

smart BASIC
BL600 Extensions
User Manual
Release 1.5.70.0-r5

Embedded Wireless Solutions Support Center: http://ews-support.lairdtech.com
Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940

Asia: +852-2923-0610
www.lairdtech.com/bluetooth

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

2 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

© 2014 Laird Technologies

All Rights Reserved. No part of this document may be photocopied, reproduced, stored in a retrieval system,

or transmitted, in any form or by any means whether, electronic, mechanical, or otherwise without the prior

written permission of Laird Technologies.

No warranty of accuracy is given concerning the contents of the information contained in this publication. To

the extent permitted by law no liability (including liability to any person by reason of negligence) will be

accepted by Laird Technologies, its subsidiaries or employees for any direct or indirect loss or damage caused

by omissions from or inaccuracies in this document.

Laird Technologies reserves the right to change details in this publication without notice.

Windows is a trademark and Microsoft, MS-DOS, and Windows NT are registered trademarks of Microsoft

Corporation. BLUETOOTH is a trademark owned by Bluetooth SIG, Inc., U.S.A. and licensed to Laird

Technologies and its subsidiaries.

Other product and company names herein may be the trademarks of their respective owners.

Laird Technologies

Saturn House,

Mercury Park,

Wooburn Green,

Bucks HP10 0HH,

UK.

Tel: +44 (0) 1628 858 940

Fax: +44 (0) 1628 528 382

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

3 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

REVISION HISTORY

Version Revisions Date Change History Approved By

1.0 1 Feb 2013 Initial Release Jonathan Kaye

1.1.50.0r3 3 Apr 2013 Production Release Jonathan Kaye

1.1.51.0 15 Apr 2013 Incorporate review comments for JG Jonathan Kaye

1.1.51.5 24 Apr 2013 Engineering release Jonathan Kaye

1.1.53.10 8 May 2013 Engineering release with custom service capability Jonathan Kaye

1.1.53.20 12 Jun 2013
Engineering release with Virtual Serial Service
capability

Jonathan Kaye

1.2.54.0 29 Jun 2013 Production Release Jonathan Kaye

1.2.55.3 26 Jul 2013
Engineering release with PWM & FREQUENCY
output

Jonathan Kaye

1.2.55.5 8 Aug 2013 Engineering release with VSP/Uart Bridging Jonathan Kaye

1.2.55.8 12 Aug 2013 Engineering release with AT+CFG command Jonathan Kaye

1.2.55.12 29 Aug 2013 Engineering release with sysinfo$() Jonathan Kaye

1.3.57.0 12 Sep 2013 Engineering release with UartCloseEx Jonathan Kaye

1.4.59.0 19 Dec 2013 Engineering release v1.4.59.0 Jonathan Kaye

1.5.62.0 4 Jan 2014 Production release v1.5.62.0 (Softdevice 6.0.0) Jonathan Kaye

1.5.65.0 24 Feb 2014 Engineering release v1.5.65.0 (Softdevice 6.0.0) Jonathan Kaye

1.5.66.0 28 Mar 2014 Production release v1.5.66.0 (Softdevice 6.0.0) Jonathan Kaye

1.5.70.0 27 Apr 2014 Production releae v1.5.70.0 (Softdevice 6.0.0) Jonathan Kaye

1.5.70.0-r1 28 Apr 2014 Added the VSP flowchart Jonathan Kaye

1.5.70.0-r2 1 May 2014 Split manuals into Core and BL600 Extension Jonathan Kaye

1.5.70.0-r4 27 Aug 2014 Sync information with Core Manual Jonathan Kaye

1.5.70.0-r5 2 Dec 2014 Added UartOpen specifics for this module Jonathan Kaye

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

4 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

CONTENTS

Revision History .. 3
Contents ... 4
1. Introduction .. 5

Documentation Overview ... 5
What Does a BLE Module Contain? .. 5

2. Interactive Mode Commands ... 6
3. Core Language Built-in Routines ... 12

Information Routines .. 12
UART (Universal Asynchronous Receive Transmit) ... 15
I2C – Two Wire Interface (TWI)... 16
SPI Interface .. 17

4. Core Extensions Built-in Routines .. 18
Miscellaneous Routines .. 18
Input/Output Interface Routines .. 19

5. BLE Extensions Built-in Routines .. 29
MAC Address ... 29
Events and Messages .. 30
Miscellaneous Functions ... 45
Advertising Functions ... 48
Connection Functions ... 60
Security Manager Functions ... 65
GATT Server Functions .. 69
GATT Client Functions ... 105
Attribute Encoding Functions ... 147
Attribute Decoding Functions ... 158
Pairing/Bonding Functions .. 172
Virtual Serial Port Service – Managed Test When Dongle and Application are Available 174

6. Other Extension Built-in Routines .. 189
System Configuration Routines .. 189
Miscellaneous Routines .. 190

7. Events & Messages ... 192
8. Module Configuration .. 193
9. Miscellaneous ... 193
10. Acknowledgements ... 195
Index ... 196

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

5 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

1. INTRODUCTION

Documentation Overview

This BL600 Extension Functionality user guide provides detailed information on BL600-specific smart BASIC

extensions which provide a high level managed interface to the underlying Bluetooth stack in order to

manage the following:

 GATT table – Services, characteristics, descriptors, advert reports

 Gatt server/client operation

 Advertisments and connections

 BLE security and bonding

 Attribute encoding and decoding

 Laird custom VSP service

 Power management

 Wireless status

 Events related to the above

What Does a BLE Module Contain?

Our smart BASIC-based BLE modules are designed to provide a complete wireless processing solution. Each

module contains:

 A highly integrated radio with an integrated antenna (external antenna options are also available)

 BLE Physical and Link layer

 Higher level stack

 Multiple GPIO and ADC

 Wired communication interfaces like UART, I2C, and SPI

 A smart BASIC run-time engine

 Program accessible flash memory which contains a robust flash file system exposing a conventional file

system and a database for storing user configuration data

 Voltage regulators and brown-out detectors

For simple end devices, these modules can completely replace an embedded processing system.

The following block diagram (Figure 1) illustrates the structure of the BLE smart BASIC module from a

hardware perspective on the left and a firmware/software perspective on the right.

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

6 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

smartBASIC

run-time engine
(provides safe access to
BLE stack, drivers and

non-vol stores)

Non-Vol

File

System

for

smartBASIC

Apps

Non-Vol

Data

Store

I/
O

,
U

A
R

T
,I
2
C

,S
P

I
D

ri
v
e
rs

Bluetooth Low Energy Stack

User smartBASIC Application

Example App

 PRINT "Laird BL600 Module"

 WaitEvent

44 connection pads

UART GPIO ADC I2C SPI

16K RAM

256K Flash

BLE Radio

OR UFL
Internal

Antenna

ARM Cortex M0

(smartBASIC)

Figure 1: BLE smart BASIC module block diagram

2. INTERACTIVE MODE COMMANDS

Interactive mode commands allow a host processor or terminal emulator to interrogate and control the

operation of a smartBASIC-based module. Many of these emulate the functionality of AT commands. Others

add extra functionality for controlling the filing system and compilation process.

Syntax Unlike commands for AT modems, a space character must be inserted between AT, the command,

and subsequent parameters. This allows the smart BASIC tokeniser to efficiently distinguish

between AT commands and other tokens or variables starting with the letters at.

‘Example:

AT I 3

The response to every Interactive mode command has the following form:

<linefeed character> response text <carriage return>

This format simplifies the parsing within the host processor. The response may be one or multiple lines.

Where more than one line is returned, the last line has one of the following formats:

<lf>00<cr> for a successful outcome, or

<lf>01<tab> hex number <tab> optional verbose explanation <cr> for failure.

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

7 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Note: In the case of the 01 response, the <tab>optional_verbose_explanation will be missing in

resource constrained platforms like the BL600 modules. The verbose explanation is a constant

string and since there are over 1000 error codes, these verbose strings can occupy more than ten

kilobytes of flash memory.

The hex number in the response is the error result code consisting of two digits which can be used to help

investigate the problem causing the failure. Rather than provide a list of all the error codes in this manual,

you can use UWTerminal to obtain a verbose description of an error when it is not provided on a platform.

To get the verbose description, click on the BASIC tab (in UWTerminal) and, if the error value is hhhh, enter

the command ER 0xhhhh and note the 0x prefix to hhhh. This is illustrated in Figure 2.

Figure 2: Optional verbose explanation

You can also obtain a verbose description of an error by highlighting the error value, right-clicking, and

selecting Lookup Selected ErrorCode in the Terminal window.
If you get the text UNKNOWN RESULT CODE 0xHHHH, please contact Laird for the latest version of

UWterminal.

The following are BL600-specific AT commands.

AT+CFG

COMMAND

AT+CFG is used to set a non-volatile configuration key. Configuration keys are are comparable to S registers in

modems. Their values are kept over a power cycle but are deleted if the AT&F* command is used to clear the

file system.

If a required configuration key isn’t listed below, use the functions NvRecordSet() and NvRecordGet() to set

and get these keys respectively.

The num value syntax is used to set a new value and the num ? syntax is used to query the current value.

When the value is read, the syntax of the response is:

27 0xhhhhhhhh (dddd)

…where 0xhhhhhhhh is an eight hexdigit number which is 0 padded at the left and dddd is the decimal

signed value.

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

8 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

AT+CFG num value or AT+CFG num ?

Returns If the config key is successfully updated or read, the response is \n00\r.

Arguments

num Integer Constant
The ID of the required configuration key. All of the configuration keys are stored as
an array of 16 bit words.

value Integer_constant

This is the new value for the configuration key and the syntax allows decimal, octal,
hexadecimal, or binary values.

This is an Interactive mode command and MUST be terminated by a carriage return for it to be processed.

The following Configuration Key IDs are defined:

ID Definition

40 Maximum size of locals simple variables

41 Maximum size of locals complex variables

42 Maximum depth of nested user defined functions and subroutines

43 The size of stack for storing user functions simple variables

44 The size of stack for storing user functions complex variables

45 The size of the message argument queue length

100 Enable/Disable Virtual Serial Port Service when in interactive mode. Valid values are:

0x0000 Disable

0x0001 Enable

0x80nn Enable ONLY if signal pin nn on module is HIGH

0xC0nn Enable ONLY if signal pin nn on module is LOW

0x81nn Enable ONLY if signal pin nn on module is HIGH and auto-bridged to UART when

connected

0xC1nn Enable ONLY if signal pin nn on module is LOW and auto-bridged to UART when

connected

ELSE Disable

101 Virtual Serial Port Service to use INDICATE or NOTIFY to send data to client.

0 Prefer Notify

Else Prefer Indicate

This is a preference and the actual value is forced by the property of the TX characteristic of the
service.

102 This is the advert interval in milliseconds when advertising for connections in interactive mode and

AT parse mode.

Valid values: 20 to 10240 milliseconds

103 This is the advert timeout in milliseconds when advertising for connections in interactive mode and
AT parse mode.

Valid values: 1 to 16383 seconds

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

9 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

ID Definition

104 In the virtual serial port service manager, data transfer is managed. When sending data using

NOTIFIES, the underlying stack uses transmission buffers of which there are a finite number. This

specifies the number of transmissons to leave unused when sending a lot of data. This also allows

other services to send notifies without having to wait for them.

The total number of transmission buffers can be determined by calling SYSINFO(2014) or in
interactive mode submitting the command ATi 2014

105 When in interactive mode and connected for virtual serial port services, this is the minimum
connection interval in milliseconds to be negotiated with the master.

Valid values: 0 to 4000 ms

Note: If a value of less than 8 is specified, then the minimum value of 7.5 is selected.

106 When in interactive mode and connected for virtual serial port services, this is the maximum

connection interval in milliseconds to be negotiated with the master.

Valid values: 0 to 4000 ms

Note: If a value of less than the minimum specified in 105, then it is forced to the value in 105
plus 2 ms.

107 When in interactive mode and connected for virtual serial port services, this is the connection

supervision timeout in milliseconds to be negotiated with the master.

Valid range: 0 to 32000

Note: If the value is less than the value in 106, then a value double the one specified in 106 is
used.

108 When in interactive mode and connected for virtual serial port services, this is the slave latency to
be negotiated with the master.

Note: An adjusted value is used if this value times the value in 106 is greater than the supervision
timeout in 107.

109 When in interactive mode and connected for virtual serial port services, this is the Tx power used

for adverts and connections.

Note: A low value is set to ensure that in production, if smart BASIC applications are downloaded
over the air, the limited range allows many stations to be used to program devices.

110 If Virtual Serial Port Service is enabled in interactive mode (see 100), then this specifies the size of
the transmit ring buffer in the managed layer sitting above the service characteristic fifo register.

Value range: 32 to 256

111 If Virtual Serial Port Service is enabled in interactive mode (see 100), then this specifies the size of
the receive ring buffer in the managed layer sitting above the service characteristic fifo register.

Value range: 32 to 256

112 If set to 1, then the service UUID for the virtual serial port is as per Nordic’s implementation and any

other value is per Laird’s modified service.
See more details of the service definition here.

113 This is the advert interval in milliseconds when advertising for connections in interactive mode and

UART bridge mode.

Valid values: 20 to 10240 milliseconds

114 This is the advert timeout in milliseconds when advertising for connections in interactive mode and

UART bridge mode.

Valid values: 0 to 16383 seconds. 0 disables the timer (makes it continuous)

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

10 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

ID Definition

115 This is used to specify the UART baudrate when Virtual Serial Mode Service is active and UART

bridge mode is enabled.

Valid values: 1200, 2400, 4800, 9600, 14400, 19200, 28800, 38400, 57600, 76800, 115200,
230400, 250000, 460800, 921600, 1000000.

Note: If an invalid value is entered, then the default value of 9600 is used.

116 In VSP/UART bridge mode, this value specifies the latency in milliseconds for data arriving via the

UART and transfering to VSP and then onward on-air. This mechanism ensures that the underlying

bridging algorithm waits for up to this amount of time before deciding that no more data is going
to arrive to fill a BLE packet and so flushes the data onwards.

Note: Given that the largest packet size takes 20 bytes, if more than 20 bytes arrive then the
latency timer is overridden and the data is immediately sent.

Interactive Command: YES

AT+CFG is a core command.

Note: These values revert to factory default values if the flash file system is deleted using the

AT & F * interactive command.

AT + BTD *

COMMAND

Deletes the bonded device database from the flash.

AT + BTD*

Returns \n00\r

Arguments None

Interactive
Command

YES

This is an interactive mode command and MUST be terminated by a carriage return for it to be processed.

Note: The module self-reboots so that the bonding manager context is also reset.

‘Examples:

AT+BTD*

AT+BTD* is an extension command.

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

11 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

AT + MAC “12 hex digit mac address”

COMMAND

This is a command that is successful one time as it writes an IEEE MAC address to non-volatile memory. This

address is then used instead of the random static MAC address that comes preprogrammed in the module.

Notes: If the module has an invalid licence, then this address is not visible.

If the address 000000000000 is written then it is treated as invalid and prevents a new

address from being entered.

AT + MAC “12 hex digits”

Returns \n00\r

or

\n01 192A\r

Where the error code 192A is NVO_NVWORM_EXISTS. This means that an IEEE MAC
address already exists; this can be read using the command AT I 24

Arguments
A string delimited by “” which shall be a valid 12 hex digit MAC address that is written to
non-volatile memory.

Interactive
Command

YES

This is an interactive mode command and MUST be terminated by a carriage return for it to be processed.

Note: The module self-reboots if the write is successful. Subsequent invocations of this command

generate an error.

‘Examples:

AT+MAC “008098010203”

AT+MAC is an extension command

AT + BLX

COMMAND

This command is used to stop all radio activity (adverts or connections) when in interactive mode. It is

particularly useful when the virtual serial port is enabled while in interactive mode.

AT + BLX

Command

Returns \n00\r

Arguments None

Interactive
Command

YES

This is an Interactive Mode command and MUST be terminated by a carriage return for it to be processed.

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

12 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Note: The module self-reboots so that the bonding manager context is also reset.

‘Examples:

AT+BLX

AT+BLX is an extension command.

3. CORE LANGUAGE BUILT-IN ROUTINES

Core language built-in routines are present in every implementation of smartBASIC. These routines provide

the basic programming functionality. They are augmented with target-specific routines for different platforms

which are described in the extention manual for each target platform.

All the core functionality is described in the document smartBASIC Core Functionality.

However some functions have small behaviour differences and they are listed below.

Information Routines

SYSINFO

FUNCTION

Returns an informational integer value depending on the value of varId argument.

SYSINFO(varId)

Returns INTEGER. Value of information corresponding to integer ID requested.

Exceptions  Local Stack Frame Underflow

 Local Stack Frame Overflow

Arguments:

varId byVal varId AS INTEGER

An integer ID which is used to determine which information is to be returned as described

below.

0
ID of device. Each platform type has a unique identifier.

BL600 module value – 0x42460600

3

Version number of module Firmware. For example W.X.Y.Z is returned as a 32 bit

value made up as follows:

 (W<<26) + (X<<20) + (Y<<6) + (Z)
 where Y is the build number and Z is the ‘sub-build’ number

33 BASIC core version number.

601 Flash File System: Data Segment: Total Space

602 Flash File System: Data Segment: Free Space

603 Flash File System: Data Segment: Deleted Space

611 Flash File System: FAT Segment: Total Space

612 Flash File System: FAT Segment: Free Space

http://ews-support.lairdtech.com/
http://b7c114b8ac32968eb0a5-0034a95ea8a03cf459b9e4f7b28746f2.r86.cf3.rackcdn.com/home/brandworld/files/User%20Guide%20-%20smartBASIC%20Core%20Functionality.pdf

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

13 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

613 Flash File System: FAT Segment: Deleted Space

631 NvRecord Memory Store Segment: Total Space

632 NvRecord Memory Store Segment: Free Space

633 NvRecord Memory Store Segment: Deleted Space

1000 BASIC compiler HASH value as a 32 bit decimal value

1001 How RAND() generates values: 0 for PRNG and 1 for hardware assist

1002 Minimum baudrate

1003 Maximum baudrate

1004 Maximum STRING size

1005
1 for run-time only implementation

3 for compiler included

2000

Reason for reset:

 8 – Self-Reset due to Flash Erase

 9 – ATZ
 10 – Self-Reset due to smart BASIC app invoking function RESET()

2002 Timer resolution in microseconds

2003 Number of timers available in a smart BASIC Application

2004 Tick timer resolution in microseconds

Interactive
Command

NO

 //Example :: SysInfo.sb (See in Firmware Zip file)
 PRINT "\nSysInfo 1000 = ";SYSINFO(1000) // BASIC compiler HASH value

 PRINT "\nSysInfo 2003 = ";SYSINFO(2003) // Number of timers

 PRINT "\nSysInfo 0x8010 = ";SYSINFO(0x8010) // Code memory page size from FICR

Expected Output (For BL600):

SYSINFO is a core language function.

SysInfo 1000 = 1315489536

SysInfo 2003 = 8

SysInfo 0x8010 = 1024

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

14 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

SYSINFO$

FUNCTION

Returns an informational string value depending on the value of varId argument.

SYSINFO$(varId)

Returns STRING. Value of information corresponding to integer ID requested.

Exceptions  Local Stack Frame Underflow

 Local Stack Frame Overflow

Arguments:

varId byVal varId AS INTEGER

An integer ID which is used to determine which information is to be returned as described

below.

4
The Bluetooth address of the module. It is seven bytes long. First byte is 00 for IEEE

public address and 01 for random public address. Next six bytes are the address.

14

A random public address unique to this module. May be the same value as in 4

above unless AT+MAC was used to set an IEEE mac address.

It is seven bytes long. First byte is 00 for IEEE public address and 01 for random
public address. Next six bytes are the address.

Interactive
Command

NO

 //Example :: SysInfo$.sb (See in Firmware Zip file)

 PRINT "\nSysInfo$(4) = ";SYSINFO$(4) // address of module

 PRINT "\nSysInfo$(14) = ";SYSINFO$(14) // public random address

 PRINT "\nSysInfo$(0) = ";SYSINFO$(0)

Expected Output:

SYSINFO$ is a core language function.

SysInfo$(4) = \01\FA\84\D7H\D9\03

SysInfo$(14) = \01\FA\84\D7H\D9\03

SysInfo$(0) =

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

15 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

UART (Universal Asynchronous Receive Transmit)

UartOpen

FUNCTION

This function is used to open the main default uart peripheral using the parameters specified.

See core manual for further details.

UARTOPEN (baudrate,txbuflen,rxbuflen,stOptions)

stOptions

byVal stOptions AS STRING
This string (can be a constant) MUST be exactly 5 characters long where each character

is used to specify further comms parameters as follows.

Character Offset:

0

DTE/DCE role request:

 T – DTE

 C – DCE

1

Parity:

 N – None

 O – Odd (Not Available)

 E – Even (Not Available)

2 Databits: 8

3 Stopbits: 1

4

Flow Control:

 N – None

 H – CTS/RTS hardware

 X – Xon/Xof (Not Available)

UartCloseEx

Note: On the BL600 (firmware versions older than 1.3.57.3), the following bug exists:

If the RX and TX buffers are not empty, an internal pointer is still set to NULL. This results in

unpredictable behavior.

Workaround: Use UartInfo(6) to check if the buffers are empty and then call UartCloseRx(1) as

per the example below.

Workaround for FW 1.3.57.0 and earlier (BL600):

 //Example :: UartCloseExWA.sb (

See in Firmware Zip file)

 DIM rc1

 DIM rc2

 UartClose()

 rc1 = UartOpen(9600,0,0,"CN81H") //open as DTE at 300 baudrate, odd parity

 //8 databits, 1 stopbits, cts/rts flow control

 PRINT "Laird"

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

16 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 //---Workaround for bug for firmware versions older than 1.3.57.3

 IF UartInfo(6)!=0 THEN

 PRINT "\nData in at least one buffer. Uart Port not closed"

 ELSE

 rc2=UartCloseEx(1)

 rc1 = UartOpen(9600,0,0,"CN81H") //open as DTE at 300 baudrate, odd parity

 PRINT "\nThe Uart Port was closed"

 ENDIF

For FW 1.3.57.3 and newer (BL600):

 //Example :: UartCloseEx.sb (See in Firmware Zip file)

 DIM rc1

 DIM rc2

 UartClose()

 rc1 = UartOpen(9600,0,0,"CN81H") //open as DTE at 300 baudrate, odd parity

 //8 databits, 1 stopbits, cts/rts flow

control

 PRINT "Laird"

 IF UartCloseEx(1)!=0 THEN

 PRINT "\nData in at least one buffer. Uart Port not closed"

 ELSE

 rc1 = UartOpen(9600,0,0,"CN81H") //open as DTE at 300 baudrate, odd parity

 PRINT "\nUart Port was closed"

 ENDIF

Expected Output:

UARTCLOSEEX is a core function.

UartSetRTS

The BL600 module does not offer the capability to control the RTS pin because the underlying hardware does

not allow it.

UartBREAK

The BL600 module does not offer the capability to send a BREAK signal.

If this feature is required, then the best way to expedite it is to put UART_TX and an I/O pin configured as an

output through an AND gate.

For normal operation, the general purpose output pin is set to logic high which means the output of the AND

gate follows the state of the UART_TX pin.

When a BREAK is to be sent, the general purpose pin is set to logic high which means the output of the AND

gate are low and remain low regardless of the state of the UART_TX pin

I2C – Two Wire Interface (TWI)

Laird

Data in at least one buffer. Uart Port not closed

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

17 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

The BL600 can only be configured as an I2C master with the additional constraint that it be the only master

on the bus and only 7 bit slave addressing is supported.

Note: On the BL600 (firmware releases older than 1.2.54.4), there is an issue where some I2C slaves

are not able to drive the ACK down to a low enough voltage level for the module to recognise it

as an ACK. This is a result of a bug in the BL600’s I2C driver which results in the SDA line not

being released by the module. This has been corrected in release 1.2.54.4 and the firmware is

available as a UART download on request. You should upgrade the firmware if you have an I2C

slave not responding to the correct slave address.

SPI Interface

Note: The BL600 module can only be configured as a SPI master.

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

18 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

4. CORE EXTENSIONS BUILT-IN ROUTINES

Miscellaneous Routines

This section describes all miscellaneous functions and subroutines.

RESET

SUBROUTINE

This routine is used to force a reset of the module.

RESET (nType)

Exceptions  Local Stack Frame Underflow

 Local Stack Frame Overflow

Arguments:

nType byVal nType AS INTEGER.
This is for future use. Set to 0.

Interactive
Command

NO

 //Example :: RESET.sb (See in BL600CodeSnippets.zip)

 RESET(0) //force a reset of the module

Expected Output:

Like when you reset the module using the interactive command

‘ATZ’, the CTS indicator will momenterally change from green to

red, then back to green.

RESET is a core subroutine.

ERASEFILESYSTEM

FUNCTION

This function is used to erase the flash file system which contains the application that invoked this function, if
and only if, the SIO7 input pin is held high.

Given that SIO7 is high, after erasing the file system, the module resets and reboots into command mode

with the virtual serial port service enabled; the module advertises for a few seconds. See the virtual serial port

service section for more details.

This facility allows the current $autorun$ application to be replaced with a new one.

WARNING

If this function is called from within $autorun$, and the SIO7 input is high, then it will get erased and a fresh

download of the application is required which can be facilitated over the air.

ERASEFILESYSTEM (nArg)

Returns INTEGER Indicates success of command:

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

19 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

0 Successful erasure. The module reboots.

<>0 Failure.

Exceptions  Local Stack Frame Underflow

 Local Stack Frame Overflow

Arguments:

nArg byVal nArg AS INTEGER

This is for future use and MUST always be set to 1. Any other value will

result in a failure.

 //Example :: EraseFileSystem.sb (See in BL600CodeSnippets.zip)

 DIM rc

 rc = EraseFileSystem(1234)

 IF rc!=0 THEN

 PRINT "\nFailed to erase file system because incorrect parameter"

 ENDIF

 //Input SIO7 is low

 rc = EraseFileSystem(1)

 IF rc!=0 THEN

 PRINT "\nFailed to erase file system because SIO7 is low"

 ENDIF

Expected Output:

ERASEFILESYSTEM is an extension function.

Input/Output Interface Routines

I/O and interface commands allow access to the physical interface pins and ports of the smart BASIC modules.

Most of these commands are applicable to the range of modules. However, some are dependent on the

actual I/O availability of each module.

GPIO Events

EVGPIOCHANn

Here, n is from 0 to N where N is platform dependent and an event is generated when

a preconfigured digital input transition occurs. The number of digital inputs that can

auto-generate is hardware dependent. For the BL600 module, N can be 0,1,2 or 3.

Use GpioBindEvent() to generate these events.

See example for GpioBindEvent()

EVDETECTCHANn

Here, n is from 0 to N where N is platform dependent and an event is generated when
a preconfigured digital input transition occurs. The number of digital inputs that can
auto-generate is hardware dependent. For the BL600 module, N can only be 0.

Use GpioAssignEvent() to generate these events.

See example for GpioAssignEvent()

Failed to erase file system because incorrect parameter

Failed to erase file system because SIO7 is low

00

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

20 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

GpioSetFunc

FUNCTION

This routine sets the function of the GPIO pin identified by the nSigNum argument.

The module datasheet contains a pinout table which denotes SIO (Special I/O) pins. The number designated

for that special I/O pin corresponds to the nSigNum argument.

GPIOSETFUNC (nSigNum, nFunction, nSubFunc)

Returns
INTEGER, a result code. The most typical value is 0x0000, indicating a successful

operation.

Arguments

nSigNum
byVal nSigNum AS INTEGER

The signal number as stated in the pinout table of the module.

nFunction

byVal nFunction AS INTEGER

Specifies the configuration of the GPIO pin as follows:

1 DIGITAL_IN

2 DIGITAL_OUT

3 ANALOG_IN

4 ANALOG_REF (not currently available on the BL600 module)

5 ANALOG_OUT (not currently available on the BL600 module)

nSubFunc

byVal nSubFunc INTEGER

Configures the pin as follows:

If nFunction == DIGITAL_IN

Bits 0..3

0x01 Pull down resistor (weak)

0x02 Pull up resistor (weak)

0x03 Pull down resistor (strong)

0x04 Pull up resistor (strong)

Else No pull resistors

Bits 4, 5

0x10 When in deep sleep mode, awake when this pin is LOW

0x20 When in deep sleep mode, awake when this pin is HIGH

Else No effect in deep sleep mode

Bits 8..31

Must be 0s

If nFuncType == DIGITAL_OUT

Values:

0 Initial output to LOW

1 Initial output to HIGH

2

Output is PWM (Pulse Width Modulated Output). See function

GpioConfigPW() for more configuration. The duty cycle is set using

function GpioWrite().

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

21 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

3

Output is FREQUENCY. The frequency is set using function GpioWrite()

where 0 switches off the output; any value in range 1..4000000

generates an output signal with 50% duty cycle with that frequency.

Bits 4..6 (output drive capacity)

0
0 – Standard

1 – Standard

1
0 – High

1 – Standard

2
0 – Standard

1 – High

3
0 – High

1 – High

4
0 – Disconnect

1 – Standard

5
0 – Disconnect

1 – High

6
0 – Standard

1 – Disconnect

7 0 – High

1 – Disconnect

If nFuncType == ANALOG_IN

0 Use the system default: 10-bit ADC, 2/3 scaling

0x13 10-bit ADC, 1/3 scaling

0x11 10-bit ADC, unity scaling

Interactive
Command

NO

Note: The internal reference voltage is 1.2V with +/- 1.5% accuracy.

WARNING: This subfunc value is ‘global’ and once changed will apply to all ADC inputs.

 //Example :: GpioSetFunc.sb (See in Firmware Zip file)

 PRINT GpioSetFunc(3,1,2) //Digital In Gpio pin 3, weak pull up resistor

 PRINT GpioSetFunc(4,3,0) //Analog In Gpio pin 4, default settings

 PRINT GpioSetFunc(5,1,0x12) //internal pull up on gpio5 and wake from deep sleep

 //when there is transition from high to low

Expected Output:

GPIOSETFUNC is a Module function.

GpioConfigPwm

FUNCTION

000

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

22 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

This routine configures the PWM (Pulse Width Modulation) of all output pins when they are set as a PWM

output using GpioSetFunc() function described above.

Note: This is a ‘sticky’ configuration; calling it affects all PWM outputs already configured. It is advised

that this is called once at the beginning of your application and not changed again within the

application unless all PWM outputs are deconfigured and then re-enabled after this function is

called.

The PWM output is generated using 32-bit hardware timers. The timers are clocked by a 1 MHz clock source.

A PWM signal has a frequency and a duty cycle property; the frequency is set using this function and is

defined by the nMaxResolution parameter. For a given nMaxResolution value, given that the timer is clocked

using a 1 MHz source, the frequency of the generated signal is 1000000 divided by nMaxResolution. Hence if

nMinFreqHz is more than the 1000000/nMaxResolution, this function will fail with a non-zero value.

The nMaxResolution can also be viewed as defining the resolution of the PWN output in the sense that the

duty cycle can be varied from 0 to nMaxResolution. The duty cycle of the PWM signal is modified using the

GpioWrite() command

For example, a period of 1000 generates an output frequency of 1KHz, a period of 500, and a frequency of

2Khz etc.

On exit, the function returns with the actual frequency in the nMinFreqHz parameter.

GPIOCONFIGPWM (nMinFreqHz, nMaxResolution)

Returns
INTEGER, a result code.

Most typical value: 0x0000 (indicates a successful operation)

Arguments

nMinFreqHz
byRef nMinFreqHz AS INTEGER

On entry this variable contains the minimum frequency desired for the PWM output. On
exit, if successful, it contains the actual frequency of the PWM output.

nMaxResolution
byVal nMaxResolution INTEGER.

This specifies the duty cycle resolution and the value to set to get a 100% duty cycle.

Interactive
Command

No

 // Example :: GpioConfigPWM() (See in Firmware Zip file)
 DIM rc

 DIM nFreqHz, nMaxRes

 // we want a minimum frequency of 500Hz so that we can use a 100Hz low pass filter to

 // create an analogue output which has a 100Hz bandwidth

 nFreqHz = 500

 // we want a resolution of 1:1000 in the generated analogue output

 nMaxValUs = 1000

 PRINT GpioConfigPWM(nFreqHz,nMaxRes)

 PRINT "\nThe actual frequency of the PWM output is ";nFreqHz;"\n"

 // now configure SIO2 pin as a PWM output

 PRINT GpioSetFunc(2,2,2) //3rd parameter is subfunc == PWM output

 // Set PWM output to 0%

 GpioWrite(2,0)

 // Set PWM output to 50%

 GpioWrite(2,(nMaxRes/2))

 // Set PWM output to 100%

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

23 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 GpioWrite(2,nMaxRes) // any value >= nMaxRes will give a 100% duty cycle

 // Set PWM output to 33.333%

GpioWrite(2,(nMaxRes/3))

Expected Output:

GPIOCONFIGPWM is a Module function.

GpioRead

FUNCTION

This routine reads the value from a SIO (special purpose I/O) pin.

