

RoHS

COMPLIANT HALOGEN

FREE

High Performance Schottky Rectifier, 2 x 3.5 A

PRIMARY CHARACTERISTICS					
I _{F(AV)} 2 x 3.5 A					
V _R	60 V				
V _F at I _F	See Electrical table				
I _{RM}	30 mA at 125 °C				
T _J max.	150 °C				
E _{AS}	6 mJ				
Package	DPAK (TO-252AA)				
Circuit configuration	Common cathode				

FEATURES

- Low forward voltage drop
- Guard ring for enhanced ruggedness and long term reliability

- Center tap configuration
- · Small foot print, surface mountable
- High frequency operation
- AEC-Q101 qualified
- Meets JESD 201 class 2 whisker test
- Meets MSL level 1, per J-STD-020, LF maximum peak of 260 °C
- Material categorization: for definitions of compliance please see www.vishav.com/doc?99912

DESCRIPTION

The VS-6CWQ06FNHM3 surface mount, center tap, Schottky rectifier series has been designed for applications requiring low forward drop and small foot prints on PC board. Typical applications are in disk drives, switching power supplies, converters, freewheeling diodes, battery charging, and reverse battery protection.

MAJOR RATINGS AND CHARACTERISTICS						
SYMBOL	CHARACTERISTICS	VALUES	UNITS			
I _{F(AV)}	Rectangular waveform	7	A			
V_{RRM}		60	V			
I _{FSM}	t _p = 5 μs sine	490	A			
V _F	3 A _{pk} , T _J = 25 °C (per leg)	0.61	V			
T,I	Range	-40 to +150	°C			

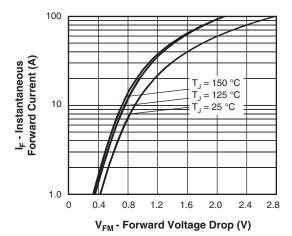
VOLTAGE RATINGS					
PARAMETER	SYMBOL	VS-6CWQ06FNHM3	UNITS		
Maximum DC reverse voltage	V_R	60	V		
Maximum working peak reverse voltage	V_{RWM}	00	V		

ABSOLUTE MAXIMUM RATINGS							
PARAMETER	SYMBOL	TEST CONDITIONS		VALUES	UNITS		
Maximum average forward per leg	1	50 % duty cycle at T _C = 133 °C, rectangular waveform		3.5			
current, see fig. 5 per device	I _{F(AV)}			7			
Maximum peak one cycle non-repetitive	I _{FSM}	5 μs sine or 3 μs rect. pulse	Following any rated load condition and with	490	Α		
surge current, see fig. 7		10 ms sine or 6 ms rect. pulse	rated V _{RRM} applied	70			
Non-repetitive avalanche energy per leg	E _{AS}	$T_J = 25$ °C, $I_{AS} = 1$ A, $L = 12$ mH		6	mJ		
Repetitive avalanche current per leg	I _{AR}	Current decaying linearly to zero in 1 μ s Frequency limited by T _J maximum V _A = 1.5 x V _R typical		1	Α		

ELECTRICAL SPECIFICATIONS						
PARAMETER	SYMBOL	TEST CO	VALUES	UNITS		
		3 A	T _{.1} = 25 °C	0.61	V	
Maximum forward voltage drop per	V (1)	6 A	- IJ = 25 C	0.76		
leg, see fig. 1	V _{FM} ⁽¹⁾	3 A	T _{.1} = 125 °C	0.53		
		6 A	I _J = 125 C	0.65		
Maximum reverse leakage current	ı (1)	T _J = 25 °C		2	0	
per leg, see fig. 2	I _{RM} ⁽¹⁾	T _J = 125 °C	V_R = Rated V_R	30	mA mA	
Threshold voltage	V _{F(TO)}	T - T movimum		0.38	V	
Forward slope resistance	r _t	$T_J = T_J$ maximum		34.31	mΩ	
Typical junction capacitance per leg	C _T	V _R = 5 V _{DC} , (test signal rai	145	pF		
Typical series inductance per leg	L _S	Measured lead to lead 5	5.0	nH		
Maximum voltage rate of change	dV/dt	Rated V _R	10 000	V/µs		

Note

 $^{^{(1)}\,}$ Pulse width $<300~\mu s,$ duty cycle <2~%


THERMAL - MECHANICAL SPECIFICATIONS						
PARAMETER		SYMBOL	TEST CONDITIONS	VALUES	UNITS	
Maximum junction and storage ten	nperature range	T _J ⁽¹⁾ , T _{Stg}		-40 to +150	°C	
Maximum thermal resistance,	per leg	В	DC operation	4.70	°C/W	
junction to case	per device	R_{thJC}	See fig. 4	2.35	C/VV	
Approvimenta visialet				0.3	g	
Approximate weight				0.01	OZ.	
Marking device			Case style DPAK	6CWQ	06FNH	

Note

(1)
$$\frac{dP_{tot}}{dT_J} < \frac{1}{R_{th,JA}}$$
 thermal runaway condition for a diode on its own heatsink

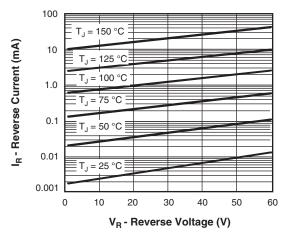


Fig. 1 - Maximum Forward Voltage Drop Characteristics (Per Leg)

Fig. 2 - Typical Values of Reverse Current vs. Reverse Voltage (Per Leg)

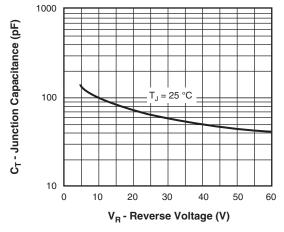


Fig. 3 - Typical Junction Capacitance vs. Reverse Voltage (Per Leg)

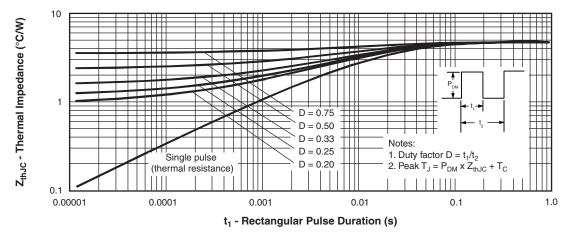


Fig. 4 - Maximum Thermal Impedance Z_{thJC} Characteristics (Per Leg)

www.vishay.com Vishay Semiconductors

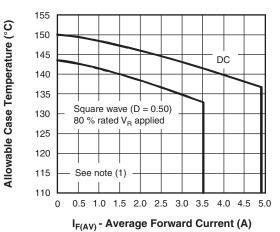


Fig. 5 - Maximum Allowable Case Temperature vs. Average Forward Current (Per Leg)

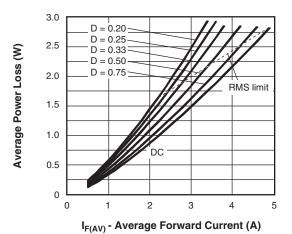
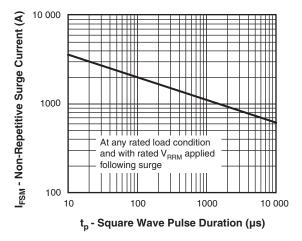
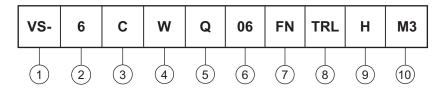


Fig. 6 - Forward Power Loss Characteristics (Per Leg)




Fig. 7 - Maximum Non-Repetitive Surge Current (Per Leg)

Note

(1) Formula used: $T_C = T_J - (Pd + Pd_{REV}) \times R_{th,JC}$; $Pd = forward power loss = I_{F(AV)} \times V_{FM}$ at $(I_{F(AV)}/D)$ (see fig. 6); $Pd_{REV} = inverse power loss = V_{R1} \times I_R (1 - D)$; I_R at $V_{R1} = 80$ % rated V_R

