Bourns®

- Sensitive Gate Triacs
- 6 A RMS
- Glass Passivated Wafer
- 400 V to 800 V Off-State Voltage
- Max I_{GT} of 5 mA (Quadrants 1 3)

Pin 2 is in electrical contact with the mounting base.

absolute maximum ratings over operating case temperature (unless otherwise noted)

RATING	SYMBOL	VALUE	UNIT	
TIC210	6D	400		
Repetitive peak off-state voltage (see Note 1)		600	V	
TIC21	6S VDRM	700		
TIC210	6N	800		
Full-cycle RMS on-state current at (or below) 70°C case temperature (see Note 2)	I _{T(RMS)}	6	A	
Peak on-state surge current full-sine-waveat (or below) 25°C case temperature (see Note 3) I _{TSM}	60	A	
Peak gate current	I _{GM}	±1	A	
Peak gate power dissipation at (or below) 85°C case temperature (pulse width $\leq 200 \ \mu$ s)	P _{GM}	2.2	W	
Average gate power dissipation at (or below) 85°C case temperature (see Note 4)	P _{G(AV)}	0.9	W	
Operating case temperature range	Т _С	-40 to +110	°C	
Storage temperature range	T _{stg}	-40 to +125	°C	
Lead temperature 1.6 mm from case for 10 seconds	TL	230	°C	

NOTES: 1. These values apply bidirectionally for any value of resistance between the gate and Main Terminal 1.

2. This value applies for 50-Hz full-sine-wave operation with resistive load. Above 70°C derate linearly to 110°C case temperature at the rate of 150 mA/°C.

- 3. This value applies for one 50-Hz full-sine-wave when the device is operating at (or below) the rated value of on-state current. Surge may be repeated after the device has returned to original thermal equilibrium. During the surge, gate control may be lost.
- 4. This value applies for a maximum averaging time of 20 ms.

electrical characteristics at 25°C case temperature (unless otherwise noted)

PARAMETER		TEST CONDITIONS			MIN	ТҮР	MAX	UNIT
I _{DRM}	Repetitive peak off-state current	V_D = rated V_{DRM}	I _G = 0	T _C = 110°C			±2	mA
I _{GT}	Gate trigger current	$V_{supply} = +12 V†$ $V_{supply} = +12 V†$ $V_{supply} = -12 V†$ $V_{supply} = -12 V†$	RL = 10 Ω $RL = 10 Ω$ $RL = 10 Ω$ $RL = 10 Ω$ $RL = 10 Ω$	$t_{p(g)} > 20 \ \mu s$ $t_{p(g)} > 20 \ \mu s$			5 -5 -5 10	mA

† All voltages are with respect to Main Terminal 1.

PRODUCT INFORMATION

electrical characteristics at 25°C case temperature (unless otherwise noted) (continued)

PARAMETER		TEST CONDITIONS			MIN	ТҮР	MAX	UNIT
V _{GT}	Gate trigger voltage	$V_{supply} = +12 V^{\dagger}$ $V_{supply} = +12 V^{\dagger}$ $V_{supply} = -12 V^{\dagger}$ $V_{supply} = -12 V^{\dagger}$	$R_{L} = 10 \Omega$ $R_{L} = 10 \Omega$ $R_{L} = 10 \Omega$ $R_{L} = 10 \Omega$	t _{p(g)} > 20 μs t _{p(g)} > 20 μs t _{p(g)} > 20 μs t _{p(g)} > 20 μs			2.2 -2.2 -2.2 3	V
V _T	On-state voltage	$I_{\rm T} = \pm 8.4 {\rm A}$	l _G = 50 mA	(see Note 5)			±1.7	V
I _H	Holding current	$V_{supply} = +12 V^{+}$ $V_{supply} = -12 V^{+}$	$I_{G} = 0$ $I_{G} = 0$	Init' I _{TM} = 100 mA Init' I _{TM} = -100 mA			30 -30	mA
IL.	Latching current	$V_{supply} = +12 V^{\dagger}$ $V_{supply} = -12 V^{\dagger}$	(see Note 6)			4 -2		mA
dv/dt	Critical rate of rise of off-state voltage	V _{DRM} = Rated V _{DRM}	I _G = 0	$T_{C} = 110^{\circ}C$		±20		V/µs
dv/dt _(c)	Critical rise of commutation voltage	V _{DRM} = Rated V _{DRM}	$I_{\text{TRM}} = \pm 8.4 \text{ A}$	$T_{C} = 70^{\circ}C$	±2	±5		V/µs

† All voltages are with respect to Main Terminal 1.

NOTES: 5. This parameter must be measured using pulse techniques, $t_p = \le 1$ ms, duty cycle ≤ 2 %. Voltage-sensing contacts separate from the current carrying contacts are located within 3.2 mm from the device body.

6. The triacs are triggered by a 15-V (open-circuit amplitude) pulse supplied by a generator with the following characteristics: $R_G = 100 \Omega$, $t_{p(g)} = 20 \mu$ s, $t_r = \le 15 n$ s, f = 1 kHz.

thermal characteristics

	PARAMETER	MIN	TYP	MAX	UNIT
R _{0JC}	Junction to case thermal resistance			2.5	°C/W
R_{\thetaJA}	Junction to free air thermal resistance			62.5	°C/W