The module datasheet will contain a pinout table which will mention SIO (Special I/O) pins and the number

designated for that special I/O pin corresponds to the nSigNum argument.

GPIOREAD (nSigNum)

Returns
INTEGER, the value from the signal. If the signal number is invalid, it returns the value 0.

For digital pins, the value is 0 or 1. For ADC pins it is a value in the range of 0 to M where

M is the maximum based on the bit resolution of the analogue to digital converter.

Arguments

nSigNum
byVal nSigNum INTEGER

The signal number as stated in the pinout table of the module.

Interactive
Command

No

 //Example :: GpioRead.sb (See in Firmware Zip file)

 DIM signal

 signal = GpioRead(3)

 PRINT signal

Expected Output:

GPIOREAD is a Module function.

GpioWrite

SUBROUTINE

This routine writes a new value to the GPIO pin. If the pin number is invalid, nothing happens.

If the GPIO pin has been configured as a PWM output then the nNewValue specifies a value in the range 0 to

N where N is the maximum PWM value that generates a 100% duty cycle output (a constant high signal) and

N is a value that is configured using the function GpioConfigPWM().

0

The actual frequency of the PWM output is 1000

0

1

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

24 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

If the GPIO pin has been configured as a FREQUENCY output then the nNewValue specifies the desired

frequency in Hertz in the range 0 to 4000000. Setting a value of 0 makes the output a constant low value.

Setting a value greater than 4000000 clips the output to a 4 MHz signal.

GPIOWRITE (nSigNum, nNewValue)

Arguments

nSigNum
byVal nSigNum INTEGER.

The signal number as stated in the pinout table of the module.

nNewValue

byVal nNewValue INTEGER.

The value to be written to the port. If the pin is configured as digital then 0 will clear the
pin and a non-zero value will set it.

If the pin is configured as analogue, then the value is written to the pin.

If the pin is configured as a PWM, then this value sets the duty cycle.

If the pin is configured as a FREQUENCY, then this value sets the frequency.

Interactive
Command

No

 //Example :: GpioWrite.sb (See in Firmware Zip file)

 DIM rc,dutycycle,freqHz,minFreq

 //set sio pin 1 to an output and initialise it to high

 PRINT GpioSetFunc(1,2,0);"\n"

 //set sio pin 5 to PWM output

 minFreq = 500

 PRINT GpioConfigPWM(minFreq,1024);"\n" //set max pwm value/resolution to 1:1024

 PRINT GpioSetFunc(5,2,2);"\n"

 PRINT GpioSetFunc(7,2,3);"\n\n" //set sio pin 7 to Frequency output

 GpioWrite(18,0) //set pin 1 to low

 GpioWrite(18,1) //set pin 1 to high

 //Set the PWM output to 25%

 GpioWrite(5,256) //256 = 1024/4

 //Set the FREQ output to 4.236 Khz

 GpioWrite(7,4236)

 //Note you can generate a chirp output on sio 7 by starting a timer which expires

 //every 100ms and then in the timer handler call GpioWrite(7,xx) and then

 //increment xx by a certain value

Expected Output:

GPIOWRITE is a Module function.

GpioBindEvent

FUNCTION

This routine binds an event to a level transition on a specified special I/O line configured as a digital input so

that changes in the input line can invoke a handler in smart BASIC user code.

0000

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

25 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Note: In the BL600 module, using this function results in over 1 mA of continuous current consumption

from the power supply. If power is important, use GpioAssignEvent() instead which uses other

resources to expedite an event.

GPIOBINDEVENT (nEventNum, nSigNum, nPolarity)

Returns
INTEGER, a result code.

Typical value: 0x0000 (indicates a successful operation)

Arguments

nEventNum
byVal nEventNum INTEGER

The GPIO event number (in the range of 0 - N) which will result in the event
EVGPIOCHANn being thrown to the smart BASIC runtime engine.

nSigNum
byVal nSigNum INTEGER

The signal number as stated in the pinout table of the module.

nPolarity

byVal nPolarity INTEGER

States the transition as follows:

0 Low to high transition

1 High to low transition

2 Either a low to high or high to low transition

Interactive
Command

No

 //Example :: GpioBindEvent.sb (See in Firmware Zip file)
 FUNCTION Btn0Press()

 PRINT "\nHello"

 ENDFUNC 0

 PRINT GpioBindEvent(0,16,1) //Bind event 0 to high low transition on sio16

(button0)

 ONEVENT EVGPIOCHAN0 CALL Btn0Press //When event 0 happens, call Btn0Press

 PRINT "\nPress button 0"

 WAITEVENT

Expected Output:

GPIOBINDEVENT is a Module function.

GpioUnbindEvent

FUNCTION

This routine unbinds the runtime engine event from a level transition bound using GpioBindEvent().

GPIOUNBINDEVENT (nEventNum)

Returns
INTEGER, a result code.

Typical value: 0x0000 (indicates a successful operation)

0

Press button 0

Hello

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

26 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Arguments

nEventNum
byVal nEventNum INTEGER.

The GPIO event number (in the range of 0 - N) which is disabled so that it no longer
generates run-time events in smart BASIC.

Interactive
Command

No

 //Example :: GpioUnbindEvent.sb (See in Firmware Zip file)

 FUNCTION Btn0Press()

 PRINT "\nHello"

 ENDFUNC 1

 FUNCTION Tmr0TimedOut()

 PRINT "\nNothing happened"

 ENDFUNC 0

 PRINT GpioBindEvent(0,16,1);"\n"

 ONEVENT EVGPIOCHAN0 CALL Btn0Press

 ONEVENT EVTMR0 CALL Tmr0TimedOut

 PRINT GpioUnbindEvent(0);"\n"

 PRINT "\nPress button 0\n"

 TimerStart(0,8000,0)

 WAITEVENT

Expected Output:

GPIOUNBINDEVENT is a Module function.

GpioAssignEvent

FUNCTION

This routine assigns an event to a level transition on a specified special I/O line configured as a digital input.

Changes in the input line can invoke a handler in smart BASIC user code

Note: In the BL600, this function results in around 4uA of continuous current consumption from the

power supply. It is impossible to assign a polarity value which detects either level transitions.

GPIOASSIGNEVENT (nEventNum, nSigNum, nPolarity)

Returns
INTEGER, a result code.

Typical value: 0x0000 (indicates a successful operation)

Arguments

nEventNum
byVal nEventNum INTEGER.

The GPIO event number (in the range of 0 - N) which results in the event EVDETECTCHANn

0

0

Press button 0

Nothing happened

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

27 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

being thrown to the smart BASIC runtime engine.

Note: A value of 0 is only valid for the BL600.

nSigNum
byVal nSigNum INTEGER.

The signal number as stated in the pinout table of the module.

nPolarity

byVal nPolarity INTEGER.

