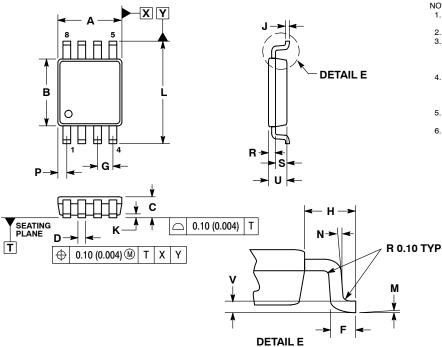
DIMENSIONS: MILLIMETERS

^{*}For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.


PACKAGE DIMENSIONS

UDFN8 1.95x1.0, 0.5P CASE 517CA

PACKAGE DIMENSIONS


UQFN8, 1.6x1.6, 0.5P CASE 523AN ISSUE O

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

US8 **CASE 493** ISSUE D

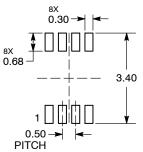
- NOTES:

 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

 2. CONTROLLING DIMENSION: MILLIMETERS.

 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSION OR GATE BURR. MOLD FLASH. PROTRUSION AND GATE BURR SHALL NOT EXCEED 0.14MM (0.0055") PER SIDE.

 4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH AND PROTRUSION. INTERLEAD FLASH AND PROTRUSION SHALL NOT EXCEED 0.14MM (0.0055") PER SIDE.
- AND PROTROSON SHALL NOT EXCEED 0.14WW (0.0055") PER SIDE. LEAD FINISH IS SOLDER PLATING WITH THICKNESS OF 0.0076-0.0203MM (0.003-0.008"). ALL TOLERANCE UNLESS OTHERWISE SPECIFIED ±0.0508MM (0.0002").

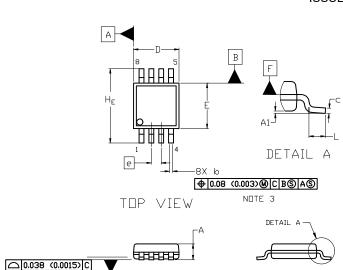

	MILLIN	IETERS	INC	HES	
DIM	MIN	MAX	MIN	MAX	
Α	1.90	2.10	0.075	0.083	
В	2.20	2.40	0.087	0.094	
O	0.60	0.90	0.024	0.035	
D	0.17	0.25	0.007	0.010	
F	0.20	0.35	0.008	0.014	
G	0.50	0.50 BSC		BSC	
Н	0.40	REF	0.016 REF		
J	0.10	0.18	0.004	0.007	
K	0.00	0.10	0.000	0.004	
L	3.00	3.20	0.118	0.128	
М	0 °	6°	0 °	6°	
N	0 °	10 °	0 °	10 °	
Р	0.23	0.34	0.010	0.013	
R	0.23	0.33	0.009	0.013	
0	0.37	0.47	0.015	0.010	

0.60 0.80 0.024 0.031

0.005 BSC

0.12 BSC

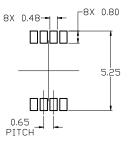
RECOMMENDED SOLDERING FOOTPRINT*


*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

DIMENSIONS: MILLIMETERS

PACKAGE DIMENSIONS

Micro8 CASE 846A ISSUE K


END VIEW

SIDE VIEW

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2009.
- 2. CONTROLLING DIMENSION: MILLIMETERS
- DIMENSION 6 DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.10 mm IN EXCESS OF MAXIMUM MATERIAL CONDITION.
- 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSION OR GATE BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.15 mm PER SIDE. DIMENSION E DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 mm PER SIDE. DIMENSIONS D AND E ARE DETERMINED AT DATUM F.
- 5. DATUMS A AND B ARE TO BE DETERMINED AT DATUM F.
- 6. A1 IS DEFINED AS THE VERTICAL DISTANCE FROM THE SEATING PLANE TO THE LOWEST POINT ON THE PACKAGE BODY.

DIM	MI	MILLIMETERS				
MIG	MIN.	N□M.	MAX.			
Α			1.10			
A1	0.05	0.08	0.15			
b	0.25	0.33	0.40			
C	0.13	0.18	0.23			
D	2.90	3.00	3.10			
Ε	2.90	3.00	3.10			
e	0.65 BSC					
HE	4.75	4.90	5.05			
L	0.40	0.55	0.70			

RECOMMENDED
MOUNTING FOOTPRINT

soldering details, please download the DN Seniconductor Soldering and Mounting Techniques Reference Manual, SDLDERRM/D.

ON Semiconductor and ware trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products perein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify a

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

ON Semiconductor Website: www.onsemi.com

TECHNICAL SUPPORT
North American Technical Support:
Voice Mail: 1 800–282–9855 Toll Free USA/Canada

Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative