

HDL6V5541HF

QUAD ±100V 2.5A 5-LEVEL ULTRASOUND PULSER

© ABLIC Inc., 2020

Rev.2.0 00

The ABLIC Inc. HDL6V5541HF is a quad, five-level RTZ, high-voltage, ultra high-speed pulser. The HDL6V5541HF consists of logic interfaces, level translators, MOSFET gate drive buffers, and high-voltage, high-current MOSFETs.

Functions

• Quad 5-level pulser with 3-input per channel

Features

- 0 to ±100V output voltage
- ±2.5A source and sink peak current for the 1st and 2nd high-voltage pulses (VPP1/VNN1, VPP2/VNN2)
- ±1.0A source and sink peak current for active ground clamp
- 500Ω (±50mA) active ground clamp without blocking diode for anti-leakage (Analog SW type)
- 15V/ns output slew rate
- Up to 100MHz CMOS clock (transparent mode available)
- Symmetrical positive and negative pulse waveforms for low 2nd order harmonic distortion
- 1.8V to 5V CMOS logic interface
- Noise-cut diodes at each high-voltage output
- Embedded high-voltage clamp diodes
- 4-mode output current control for the 2nd high-voltage rail
- Automatic thermal protection with indicator
- Latch-up free, low crosstalk between channels by SOI CMOS technology
- 64-lead 9x9mm QFN package (RoHS compliant)

Fig.1 Block diagram

1. Absolute Maximum Ratings

 $T_A{=}25^\circ C$ unless otherwise noted.

T . I. I .		A I I	N 4	D
I able	1	Absolute	Maximum	Ratings

No.	Items	Symbol	Value	Units	Condition
1	Logic supply voltage	VLL	-0.4 to +7	V	
2	Positive supply voltage	V _{DD}	-0.4 to +7	V	
3	Negative supply voltage	Vss	-7 to +0.4	V	
4	Positive high-voltage supplies	Vpp1, Vpp2	-0.5 to +105	V	
5	Negative high-voltage supplies	V _{NN} 1, V _{NN} 2	-105 to +0.5	V	
6	Positive high-voltage difference	(Vpp1-Vpp2)	-0.5 to +105	V	INx_[2:0]='001'
			-105 to +105	V	Other than above
7	Negative high-voltage difference	(V _{NN} 1-V _{NN} 2)	-105 to +0.5	V	INx_[2:0]='101'
			-105 to +105	V	Other than above
8	High-voltage outputs (x=1~4)	НVоитх	-105 to +105	V	
9	Gate drive floating voltages	(Vpp1- Vfp1), (Vpp2- Vfp2), (Vfn1- Vnn1), (Vfn2- Vnn2)	-0.4 to +7	V	
10	THP (Thermal Protection) output	THP	-0.4 to +7	V	
11	All Logic input voltages (x=1~4)	INx_[2:0], EN, CLK, CLKEN, CC1, CC0, ATHP	-0.4 to +7	V	
12	Operating junction temperature	T _{Jop}	-20 to +150	°C	
13	Storage temperature	Тѕтс	-55 to +150	°C	
14	Maximum power dissipation	P _{Dmax}	4	W	

NOTE: Stresses beyond the absolute maximum ratings may cause permanent damage to the product.

2. Operating Supply Voltages, Temperature, Logic Inputs, and Power sequencing

2.1 Operating Supply Voltages and Temperature

Table 2 Operating Supply Voltages and Temperature

No	Items	Symbol	Min	Тур	Max	Units	Condition
1	Logic supply voltage	V _{LL}	2.4	2.5 to 5	V_{DD}	V	CLK mode (CLK≤80MHz)
			2.6	2.7 to 5	V_{DD}	V	CLK mode (CLK≤100MHz)
			1.7	1.8 to 5	V _{DD}	V	TP mode (f _{o∪τ} ≤20MHz)
			2.4	2.5 to 5	Vdd	V	TP mode (f _{o∪τ} ≥20MHz)
2	Positive supply voltage	V _{DD}	4.75	5	5.25	V	
3	Negative supply voltage	Vss	-5.25	-5	-4.75	V	
4	Positive high-voltage supplies	VPP1, VPP2	0	-	100	V	
5	Negative high-voltage supplies	V _{NN} 1, V _{NN} 2	-100	-	0	V	
6	Positive high-voltage difference	(VPP1-VPP2)	0	-	100	V	
7	Negative high-voltage difference	(V _{NN} 1-V _{NN} 2)	-100	-	0	V	

No	Items	Symbol	Min	Тур	Max	Units	Condition
8	P1 gate drive floating voltage	V _{FP} 1	Vpp1-5.25	V _{PP} 1-5	V _{PP} 1-4.75	V	
9	P2 gate drive floating voltage	V _{FP} 2	V _{PP} 2-5.25	V _{PP} 2-5	V _{PP} 2-4.75	V	
10	N1 gate drive floating voltage	V _{FN} 1	V _{NN} 1+4.75	V _{NN} 1+5	V _{NN} 1+5.25	V	
11	N2 gate drive floating voltage	V _{FN} 2	V _{NN} 2+4.75	V _{NN} 2+5	V _{NN} 2+5.25	V	
12	IC substrate voltage *	Vsub	-	0	-	V	
13	V _{PP} x, V _{NN} x slew rate (x=1,2)	SRMAX	-	-	25	V/ms	
14	Operating Free-air Temperature	TA	0	25	75	°C	

Table 2 Operating Supply Voltages and Temperature (continued)

NOTE: * The package exposed pad internally connected to the IC substrate must be soldered to the ground.

2.2 Logic Inputs

There are two modes, transparent(TP) and clock(CLK) mode, to deal with the logic inputs INx_[2:0] (x=1~4).

TP mode:

Set CLKEN=1, CLK=0. INx_[2:0] are decoded, level-translated, then sent to high-voltage output stage. See table 3 for all the logic inputs.

CLK mode:

Set CLKEN=0. INx_[2:0] are decoded, clocked, level-translated, then sent to high-voltage output stage. See table 3 for all the logic inputs.

No	Items	Symbol	Min	Тур	Max	Units	Condition				
1	High-level logic input voltage	VIH	$0.8V_{LL}$	-	V _{LL}	V					
2	Low-level logic input voltage	VIL	0	-	$0.2V_{LL}$	V					
3	Logic input capacitance	CIN	-	2	-	pF					
4	Logic input high current *1	Іін	-10	-	10	μA					
5	Logic input low current *2	lı∟	-10	-	10	μA					
6	Logic input pulse width	tew	10	-	-	ns					
7	Input rise/fall time	t _r , t _f	-	-	2.0	ns	10% to 90% CLK, INx_[2:0] CLK mode, CLK≤100MHz				
8	Input clock frequency	fclк	-	-	100	MHz	CLK mode, CLK				
9	Duty cycle	D	40	50	60	%	D=τ/T, See Fig.2				
10	Data setup time	ts∪	0.8	-	-	ns	CLK mode				
11	Data hold time	t _{HLD}	2.8	-	-	ns	INx_[2:0], See Fig.2				
IOTE											

Table 3 Logic Inputs

NOTE:

*1) ATHP has 50 μ A leak at V_{LL}=2.5V due to 50k Ω internal pull-down resistor.

*2) EN, CC[1:0], and CLKEN have 50µA leak at VLL=2.5V due to 50kΩ internal pull-up resistor.

Fig.2 Setup/Hold Time

2.3 Power Supply Sequencing

Table 4 Power Supply Sequencing

Power-Up Sequence

1	VLL
2	Vdd, Vss
3	Set EN=1 (HV _{OUT} x=HiZ)
4	(Vpp1-Vfp1), (Vpp2-Vfp2), (Vfn1-Vnn1), (Vfn2-Vnn2)
5	Vpp1, Vpp2, Vnn1, Vnn2
6	Logic control signals

Power-Down Sequence

1	Set EN=1 (HV _{OUT} x=HiZ)
2	Vpp1, Vpp2, Vnn1, Vnn2
3	(Vpp1-Vfp1), (Vpp2-Vfp2), (Vfn1-Vnn1), (Vfn2-Vnn2)
4	V _{DD} , V _{SS}
5	VLL

High-voltage Change Sequence during operation

1	Set EN=1 (HVoutx=HiZ)
2	Change Vpp1, Vpp2, Vnn1, Vnn2
3	Logic control signals

NOTE: It is indispensable to avoid the occurrence of the excessive voltage beyond the maximum rating in applying and cutting of the power supplies.

3. Typical Application Circuit

Fig. 3 Typical Application Circuit

NOTE:

- 1. High-voltage power supply pins, V_{PP}x/V_{NN}x (x=1,2), can draw fast transient currents up to ±2.5A. Therefore, ceramic capacitors of ≥200V 0.1µF to 1µF (C1~8) should be connected as close to the pins as possible for bypassing purpose.
- Ceramic capacitors of ≥16V 0.1µF to 1µF (C9~19) also should be connected between high-voltage power supply pins and corresponding floating voltage pins, V_{FPX}/V_{FNX}, and low-voltage power supply pins for bypassing purpose. Connect those as close to the pins as possible.
- 3. It is also important to minimize the trace length and to have enough trace width of those high voltage and floating voltage lines.
- 4. The thermal tab on the bottom of the package must be soldered to the GND.

4. Electrical Characteristics

4.1 Operating Supply Currents

Table 5 Operating Supply Currents

 $V_{LL}=2.5V, V_{DD}=5V, V_{SS}=-5V, V_{FP}x=V_{PP}x-5V, V_{FN}x=V_{NN}x+5V, T_{A}=25^{\circ}C, CLK=100MHz/0(CLKEN=0/1), ATHP=0, HV_{OUT} load=220pF//200\Omega, unless otherwise specified.$

NI -	lo. Items		Ourseland		Spec		1.1	Que d'itiene
No.	Iten	าร	Symbol	Min	Тур	Max	Units	Conditions
	N/	TP mode		-	0	-	μA	Quiescent current-1
1	V _{LL} current	CLK mode	ILLQD	-	0.7	-	mA	
2)/	TP mode		-	0.7	-	mA	EN=1(Disable) INx_[2:0]='000'
2	V _{DD} current	CLK mode	Iddqd	-	12	-	mA	Current mode 4 (CC[1:0]='11')
3	Vss current		Issqd	-	0.10	-	mA	VPP1/VNN1=+/-100V
4	VPP1 current		IPP1QD	-	0	-	μA	V _{PP} 2/V _{NN} 2=+/-100V
5	V _{NN} 1 current		I _{NN1QD}	-	0	-	μA	
6	VPP2 current		IPP2QD	-	0.13	-	mA	
7	V _{NN} 2 current		I _{NN2QD}	-	0.10	-	mA	
8	VFP1 current		I FP1QD	-	0	-	μA	
9	V _{FP} 2 current		IFP2QD	-	0.07	-	mA	
10	V _{FN} 1 current		I _{FN1QD}	-	0	-	μA	
11	V _{FN} 2 current		I _{FN2QD}	-	0.04	-	mA	
12	Mu ourropt	TP mode	h. az	-	0.06	-	mA	Quiescent current-2
12	VLL current	CLK mode	Illqe	-	0.75	-	mA	
13	V _{DD} current	TP mode	1	-	0.7	-	mA	EN=0(Enable) INx [2:0]='000'
13	VDD current	CLK mode	Iddqe	-	12	-	mA	Current mode 4 (CC[1:0]='11')
14	Vss current		ISSQE	-	0.10	-	mA	Vpp1/Vnn1=+/-100V
15	V _{PP} 1 current		IPP1QE	-	0	-	μA	V _{PP} 2/V _{NN} 2=+/-100V
16	V _{NN} 1 current		I _{NN1QE}	-	0	-	μA	
17	VPP2 current		IPP2QE	-	0.13	-	mA	
18	VNN2 current		INN2QE	-	0.10	-	mA	
19	V _{FP} 1 current		I _{FP1QE}	-	0	-	μA	
20	V _{FP} 2 current		I _{FP2QE}	-	0.07	-	mA	
21	V _{FN} 1 current		I _{FN1QE}	-	0	-	μA	
22	VFN2 current		IFN2QE	-	0.04	-	mA	

NI-	14		Spec		1.1	Quan d'ité anna		
No.	lter	ns	Symbol	Min	Тур	Max	Units	Conditions
00		TP mode	-	-	0.06	-	mA	PW Operating current
23	VLL current	CLK mode	ILLPW	-	0.75	-	mA	
		TP mode		-	2.5	-	mA	EN=0 Current mode 4 (CC[1:0]='11')
24	V _{DD} current	CLK mode	DDPW	-	14	-	mA	4-channel active
25	Vss current		Isspw	-	2.1	-	mA	Bipolar 3-level 2-cycle
26	V _{PP} 1 current		IPP1PW	-	2.2	-	mA	f=5MHz, PRT=200µs
27	V _{NN} 1 current		INN1PW	-	2.5	-	mA	Vpp1/Vnn1=+/-60V Vpp2/Vnn2=+/-60V
28	VPP2 current		IPP2PW	-	0.13	-	mA	
29	VNN2 current		INN2PW	-	0.10	-	mA	
30	V _{FP} 1 current		IFP1PW	-	0.08	-	mA	
31	V _{FP} 2 current		IFP2PW	-	0.07	-	mA	
32	V _{FN} 1 current		I _{FN1PW}	-	0.05	-	mA	
33	VFN2 current		IFN2PW	-	0.04	-	mA	
	\/	TP mode		-	0.25	-	mA	CW Operating current-1
34	V _{LL} current	CLK mode	ILLCW4	-	1.3	-	mA	
0.5		TP mode		-	7	-	mA	EN=0 Current mode 4 (CC[1:0]='11')
35	V _{DD} current	CLK mode	DDCW4	-	19	-	mA	4-channel active
36	Vss current		Isscw4	-	4.8	-	mA	Bipolar 3-level Continuous
37	VPP1 current		IPP1CW4	-	0	-	μA	f=5MHz
38	V _{NN} 1 current		INN1CW4	-	0	-	μA	Vpp1/Vnn1=+/-5V Vpp2/Vnn2=+/-5V
39	VPP2 current		PP2CW4	-	170	-	mA	V PPZ/ V NNZ-T/-3 V
40	V _{NN} 2 current		INN2CW4	-	158	-	mA	
41	V _{FP} 1 current		IFP1CW4	-	0	-	μA	
42	V _{FP} 2 current		IFP2CW4	-	30	-	mA	
43	V _{FN} 1 current		I _{FN1CW4}	-	0	-	μA	
44	V _{FN} 2 current		IFN2CW4	-	18	-	mA	
45		TP mode		-	0.25	-	mA	CW Operating current-2
45	V _{LL} current	CLK mode	Illcw3	-	1.3	-	mA	
46	V ourroat	TP mode	I ==	-	7.2	-	mA	EN=0 Current mode 3 (CC[1:0]='10')
46	V _{DD} current	CLK mode	IDDCW3	-	19	-	mA	4-channel active
47	Vss current		Isscw3	-	5.7	-	mA	Bipolar 3-level Continuous
48	VPP1 current		IPP1CW3	-	0	-	μA	f=5MHz
49	Vพพ1 current		INN1CW3	-	0	-	μA	Vpp1/V _{NN} 1=+/-5V Vpp2/V _{NN} 2=+/-5V
50	V _{PP} 2 current		IPP2CW3	-	150	-	mA	
51	V _{NN} 2 current		INN2CW3	-	143	-	mA	
52	V _{FP} 1 current		IFP1CW3	-	0	-	μA	
53	V _{FP} 2 current		IFP2CW3	-	22	-	mA	
54	V _{FN} 1 current		IFN1CW3	-	0	-	μA	
55	V _{FN} 2 current		I _{FN2CW3}	-	14	-	mA	

Table 5 Operating Supply Currents (continued)