States the transition as follows:

0 Low to high transition

1 High to low transition

2
Either a low to high or high to low transition

Note: This is not available in the BL600 module.

Interactive
Command

No

 //Example :: GpioAssignEvent.sb (See in Firmware Zip file)
 FUNCTION Btn0Press()

 PRINT "\nHello"

 ENDFUNC 0

 PRINT GpioAssignEvent(0,16,1) //Assign event 0 to high low transition on

sio16 (button0)

 ONEVENT EVDETECTCHAN0 CALL Btn0Press //When event 0 is detected, call Btn0Press

 PRINT "\nPress button 0"

 WAITEVENT

Expected Output:

GPIOASSIGNEVENT is a Module function.

GpioUnAssignEvent

FUNCTION

This routine unassigns the runtime engine event from a level transition assigned using GpioAssignEvent().

GPIOUNASSIGNEVENT (nEventNum)

Returns
INTEGER, a result code.

Typical value: 0x0000 (indicates a successful operation)

Arguments

nEventNum byVal nEventNum INTEGER.

The GPIO event number (in the range of 0 - N) which is disabled so that it no longer
generates run-time events in smart BASIC.

Note: A value of 0 is only valid for the BL600.

Interactive
Command

No

0

Press button 0

Hello

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

28 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 //Example :: GpioUnAssignEvent.sb (See in Firmware Zip file)

 FUNCTION Btn0Press()

 PRINT "\nHello"

 ENDFUNC 1

 FUNCTION Tmr0TimedOut()

 PRINT "\nNothing happened"

 ENDFUNC 0

 PRINT GpioAssignEvent(0,16,1);"\n"

 ONEVENT EVDETECTCHAN0 CALL Btn0Press

 ONEVENT EVTMR0 CALL Tmr0TimedOut

 PRINT GpioUnAssignEvent(0);"\n"

 PRINT "\nPress button 0\n"

 TimerStart(0,8000,0)

 WAITEVENT

Expected Output:

GPIOUNASSIGNEVENT is a Module function.

0

0

Press button 0

Nothing happened

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

29 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

5. BLE EXTENSIONS BUILT-IN ROUTINES

MAC Address

To address privacy concerns there are four types of MAC addresses in a BLE device which can change as

often as required. For example, an iPhone regularly changes its BLE MAC address and always exposes only its

resolvable random address.

To manage this, the usual six octet MAC address is qualified on-air by a single bit which qualifies the MAC

address as public or random. If public, the format is as defined by the IEEE organization. If random, it can be

up to three types and this qualification is done using the upper two bits of the most significant byte of the

random MAC address. The exact details and format of how the specification requires this to be managed are

not relevant for the purpose of how BLE functionality is exposed in this module and only how various API

functions in smartBASIC expect MAC addresses to be provided is detailed here.

Where a MAC address is expected as a parameter (or provided as a response) it is always a STRING variable.

This variable is seven octets long where the first octet is the address type and the the other six octets

comprises the usual MAC address in big endian format (so that most significant octet of the address is at

offset 1), whether public or random.

The address type is:

0 Public

1 Random Static

2 Random Private Resolvable

3 Randam Private Non-resolvable

All other values are illegal

For example:

To specify a public address which has the MAC potion as 112233445566, the STRING variable will contain

seven octets (00112233445566) and a variable can be initialized using a constant string by escaping as

follows:

DIM addr : addr=”\00\11\22\33\44\55\66”. Likewise a static random address will be 01C12233445566

(upper 2 bits of MAC portion == 11), a resolvable random address will be 02412233445566 (upper 2

bits of MAC portion ==01) and a non-resolvable address will be 03112233445566 (upper 2 bits of MAC

portion ==00).

Note: The MAC address portion in smartBASIC is always in big endian format. If you sniff on-air

packets, the same six packets appear little endian format, hence reverse order – and you will

NOT see seven bytes, but a bit in the packet somewhere which specifies it to be public or

random.

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

30 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Events and Messages

EVBLE_ADV_TIMEOUT

This event is thrown when adverts that are started using BleAdvertStart() time out. Usage is as per the

example below.

 //Example :: EvBle_Adv_Timeout.sb (See in BL600CodeSnippets.zip)

 DIM peerAddr$

 //handler to service an advert timeout

 FUNCTION HndlrBleAdvTimOut()

 PRINT "\nAdvert stopped via timeout"

 //DbgMsg("\n - could use SystemStateSet(0) to switch off")

 //--

 // Switch off the system - requires a power cycle to recover

 //--

 // rc = SystemStateSet(0)

 ENDFUNC 0

 //start adverts

 //rc = BleAdvertStart(0,"",100,5000,0)

 IF BleAdvertStart(0,peerAddr$,100,2000,0)==0 THEN

 PRINT "\nAdvertisement Successful"

 ELSE

 PRINT "\n\nAdvertisement not successful"

 ENDIF

 ONEVENT EVBLE_ADV_TIMEOUT CALL HndlrBleAdvTimOut

 WAITEVENT

Expected Output:

EVBLEMSG

The BLE subsystem is capable of informing a smart BASIC application when a significant BLE-related event has

occurred. It does this by throwing this message (as opposed to an EVENT, which is akin to an interrupt and

has no context or queue associated with it). The message contains two parameters. The first parameter

(subsequently called msgID) identifies what event was triggered; the second parameter (subsequently called

msgCtx) conveys some context data associated with that event. The smart BASIC application must register a

handler function which takes two integer arguments to be able to receive and process this message.

Advert Started

Advert stopped via timeout

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

31 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Note: The messaging subsystem, unlike the event subsystem, has a queue associated with it; unless the

queue is full, all of the messages remain pending until they are handled. Only messages that

have handlers associated with them get inserted into the queue. This is to prevent unhandled

messages from filling that queue. The following table provides a list of triggers and associated

context parameter.

MsgID Description

0 A connection has been established and msgCtx is the connection handle.

1 A disconnection event and msgCtx identifies the handle.

2 Immediate Alert Service Alert. The 2nd parameter contains new alert level.

3 Link Loss Alert. The 2nd parameter contains new alert level.

4 A BLE Service Error. The 2nd parameter contains the error code.

5

Thermometer Client Characteristic Descriptor value has changed.
Indication enable state and msgCtx contains the new value:
0 – Disabled
1 – Enabled

6 Thermometer measurement indication has been acknowledged.

7

Blood Pressure Client Characteristic Descriptor value has changed.
Indication enable state and msgCtx contains the new value:
0 – Disabled
1 – Enabled

8 Blood Pressure measurement indication has been acknowledged.

9 Pairing in progress and display passkey supplied in msgCtx.

10 A new bond has been successfully created.

11 Pairing in progress and authentication key requested. Key type is msgCtx is.

12

Heart Rate Client Characteristic Descriptor value has changed.
Notification enable state and msgCtx contains the new value:
0 – Disabled
1 – Enabled

14 Connection parameters update and msgCtx is the conn handle.

15 Connection parameters update fail and msgCtx is the conn handle.

16 Connected to a bonded master and msgCtx is the conn handle.

17 A new pairing has replaced old key for the connection handle specified.

18 The connection is now encrypted and msgCtx is the conn handle.

19
The supply voltage has dropped below that specified in the most recent call of
SetPwrSupplyThreshMv(i) and msgCtx is the current voltage in milliVolts.