ORDERING INFORMATION TABLE

Device code

1 - Vishay Semiconductors product

2 - Current rating (7 A)

Center tap configuration

4 - Package identifier:

W = DPAK

5 - Schottky "Q" series

6 - Voltage rating (06 = 60 V)

- FN = TO-252AA

8 - • None = Tube

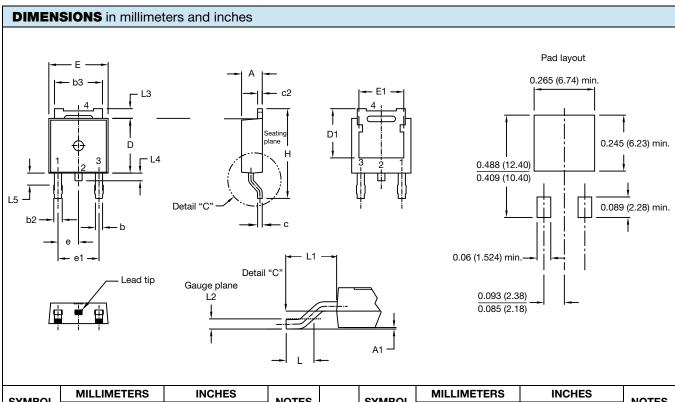
• TR = Tape and reel

• TRL = Tape and reel (left oriented)

• TRR = Tape and reel (right oriented)

9 - H = AEC-Q101 qualified

10 - Environmental digit:


M3 = Halogen-free, RoHS-compliant, and terminations lead (Pb)-free

ORDERING INFORMATION (Example)						
PREFERRED P/N	QUANTITY PER T/R	MINIMUM ORDER QUANTITY	PACKAGING DESCRIPTION			
VS-6CWQ06FNHM3	75	3000	Antistatic plastic tube			
VS-6CWQ06FNTRHM3	2000	2000	13" diameter reel			
VS-6CWQ06FNTRRHM3	3000	3000	13" diameter reel			
VS-6CWQ06FNTRLHM3	3000	3000	13" diameter reel			

LINKS TO RELATED DOCUMENTS				
Dimensions	www.vishay.com/doc?95519			
Part marking information	www.vishay.com/doc?95518			
Packaging information	www.vishay.com/doc?95033			
SPICE model	www.vishay.com/doc?96651			

DPAK (TO-252AA)

SYMBOL	MILLIN	IETERS	INC	HES	NOTES
STINIBUL	MIN.	MAX.	MIN.	MAX.	NOTES
Α	2.18	2.39	0.086	0.094	
A1	1	0.13	-	0.005	
b	0.64	0.89	0.025	0.035	
b2	0.76	1.14	0.030	0.045	
b3	4.95	5.46	0.195	0.215	3
С	0.46	0.61	0.018	0.024	
c2	0.46	0.89	0.018	0.035	
D	5.97	6.22	0.235	0.245	5
D1	4.93	-	0.194	-	3
Е	6.35	6.73	0.250	0.265	5
E1	4.32	-	0.170	-	3

SYMBOL	MILLIN	IETERS	INC	HES	NOTES
STWIDOL	MIN.	MAX.	MIN.	MAX.	NOTES
е	2.29 BSC		0.090	BSC	
Н	9.40	10.41	0.370	0.410	
L	1.40	1.78	0.055	0.070	
L1	2.74 BSC		0.108	REF.	
L2	0.51	BSC	0.020	BSC	
L3	0.89	1.27	0.035	0.050	3
L4	-	1.02	-	0.040	
L5	1.14	1.52	0.045	0.060	2
	•	•		•	

Notes

- (1) Dimensioning and tolerancing as per ASME Y14.5M-1994
- (2) Lead dimension uncontrolled in L5
- (3) Dimension D1, E1, L3 and b3 establish a minimum mounting surface for thermal pad
- (4) Dimensions D and E do not include mold flash. Mold flash shall not exceed 0.127 mm (0.005") per side. These dimensions are measured at the outermost extremes of the plastic body
- (5) Outline conforms to JEDEC® outline TO-252AA, except for D1 dimension

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.