No.	Items		Currents ed		Spec		Units	Conditions	
INO.	ller	ns	Symbol	Min	Тур	Max	Units	Conditions	
50		TP mode		-	0.26	-	mA	CW Operating current-3	
56	V∟∟ current	CLK mode	Illcw2	-	1.3	-	mA		
57	V ourropt	TP mode	1	I	7.2	-	mA	EN=0 Current mode 2 (CC[1:0]='01')	
57	V _{DD} current	CLK mode	IDDCW2	I	19	-	mA	4-channel active	
58	Vss current		Isscw2	I	4.7	-	mA	Bipolar 3-level Continuous	
59	V _{PP} 1 current		IPP1CW2	-	0	-	μA	f=5MHz	
60	V _{NN} 1 current		INN1CW2	-	0	-	μA	V _{PP} 1/V _{NN} 1=+/-5V V _{PP} 2/V _{NN} 2=+/-5V	
61	VPP2 current		IPP2CW2	-	133	-	mA	VFFZ/VNNZ=·/-OV	
62	VNN2 current		INN2CW2	I	130	-	mA		
63	V _{FP} 1 current		IFP1CW2	-	0	-	μA]	
64	V _{FP} 2 current		IFP2CW2	-	15	-	mA		
65	V _{FN} 1 current		IFN1CW2	-	0	-	μA		
66	VFN2 current		IFN2CW2	-	10	-	mA		
67	VLL current	TP mode	lu our	-	0.31	-	mA	CW Operating current-4	
07		CLK mode	ILLCW1	-	1.4	-	mA	EN=0	
68	VDD current	TP mode	IDDCW1	-	7.2	-	mA	Current mode 1 (CC[1:0]='00')	
00	VDD current	CLK mode	IDDCW1	-	19	-	mA	4-channel active	
69	Vss current		Isscw1	-	4.7	-	mA	Bipolar 3-level Continuous	
70	V _{PP} 1 current		IPP1CW1	-	0	-	μA	f=5MHz	
71	V _{NN} 1 current		INN1CW1	-	0	-	μA	Vpp1/Vnn1=+/-5V Vpp2/Vnn2=+/-5V	
72	VPP2 current		IPP2CW1	-	111	-	mA		
73	V _{NN} 2 current		INN2CW1	-	111	-	mA		
74	V _{FP} 1 current		IFP1CW1	-	0	-	μA		
75	V _{FP} 2 current		IFP2CW1	-	7.9	-	mA		
76	V _{FN} 1 current		IFN1CW1	-	0	-	μA		
77	V _{FN} 2 current		IFN2CW1	-	5.3	-	mA		

Table 5	Operating	Supply	Currents	(continued)
---------	-----------	--------	----------	-------------

4.2 Static Characteristics

Table 6 Static Characteristics

VLL=2.5V, VDD=5V, VSS=-5V, VFPX=VPPX-5V, VFNX=VNNX+5V, TA=25°C, unless otherwise specified.

Nia	literate	Currente a l		Spec			
No.	Items	Symbol	Min	Тур	Max	Units	Conditions
1	Output voltage range	HVoutx	-100	-	100	V	
			-	2.5	-	А	P1 active, $V_{PP}1/V_{NN}1=V_{PP}2/V_{NN}2=+/-60V$
			-	2.5	-	А	P2 active, V _{PP} 1/V _{NN} 1=V _{PP} 2/V _{NN} 2=+/-60V Current mode 4 (CC[1:0]='11')
2	High-side output peak current	Іон	-	1.88	-	А	P2 active, V _{PP} 1/V _{NN} 1=V _{PP} 2/V _{NN} 2=+/-60V Current mode 3 (CC[1:0]='10')
			-	1.25	-	А	P2 active, V _{PP} 1/V _{NN} 1=V _{PP} 2/V _{NN} 2=+/-60V Current mode 2 (CC[1:0]='01')
			-	0.63	-	А	P2 active, V _{PP} 1/V _{NN} 1=V _{PP} 2/V _{NN} 2=+/-60V Current mode 1 (CC[1:0]='00')
3	High-side GND clamp peak current	IOHCL	-	1.0	-	А	N3 active, $V_{PP}1/V_{NN}1=V_{PP}2/V_{NN}2=+/-60V$
			-	2.5	-	А	N1 active, V _{PP} 1/V _{NN} 1=V _{PP} 2/V _{NN} 2=+/-60V
			-	2.5	-	А	N2 active, V _{PP} 1/V _{NN} 1=V _{PP} 2/V _{NN} 2=+/-60V Current mode 4 (CC[1:0]='11')
4	Low-side output peak current	Iol	-	1.88	-	А	N2 active, V _{PP} 1/V _{NN} 1=V _{PP} 2/V _{NN} 2=+/-60V Current mode 3 (CC[1:0]='10')
			-	1.25	-	А	N2 active, V _{PP} 1/V _{NN} 1=V _{PP} 2/V _{NN} 2=+/-60V Current mode 2 (CC[1:0]='01')
			-	0.63	-	А	N2 active, V _{PP} 1/V _{NN} 1=V _{PP} 2/V _{NN} 2=+/-60V Current mode 1 (CC[1:0]='00')
5	Low-side GND clamp peak current	IOLCL	-	1.0	-	А	P3 active, V _{PP} 1/V _{NN} 1=V _{PP} 2/V _{NN} 2=+/-60V
			-	9	-	Ω	Р1 active, I _{он} =100mA
			-	11	-	Ω	P2 active, I _{0H} =100mA Current mode 4 (CC[1:0]='11')
6	High-side output on-resistance	Ronh	-	13	-	Ω	P2 active, I_{OH} =100mA Current mode 3 (CC[1:0]='10')
			-	15	-	Ω	P2 active, I _{0H} =100mA Current mode 2 (CC[1:0]='01')
			-	23	-	Ω	P2 active, Iон=100mA Current mode 1 (CC[1:0]='00')
7	High-side GND clamp on-resistance	RONHCL	-	17	-	Ω	N3 active, I _{OHCL} =100mA
			-	9	-	Ω	N1 active, I _{OL} =100mA
			-	11	-	Ω	N2 active, I _{oL} =100mA Current mode 4 (CC[1:0]='11')
8	Low-side output on-resistance	Ronl	-	13	-	Ω	N2 active, I₀∟=100mA Current mode 3 (CC[1:0]='10')
			-	15	-	Ω	N2 active, I _{oL} =100mA Current mode 2 (CC[1:0]='01')
			-	23	-	Ω	N2 active, I _{oL} =100mA Current mode 1 (CC[1:0]='00')
9	Low-side GND clamp on-resistance	RONLCL	-	17	-	Ω	P3 active, I _{OLCL} =100mA
10	Output off-capacitance	CHVOFF	-	10	-	pF	TX _{OUT} x=HiZ

