

NTE972 Integrated Circuit 3–Terminal Positive Voltage Regulator, 24V

The NTE972 fixed–voltage regulator is a monolithic integrated circuit in a TO220 type package designed for use in a wide variety of applications including local, on–card regulation. This regulator employs internal current limiting, thermal shutdown, and safe–area compensation. With adequate heatsinking it can deliver output currents in excess of 1.0 ampere. Although designed primarily as a fixed voltage regulator, this device can be used with external components to obtain adjustable voltages and currents.

Features:

- Output Current in Excess of 1.0 Ampere
- No External Components Reguired
- Internal Thermal Overload Protection
- Internal Short–Circuit Current Limiting
- Output Transistor Safe–Area Compensation

<u>Absolute Maximum Ratings:</u> ($T_A = +25^{\circ}C$ unless otherwise specified)

Input Voltage, V _{in}	40Vdc
Power Dissipation ($T_A = +25^{\circ}C$), P_D	Internally Limited
Derate above +25°C	15.4mW/°C
Power Dissipation ($T_C = +25^{\circ}C$), P_D	Internally Limited
Derate above +75°C	200mW/°C
Thermal Resistance, Junction–to–Ambient, R _{thJA}	65°C/W
Thermal Resistance, Junction–to–Case, R _{thJC}	5°C/W
Operating Junction Temperature Range, T _J	–55° to +150°C
Storage Junction Temperature Range, T _{stg}	–65° to +150°C

<u>Electrical Characteristics</u>: ($V_{in} = 33V$, $I_O = 500mA$, $T_J = 0^{\circ}$ to +125°C unless otherwise specified)

Parameter	Symbol	Test Conditions			Тур	Мах	Unit
Output Voltage	V _O	$T_J = +25^{\circ}C$		23	24	25	V
		$5\text{mA} \le \text{I}_{\text{O}} \le 1\text{A}, \text{P}_{\text{O}} \le 15\text{W}, 27\text{V} \le \text{V}_{\text{in}} \le 38\text{V}$		22.8	24.0	25.2	V
Line Regulation	Reg _{line}	T _J = +25°C, Note 1	$27V \le V_{in} \le 38V$	_	31	480	mV
			$30V \le V_{in} \le 36V$	_	14	240	mV
Load Regulation	Reg _{load}	T _J = +25°C, Note 1	$5mA \le I_O \le 1.5A$	_	60	480	mV
			$250mA \le I_O \le 750mA$	—	25	240	mV

Note 1. Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

<u>Electrical Characteristics (Cont'd)</u>: ($V_{in} = 33V$, $I_O = 500mA$, $T_J = 0^{\circ}$ to +125°C unless otherwise specified)

Parameter	Symbol	Test Conditions		Тур	Max	Unit
Quiescent Current	Ι _Β	$T_J = +25^{\circ}C$	—	4.6	8.0	mA
Quiescent Current Change	ΔI_B	$27V \le V_{in} \le 38V$	_	_	1.0	mA
		$5\text{mA} \le I_{O} \le 1\text{A}$	—	—	0.5	mA
Ripple Rejection	RR	$28V \le V_{in} \le 38V$, f = 120Hz	_	54	-	dB
Dropout Voltage	$V_{in} - V_O$	$T_{\rm J}$ = +25°C, $I_{\rm O}$ = 1A	_	2	-	V
Output Noise Voltage	Vn	$T_A = +25^{\circ}C, \ 10Hz \le f \le 100 kHz$	—	10	-	μV/V _O
Output Resistance	r _O	f = 1kHz	—	20	-	mΩ
Short–Circuit Current Limit	I _{sc}	$T_A = +25^{\circ}C, V_{in} = 35V$	—	0.2	-	А
Peak Output Current	I _{max}	$T_J = +25^{\circ}C$	—	2.2	-	А
Average Temperature Coefficient of Output Voltage	TCVO		_	-1.5	_	mV/°C

