CHANGE NOTIFICATION

Analog Devices, Inc. 1630 McCarthy Blvd., Milpitas CA (408) 432-1900

August 10, 2017

PCN#081017

Dear Sir/Madam:

Subject: Notification of Change to LTC4367 Datasheet

Please be advised that Analog Devices, Inc. Milpitas, California has made a minor change to the LTC4367 product datasheet to facilitate improvement in our manufacturing capability. The changes are shown on the attached pages of the marked up datasheet. There was no change in form, fit, function, quality or reliability of the product. The product shipped after October 10, 2017 will be tested to the new limits.

Should you have any questions or concerns please contact your local Analog Devices sales representatives or you may contact me at 408-432-1900 ext. 2077, or by e-mail at <u>JASON.HU@ANALOG.COM</u>. If I do not hear from you by October 10, 2017, we will consider this change to be approved by your company.

Sincerely,

Jason Hu Quality Assurance Engineer

LTC4367

ORDER INFORMATION

(http://www.linear.com/product/LTC4367#orderinfo)

LEAD FREE FINISH	TAPE AND REEL	PART MARKING*	PACKAGE DESCRIPTION	TEMPERATURE RANGE
LTC4367CDD#PBF	LTC4367CDD#TRPBF	LGTF	8-Lead (3mm × 3mm) Plastic DFN	0°C to 70°C
LTC4367CDD-1#PBF	LTC4367CDD-1#TRPBF	LGVW	8-Lead (3mm × 3mm) Plastic DFN	0°C to 70°C
LTC4367IDD#PBF	LTC4367IDD#TRPBF	LGTF	8-Lead (3mm × 3mm) Plastic DFN	-40°C to 85°C
LTC4367IDD-1#PBF	LTC4367IDD-1#TRPBF	LGVW	8-Lead (3mm × 3mm) Plastic DFN	-40°C to 85°C
LTC4367HDD#PBF	LTC4367HDD#TRPBF	LGTF	8-Lead (3mm × 3mm) Plastic DFN	-40°C to 125°C
LTC4367HDD-1#PBF	LTC4367HDD-1#TRPBF	LGVW	8-Lead (3mm × 3mm) Plastic DFN	-40°C to 125°C
LTC4367CMS8#PBF	LTC4367CMS8#TRPBF	LTGTD	8-Lead Plastic MSOP	0°C to 70°C
LTC4367CMS8-1#PBF	LTC4367CMS8-1#TRPBF	LTGVX	8-Lead Plastic MSOP	0°C to 70°C
LTC4367IMS8#PBF	LTC4367IMS8#TRPBF	LTGTD	8-Lead Plastic MSOP	-40°C to 85°C
LTC4367IMS8-1#PBF	LTC4367IMS8-1#TRPBF	LTGVX	8-Lead Plastic MSOP	-40°C to 85°C
LTC4367HMS8#PBF	LTC4367HMS8#TRPBF	LTGTD	8-Lead Plastic MSOP	-40°C to 125°C
LTC4367HMS8-1#PBF	LTC4367HMS8-1#TRPBF	LTGVX	8-Lead Plastic MSOP	-40°C to 125°C

Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container. For more information on lead free part marking, go to: http://www.linear.com/leadfree/

For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/. Some packages are available in 500 unit reels through designated sales channels with #TRMPBF suffix.

ELECTRICAL CHARACTERISTICS The \bullet denotes the specifications which apply over the full operating temperature range, otherwise specifications are at T_A = 25°C. V_{IN} = 2.5V to 60V, unless otherwise noted. (Note 2)

SYMBOL	PARAMETER	CONDITIONS		MIN	ТҮР	MAX	UNITS
V _{IN} , V _{OUT}							.1
V _{IN}	Input Voltage: Operating Range Protection Range		•	2.5 -40		60 100	V V
V _{IN(UVLO)}	Input Supply Undervoltage Lockout	V _{IN} Rising	٠	1.8	2.2	2.4	V
I _{VIN}	Input Supply Current: On Off	<u>SHDN</u> = 2.5V SHDN = 0V, V _{IN} = V _{OUT}	•		30 5	90 20	μΑ μΑ
I _{VIN(R)}	Reverse Input Supply Current	$V_{IN} = -40V, V_{OUT} = 0V$	٠		-1.5	-2.5	mA
I _{VOUT}	V _{OUT} Input Current: On Off Reverse	$\label{eq:shdward} \begin{array}{ c c } \hline \hline SHDN = 2.5V, V_{IN} = V_{OUT} \\ \hline SHDN = 0V, V_{IN} = V_{OUT} \\ \hline V_{IN} = -40V, V_{OUT} = 0V \end{array}$	•		40 3 20	110 15 50	μΑ μΑ μΑ
GATE							
ΔV_{GATE}	Gate Drive (GATE – V _{OUT})	$V_{IN} = V_{OUT} = 5.0V$, $I_{GATE} = 0\mu A$, $-1\mu A$ $V_{IN} = V_{OUT} = 12V$ to 60V, $I_{GATE} = 0\mu A$, $-1\mu A$	•	7.2 10	8.7 11	10.8 13.1	V V
I _{GATE(UP)}	Gate Pull Up Current	$GATE = 15V, V_{IN} = V_{OUT} = 12V$	٠	-20	-35	-60	μA
IGATE(SLOW)	Gate Slow Pull Down Current	$GATE = 20V, V_{IN} = V_{OUT} = 12V$	•	50	90	160	μA
IGATE(FAST)	Gate Fast Pull Down Current	$GATE = 20V, V_{IN} = V_{OUT} = 12V$	•	30	60	90	mA
t _{GATE(SLOW)}	Slow Turn Off Delay	$C_{GATE} = 2.2nF, \overline{SHDN}$ Falling, $V_{IN} = V_{OUT} = 12V$	٠	150	250 <mark>5</mark> 7	5 370	μs
t _{GATE(FAST)}	Gate Fast Turn Off Delay	C _{GATE} = 2.2nF, UV or OV Fault	•		2	5 A	μs

For more information www.linear.com/LTC4367

LTC4367

ELECTRICAL CHARACTERISTICS The \bullet denotes the specifications which apply over the full operating temperature range, otherwise specifications are at T_A = 25°C. V_{IN} = 2.5V to 60V, unless otherwise noted. (Note 2)

SYMBOL	PARAMETER	CONDITIONS		MIN	ТҮР	MAX	UNITS
t _{D(ON)}	GATE Turn-On Delay Time	$V_{\rm IN}$ = 12V, Power Good to $\Delta V_{\rm GATE}$ > 0V, $C_{\rm GATE}$ = 2.2nF LTC4367 LTC4367-1	•	22 0.2	32 0.5	45 1.2	ms ms
UV, OV		•					<u>.</u>
V _{UV}	UV Input Threshold Voltage	UV Falling	٠	492.5	500	507.5	mV
V _{OV}	OV Input Threshold Voltage	OV Rising	٠	492.5	500	507.5	mV
VUVHYST	UV Input Hysteresis	$V_{IN} = V_{OUT} = 12V$	٠	20	25	32	mV
V _{OVHYST}	OV Input Hysteresis	$V_{IN} = V_{OUT} = 12V$	٠	20	25	32	mV
I _{LEAK}	UV, OV Leakage Current	$V = 0.5V, V_{IN} = 60V$	٠			±10	nA
t _{FAULT}	UV, OV Fault Propagation Delay	$\begin{array}{l} \text{Overdrive} = 50\text{mV} \\ \text{V}_{\text{IN}} = \text{V}_{\text{OUT}} = 12\text{V} \end{array}$	•		1	2	μs
SHDN		•					
V _{SHDN}	SHDN Input Threshold	SHDN Falling	٠	0.4	0.75	1.2	V
I _{SHDN}	SHDN Input Current	$\overline{SHDN} = 10V, V_{IN} = 60V$	٠			±15	nA
t _{start}	Delay Coming Out of Shutdown Mode	SHDN Rising to FAULT Released, V _{IN} = V _{OUT} = 12V LTC4367 LTC4367-1	•	• 400 80014001200 125 250 500			µs µs
t _{SHDN(F)}	SHDN to FAULT Asserted	$V_{IN} = V_{OUT} = 12V$	٠		1.5	3	μs
t _{lowpwr}	Delay from Turn Off to Low Power Operation	V _{IN} = V _{OUT} = 12V LTC4367 LTC4367-1	•	20 0.125	32 0.3	48 0.6	ms ms
FAULT							
V _{OL}	FAULT Output Voltage Low	I _{FAULT} = 500μA, V _{IN} = 12V	٠		0.15	0.4	V
IFAULT	FAULT Leakage Current	$\overline{FAULT} = 5V, V_{IN} = 60V$	٠			±200	nA

Note 1. Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.

Note 3. These pins have a diode to GND. They may go below -0.3V if the current magnitude is limited to less than 1mA.

Note 4. The GATE pin is referenced to V_{OUT} and does not exceed 73V for the entire operating range.

Note 2. All currents into pins are positive; all voltages are referenced to GND unless otherwise noted.

4

For more information www.linear.com/LTC4367

4367fa