4.3 Dynamic Characteristics

Table 7 Dynamic Characteristics

 $V_{LL}=2.5V, V_{DD}/V_{SS}=+/-5V, V_{FP}x=V_{PP}x-5V, V_{FN}x=V_{NN}x+5V, V_{PP}1/V_{NN}1=V_{PP}2/V_{NN}2=+/-60V, T_{A}=25^{\circ}C, CC[1:0]='11', EN=0, ATHP=0, CLK=100MHz/0 (CLKEN=0/1), HV_{OUT} load=220pF//200\Omega, unless otherwise specified.$

Na	Itomo		Currente e l		Spec			Quaditions		
No.	ltems		Symbol	Min	Тур	Max	Units	Condi	tions	
1	Output frequency	fouт	-	20	-	MHz	Bipolar, TP mode			
		P1/N1		15	-	-		50Ω load		
		drive	SR _{rP-P} ,	4.5	-	-		220pF//200Ω load		
		P2/N2	SR _{fP-P}	12	-	-		50Ω load		
2	Output slew rate	drive		3.3	-	-	V/ns	220pF//200Ω load		
2		P1/N1		6	-	-	V/115	50Ω load		
		drive	SR _{r0-P} ,	2	-	-		220pF//200Ω load		
		P2/N2	SR _{f0-P}	6	-	-		50Ω load	$V_{PP}1/V_{NN}1=\pm 30V$ $V_{PP}2/V_{NN}2=\pm 30V$	
		drive		2	-	-		220pF//200Ω load	Bipolar, 1-cyc	
		P1/N1		-	2	-		50Ω load	f _{out} =20MHz	
3	Output rise time	drive	tr	-	6	-	na	220pF//200Ω load	See Fig.4	
5		P2/N2	u	-	2	-	ns	50Ω load		
		drive		-	6	-		220pF//200Ω load		
		P1/N1		-	2	-		50Ω load		
4	1 Outrout fall times	drive	tr	-	6	-	ns	220pF//200Ω load		
4	Output fall time	P2/N2	Ci Ci	-	2	-		50Ω load		
		drive		-	6	-		220pF//200Ω load		
5	Output rise	TP mode	t _{dr}	-	56	-	ns	V _{PP} 1/V _{NN} 1=±30V		
5	propagation delay	CLK mode	uar	-	61	-	ns	$V_{PP}2/V_{NN}2=\pm30V$		
6	Output fall	TP mode	t _{df}	-	56	-	ns	Bipolar, 1-cyc f _{out} =20MHz		
0	propagation delay	CLK mode	Lai	-	61	-	ns			
7	Output rise	TP mode	t _{drCL}	-	56	-	ns	See Fig.4		
'	propagation delay clamp	CLK mode	LarCL	-	61	-	ns			
8	Output fall	TP mode	t _{dfCL}	-	56	-	ns			
0	propagation delay clamp	CLK mode	Laice	-	61	-	ns			
9	Propagation delay matchi	ing	Δt_{d}	-	±1	±3	ns			
10	Second harmonic distortion	on	HD2	-	-40	-	dBc	Bipolar, 2-cyc, four=	5MHz	
11	Pulse cancellation		HDPC	-	-40	-	dBc	See Fig.5		
	11 Pulse cancellation		HDPC2	-	-40	-	dBc			
12	RMS output jitter	tJ	-	10	-	ps	Bipolar CW, f _{OUT} =5N V _{PP} 1/V _{NN} 1=V _{PP} 2/V _{NN} 2			
13	Output enable time		t _{EN}	-	61	-	ns	See Fig.6		
14	Output disable time		t⊳s	-	61	-	ns			
15	Clock mode enable time		t CLKEN	-	61	-	ns			
16	Clock mode disable time		tclkds	-	61	-	ns			

4.4 Integrated Peripheral Circuits Characteristics

Analog Switch

Table 8 Analog Switch Characteristics

TA=25°C

No	Itomo	Symbol		Spec		Linita	Conditions	
No.	Items	Symbol	Min	Тур	Max	Units		
1	ASW on-resistance	Ronasw	-	500	-	Ω		

HV Blocking Diode

Table 9 Output HV Blocking Diode Characteristics

T_A=25°C

Nia	lterree	Currence al		Spec		Linite	Conditions	
No.	Items	Symbol	Min	Тур	Max	Units		
1	Forward voltage	VFDHV	-	1.0	-	V	I⊧=100mA	
2	Reverse voltage	VRDHV	200	_	-	V	I _R =1µA	

LV Noise-cut Diode

Table 10 Output LV Noise-cut Diode Characteristics

T_A=25°C

Nia	lterree	Quinchal		Spec	-	Linita	Conditions	
No.	Items	Symbol	Min	Тур	Max	Units	Conditions	
1	Forward voltage	VFDNC	-	0.85	-	V	I⊧=100mA	

Thermal Protection

Table 11 Thermal Protection Characteristics

 $V_{\text{LL}}\text{=}2.5\text{V},~V_{\text{DD}}/V_{\text{SS}}\text{=}+\text{/-}5\text{V},~T_{\text{A}}\text{=}25^{\circ}\text{C},$ unless otherwise specified.

Nia	ltomo	Currents of		Spec		Linita	Conditions	
No.	Items	Symbol	Min	Тур	Max	Units		
1	THP pull-up voltage	VPUTHP	-	-	5.25	V	Open drain	
2	THP output current	Ithp	-	1.0	I	mA		
3	THP output low voltage	Volthp	-	-	1.0	V	THP active, VLL=3.3V, ITHP=1mA	
4	THP temperature threshold	T _{THP}	90	110	130	°C		
5	THP reset hysteresis	THYSTHP	-	10	-	°C		

5. Switching Time Diagram

Fig. 4 Propagation delay and Output rise/fall time

Example waveforms: VPP/VNN=+/-60V, f0=2.5MHz, 2-cycle, HVout load=220pF//2000

Fig.5 2nd harmonic distortion and Pulse cancellation

Fig.6 Output enable/disable and Clock enable/disable time

6. Truth Table and Current Mode Control

6.1 Truth Table

	Logic	Inputs			Internal MOSFET state							
EN	INx_2	INx_1	INx_0	P1	N1	P2	N2	P3	N3	ASW	ТХ _{оит} х	
				+HV1	-HV1	+HV2	-HV2	GND	GND	GND	(internal node)	
0	0	0	0	OFF	OFF	OFF	OFF	OFF	OFF	OFF	HiZ	
0	0	0	1	OFF	OFF	ON	OFF	OFF	OFF	OFF	+HV2	
0	0	1	0	OFF	OFF	OFF	OFF	OFF	OFF	OFF	HiZ	
0	0	1	1	ON	OFF	OFF	OFF	OFF	OFF	OFF	+HV1	
0	1	0	0	OFF	OFF	OFF	OFF	ON	ON	ON	GND	
0	1	0	1	OFF	OFF	OFF	ON	OFF	OFF	OFF	-HV2	
0	1	1	0	OFF	OFF	OFF	OFF	ON	ON	ON	GND	
0	1	1	1	OFF	ON	OFF	OFF	OFF	OFF	OFF	-HV1	
1	Х	Х	Х	OFF	OFF	OFF	OFF	OFF	OFF	OFF	HiZ	

Table 12 Truth table

NOTE:

• VPP1/ VNN1=+/-HV1, VPP2/ VNN2=+/-HV2

• x=1~4

6.2 Current Mode Control

			lout	[A]
Current Mode	CC1	CC0	P2	N2
1	0	0	0.63	0.63
2	0	1	1.25	1.25
3	1	0	1.88	1.88
4	1	1	2.5	2.5

Table 13 P2/N2 Drive current mode control

NOTE:

Recommended mode is as follows:

- Current mode 3 or 4 for high-amplitude short-cycle pulse waveforms, or for driving heavy load
- Current mode 1 or 2 for low-amplitude long pulse train waveforms (e.g. CW), or for driving light load

7. Pin Configuration

Pin#	Pin Name	I/O	Function
1	IN1_0	1	Input logic control of the least significant bit of channel 1, HV2 control
2	 IN1_1	I	Input logic control of 2nd significant bit of channel 1, HV1 control
3	IN1_2	I	Input logic control of the most significant bit of channel 1, polarity control
4	IN2_0	I	Input logic control of the least significant bit of channel 2, HV2 control
5	IN2_1	Ι	Input logic control of 2nd significant bit of channel 2, HV1 control
6	IN2_2	I	Input logic control of the most significant bit of channel 2, polarity control
7	NC	-	No connection
8	VLL	-	Positive voltage supply of low voltage interface (+3.3V)
9	CLK	I	Clock Input (100MHz)
10	GND	-	Drive power ground (0V)
11	IN3_0	I	Input logic control of the least significant bit of channel 3, HV2 control
12	IN3_1	I	Input logic control of 2nd significant bit of channel 3, HV1 control
13	IN3_2	I	Input logic control of the most significant bit of channel 3, polarity control
14	IN4_0	I	Input logic control of the least significant bit of channel 4, HV2 control
15	IN4_1	I	Input logic control of 2nd significant bit of channel 4, HV1 control
16	IN4_2	I	Input logic control of the most significant bit of channel 4, polarity control
17	EN	I	Control of drive output enable, Hi=off, Low=on (50kΩ internal pull-up resistor)
18	CLKEN	Ι	Control of clock enable, Hi=clock disable, Low=clock enable (50kΩ internal pull-up resistor)
19	ATHP	Ι	Control of active THP enable, Hi=disable, Low=enable (50k Ω internal pull-down resistor)
20	THP	0	Thermal protection output, open N-MOS drain
21	VSS	-	Negative low voltage power supply (-5V)
22	NC	-	No connection
23	VFN1	-	N-MOS (N1) floating gate drive power supply (VNN1+5V)
24	VFN2	-	N-MOS (N2) floating gate drive power supply (VNN2+5V)
25	GND	-	Drive power ground (0V)
26	VFP2	-	P-MOS (P2) floating gate drive power supply (VPP2-5V)
27	NC	-	No connection
28	VFP1	-	P-MOS (P1) floating gate drive power supply (VPP1-5V)
29	NC	-	No connection
30	NC	-	No connection
31	GND	-	Drive power ground (0V)
32	NC	-	No connection

Table 14 Pin Configuration

Pin#	Pin Name	I/O	Function
33	VPP1	-	Positive high voltage power supply 1 for channel 3,4 (0 to +100V)
34	VPP2	-	Positive high voltage power supply 2 for channel 3,4 (0 to +100V, VPP2 <vpp1)< td=""></vpp1)<>
35	HVOUT4	0	Output high voltage for channel 4
36	HVOUT3	0	Output high voltage for channel 3
37	VNN2	-	Negative high voltage power supply 2 for channel 3,4 (0 to -100V, VNN2>VNN1)
38	VNN1	-	Negative high voltage power supply 1 for channel 3,4 (0 to -100V)
39	NC	-	No connection
40	GND	-	Drive power ground (0V)
41	GND	-	Drive power ground (0V)
42	NC	-	No connection
43	VNN1	-	Negative high voltage power supply 1 for channel 1,2 (0 to -100V)
44	VNN2	-	Negative high voltage power supply 2 for channel 1,2 (0 to -100V, VNN2>VNN1)
45	HVOUT2	0	Output high voltage for channel 2
46	HVOUT1	0	Output high voltage for channel 1
47	VPP2	-	Positive high voltage power supply 2 for channel 1,2 (0 to +100V)
48	VPP1	-	Positive high voltage power supply 1 for channel 1,2 (0 to +100V)
49	NC	-	No connection
50	GND	-	Drive power ground (0V)
51	NC	-	No connection
52	NC	-	No connection
53	VFP1	-	P-MOS (P1) floating gate drive power supply (VPP1-5V)
54	NC	I	No connection
55	VFP2	I	P-MOS (P2) floating gate drive power supply (VPP2-5V)
56	GND	-	Drive power ground (0V)
57	VFN2	I	N-MOS (N2) floating gate drive power supply (VNN2+5V)
58	VFN1	-	N-MOS (N1) floating gate drive power supply (VNN1+5V)
59	NC	-	No connection
60	VDD	-	Positive low voltage power supply (+5V)
61	CC0	Ι	Control of drive current mode 0 (50k Ω internal pull-up resistor)
62	CC1		Control of drive current mode 1 (50k Ω internal pull-up resistor)
63	GND	-	Drive power ground (0V)
64	GND	-	Drive power ground (0V)

Table 14 Pin Configuration (continued)

8. Package Outline

Fig.7 Package Outline (64-Lead QFN Package)

9. Package Marking

No.	Code
(2)	Year sealed : the last one digit of the year
(3)	Month sealed : A~M (exc "I") in the order of Jan. to Dec.
(4)	Week sealed : 1~5
(5)~(15)	HDL6V5541HF (product name)
(16)~(25)	Quality control code
(26)~(30)	Country of origin

Fig.8 Package Marking

10. Transport Media, Quantity

Fig.10 Transport Media, Quantity

11. Mounting, Storage

11.1 Mounting Pad Design Example

Fig.11 Mounting Pad Design Example

11.2 Storage Conditions

- 11.2.1 The storage location should be kept at 5 to 35 °C and 40 to 70% relative humidity. Keeping in a dry box is recommended. Moisture-proof property is assured for 12 months from delivery date for sealed moisture-proof packing, while it is guaranteed for 7 days from unpacked date under the condition above.
- 11.2.2 When the storage conditions do not conform to those above or other conditions occur indicating moisture exposure, the ICs should be dried to avoid package cracks. A baking process at 125 °C lasting for 24 hours results in sufficient dehumidification. The baking is not allowed more than twice, and the ICs should be mounted within 7 days after initial baking or within 10 days of total exposure after the second dehumidification.

11.3 Reflow Conditions

Typical full heating methods such as Infrared (IR), Hot air, and N2 reflow process are applicable. IR/Air reflow heating conditions are shown below.

Fig.12 IR/Air Reflow Heating Conditions

12. Inspection

Hundred percent inspections shall be conducted on electrical characteristics.

13. Important Notice

- 13.1 ABLIC Inc. warrants performance of its hardware products (hereinafter called "products") to the specifications applicable at the time of sale in accordance with the Product Specification. Testing and other quality control techniques are utilized to the extent ABLIC Inc. needs to meet specifications described in the Product Specification. Specific testing of all parameters of each device is not necessarily performed, except those mandated by related laws and/or regulations.
- 13.2 Should any claim be made within one month of product delivery about products' failure to meet performance described in the Product Specification, all the products in relevant lot(s) shall be retested and re-delivered. Products delivered more than one month before of such claim shall not be counted for such response.
- 13.3 ABLIC Inc. assumes no obligation or any way of compensation should any fault about customer products and applications using ABLIC Inc. products be found in marketplace. Only in such a case fault of ABLIC Inc. is evident and products concerned do not meet the Product Specification, compensation shall be conducted if claimed within one year of product delivery up to in the way of product replacement or payment of equivalent amount.
- 13.4 ABLIC Inc. reserves the right to make changes to the Product Specification at any time and to discontinue mass production of the relevant products without notice. Customers are advised before placing orders to confirm that the Product Specification of inquiry is the latest version and that the relevant product is currently on mass production status.
- 13.5 In no event shall ABLIC Inc. be liable for any damage that may result from an accident or any other cause during operation of the user's units according to the Product Specification. ABLIC Inc. assumes no responsibility for any intellectual property claims or any other problems that may result from applications of information, products or circuits described in the Product Specification.
- 13.6 No license is granted by the Product Specification under any patents or other rights of any third party or ABLIC Inc.
- 13.7 The Product Specification may not be reproduced or duplicated, in any form, in whole or in part, without the expressed written permission of ABLIC Inc.
- 13.8 Resale of ABLIC Inc. products with statements different from or beyond the parameters described in the Product Specification voids all express and any implied warranties for the products, and is an unfair and deceptive business practice. ABLIC Inc. is not responsible or liable for any such statements.
- 13.9 Products (technologies) described in the Product Specification are not to be provided to any party whose purpose in their application will hinder maintenance of international peace and safety nor are they to be applied to that purpose by their direct purchasers or any third party. When exporting those products (technologies), the necessary procedures are to be taken in accordance with related laws and regulations.

14. Cautions

- 14.1 Customers are advised to follow the cautions below to protect products from damage caused by electrical static discharge (ESD).
 - 14.1.1 Material of container or any device to carry products should be free from ESD, which may be caused by vibration while transportation. It is recommended that electric-conductive container or aluminum sheet be used as an effective countermeasure.
 - 14.1.2 Those what touch products such as work platform, machine, measurement/test equipment should be grounded.
 - 14.1.3 Those who deal with products should be grounded through a large series impedance around $100k\Omega$ to $1M\Omega$.
 - 14.1.4 Prevent friction with other materials made with high polymer.
 - 14.1.5 Prevent vibration or friction when carrying the printed circuit board (PCB) where products are mounted. To short circuit terminals is a recommended countermeasure to keep the same electric potential on the PCB.
 - 14.1.6 Avoid dealing with or storing products in an extremely arid environment.
- 14.2 "Absolute maximum ratings" should never be exceeded during use regardless of any change in external conditions. Otherwise, products may be damaged or destroyed. In no event shall ABLIC Inc. be liable for any failure in products or any secondary damage resulting from use at a value exceeding the absolute maximum ratings.
- 14.3 Products may experience failures due to accident or unexpected surge voltages. Accordingly, adopt safe design features, such as redundancy or prevention of erroneous action, to avoid extensive damage in the event of a failure. (If a semiconductor device fails, there may be cases in which the semiconductor device, wiring or wiring pattern will emit smoke or cause a fire or in which the semiconductor device will burst.)
- 14.4 Products may experience failures or malfunction in poor surroundings, such as electrical leakage in products due to long-term use in high humidity, malfunctioning or permanent damage due to chemical reaction of products in corrosive environment or due to discharge by strongly charged object near products or due to excessive mechanical shock. To use products in radiation environment is not assumed. To use products near material easy to ignite may cause a fire due to its flammable package. Avoid using products in such environment or take appropriate countermeasures depending on the environment.
- 14.5 Products are not designed, manufactured, or warranted to be suitable for use where extremely high reliability is required (such as use in nuclear power control, aerospace and aviation, traffic equipment, life-support-related medical equipment, fuel control equipment and various kinds of safety equipment). Inclusion of products in such application shall be fully at the risk of customers. ABLIC Inc. assumes no liability for applications assistance, customer product design, or performance.

Disclaimers (Handling Precautions)

- 1. All the information described herein (product data, specifications, figures, tables, programs, algorithms and application circuit examples, etc.) is current as of publishing date of this document and is subject to change without notice.
- The circuit examples and the usages described herein are for reference only, and do not guarantee the success of any specific mass-production design.
 ABLIC Inc. is not liable for any losses, damages, claims or demands caused by the reasons other than the products described herein (hereinafter "the products") or infringement of third-party intellectual property right and any other right due to the use of the information described herein.
- 3. ABLIC Inc. is not liable for any losses, damages, claims or demands caused by the incorrect information described herein.
- 4. Be careful to use the products within their ranges described herein. Pay special attention for use to the absolute maximum ratings, operation voltage range and electrical characteristics, etc. ABLIC Inc. is not liable for any losses, damages, claims or demands caused by failures and / or accidents, etc. due to the use of the products outside their specified ranges.
- 5. Before using the products, confirm their applications, and the laws and regulations of the region or country where they are used and verify suitability, safety and other factors for the intended use.
- 6. When exporting the products, comply with the Foreign Exchange and Foreign Trade Act and all other export-related laws, and follow the required procedures.
- 7. The products are strictly prohibited from using, providing or exporting for the purposes of the development of weapons of mass destruction or military use. ABLIC Inc. is not liable for any losses, damages, claims or demands caused by any provision or export to the person or entity who intends to develop, manufacture, use or store nuclear, biological or chemical weapons or missiles, or use any other military purposes.
- 8. The products are not designed to be used as part of any device or equipment that may affect the human body, human life, or assets (such as medical equipment, disaster prevention systems, security systems, combustion control systems, infrastructure control systems, vehicle equipment, traffic systems, in-vehicle equipment, aviation equipment, aerospace equipment, and nuclear-related equipment), excluding when specified for in-vehicle use or other uses by ABLIC, Inc. Do not apply the products to the above listed devices and equipments. ABLIC Inc. is not liable for any losses, damages, claims or demands caused by unauthorized or unspecified use of the products.
- 9. In general, semiconductor products may fail or malfunction with some probability. The user of the products should therefore take responsibility to give thorough consideration to safety design including redundancy, fire spread prevention measures, and malfunction prevention to prevent accidents causing injury or death, fires and social damage, etc. that may ensue from the products' failure or malfunction.

The entire system in which the products are used must be sufficiently evaluated and judged whether the products are allowed to apply for the system on customer's own responsibility.

- 10. The products are not designed to be radiation-proof. The necessary radiation measures should be taken in the product design by the customer depending on the intended use.
- 11. The products do not affect human health under normal use. However, they contain chemical substances and heavy metals and should therefore not be put in the mouth. The fracture surfaces of wafers and chips may be sharp. Be careful when handling these with the bare hands to prevent injuries, etc.
- 12. When disposing of the products, comply with the laws and ordinances of the country or region where they are used.
- 13. The information described herein contains copyright information and know-how of ABLIC Inc. The information described herein does not convey any license under any intellectual property rights or any other rights belonging to ABLIC Inc. or a third party. Reproduction or copying of the information from this document or any part of this document described herein for the purpose of disclosing it to a third-party is strictly prohibited without the express permission of ABLIC Inc.
- 14. For more details on the information described herein or any other questions, please contact ABLIC Inc.'s sales representative.
- 15. This Disclaimers have been delivered in a text using the Japanese language, which text, despite any translations into the English language and the Chinese language, shall be controlling.

2.4-2019.07