20 The connection is no longer encrypted and msgCtx is the conn handle

21
The device name characteristic in the GAP service of the local gatt table has been written by
the remote gatt client.

Note: Message ID 13 is reserved for future use

An example of how these messages can be used is as follows:

 //Example :: EvBleMsg.sb (See in BL600CodeSnippets.zip)
 DIM addr$: addr$=""

 DIM rc

 //==

 // This handler is called when there is a BLE message

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

32 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 //==

 FUNCTION HndlrBleMsg(BYVAL nMsgId AS INTEGER, BYVAL nCtx AS INTEGER)

 SELECT nMsgId

 CASE 0

 PRINT "\nBle Connection ";nCtx

 rc = BleAuthenticate(nCtx)

 CASE 1

 PRINT "\nDisconnected ";nCtx;"\n"

 CASE 18

 PRINT "\nConnection ";nCtx;" is now encrypted"

 CASE 16

 PRINT "\nConnected to a bonded master"

 CASE 17

 PRINT "\nA new pairing has replaced the old key";

 CASE ELSE

 PRINT "\nUnknown Ble Msg"

 ENDSELECT

 ENDFUNC 1

 FUNCTION HndlrBlrAdvTimOut()

 PRINT "\nAdvert stopped via timeout"

 PRINT "\nExiting..."

 ENDFUNC 0

 FUNCTION Btn0Press()

 PRINT "\nExiting..."

 ENDFUNC 0

 PRINT GpioSetFunc(16,1,0x12)

 PRINT GpioBindEvent(0,16,0)

 ONEVENT EVBLEMSG CALL HndlrBleMsg

 ONEVENT EVBLE_ADV_TIMEOUT CALL HndlrBlrAdvTimOut

 ONEVENT EVGPIOCHAN0 CALL Btn0Press

 // start adverts

 IF BleAdvertStart(0,addr$,100,10000,0)==0 THEN

 PRINT "\nAdverts Started"

 PRINT "\nPress button 0 to exit\n"

 ELSE

 PRINT "\n\nAdvertisement not successful"

 ENDIF

 WAITEVENT

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

33 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Expected Output (When connection made with the module):

Expected Output (When no connection made):

EVDISCON

This event is thrown when there is a disconnection. It comes with two parameters:

 Parameter 1 – Connection handle

 Parameter 2 – Reason for the disconnection The reason, for example, can be 0x08 which signifies a link

connection supervision timeout which is used in the Proximity Profile.

A full list of Bluetooth HCI result codes for the ‘reason of disconnection’ can be determined and are provided

here.

 //Example :: EvDiscon.sb (See in BL600CodeSnippets.zip)

 DIM addr$: addr$=""

 FUNCTION HndlrBleMsg(BYVAL nMsgId AS INTEGER, BYVAL nCtx AS INTEGER)

 IF nMsgID==0 THEN

 PRINT "\nNew Connection ";nCtx

 ENDIF

 ENDFUNC 1

 FUNCTION Btn0Press()

 PRINT "\nExiting..."

 ENDFUNC 0

 FUNCTION HndlrDiscon(BYVAL hConn AS INTEGER, BYVAL nRsn AS INTEGER) AS INTEGER

 PRINT "\nConnection ";hConn;" Closed: 0x";nRsn

 ENDFUNC 0

 ONEVENT EVBLEMSG CALL HndlrBleMsg

 ONEVENT EVDISCON CALL HndlrDiscon

 // start adverts

 IF BleAdvertStart(0,addr$,100,10000,0)==0 THEN

 PRINT "\nAdverts Started\n"

 ELSE

 PRINT "\n\nAdvertisement not successful"

Adverts Started

Press button 0 to exit

BLE Connection 3634

Connected to a bonded master

Connection 3634 is now encrypted

A new pairing has replaced the old key

Disconnected 3634

Exiting...

Adverts Started

Press button 0 to exit

Advert stopped via timeout

Exiting...

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

34 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 ENDIF

 WAITEVENT

Expected Output:

EVCHARVAL

This event is thrown when a characteristic has been written to by a remote GATT client. It comes with three

parameters:

 1 - The characteristic handle that was returned when the characteristic was registered using the

function BleCharCommit()

 2 – The Offset

 3 – The Length of the data from the characteristic value

 //Example :: EvCharVal.sb (See in BL600CodeSnippets.zip)

 DIM hMyChar,rc,at$,conHndl

 //==

 // Initialise and instantiate service, characteristic, start adverts

 //==

 FUNCTION OnStartup()

 DIM rc, hSvc, attr$, adRpt$, addr$, scRpt$: attr$="Hi"

 //commit service

 rc=BleSvcCommit(1,BleHandleUuid16(0x18EE),hSvc)

 rc=BleServiceNew(1, BleHandleUuid16(0x18EE), hSvc)

 //initialise char, write/read enabled, accept signed writes

 rc=BleCharNew(0x0A,BleHandleUuid16(1),BleAttrMetaData(1,1,20,0,rc),0,0)

 //commit char initialised above, with initial value "hi" to service 'hSvc'

 rc=BleCharCommit(hSvc,attr$,hMyChar)

 //commit changes to service

 rc=BleServiceCommit(hSvc)

 rc=BleScanRptInit(scRpt$)

 //Add 1 service handle to scan report

 //rc=BleAdvRptAddUuid16(scRpt$,hSvc,-1,-1,-1,-1,-1)

 //commit reports to GATT table - adRpt$ is empty

 rc=BleAdvRptsCommit(adRpt$,scRpt$)

 rc=BleAdvertStart(0,addr$,20,300000,0)

 ENDFUNC rc

 //==

 // Close connections so that we can run another app without problems

 //==

 SUB CloseConnections()

 rc=BleDisconnect(conHndl)

 rc=BleAdvertStop()

 ENDSUB

 //==

 // Ble event handler

Adverts Started

New Connection 2915

Connection 2915 Closed: 0x19

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

35 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 //==

 FUNCTION HndlrBleMsg(BYVAL nMsgId, BYVAL nCtx)

 conHndl=nCtx

 IF nMsgID==1 THEN

 PRINT "\n\n--- Disconnected from client"

 EXITFUNC 0

 ELSEIF nMsgID==0 THEN

 PRINT "\n--- Connected to client"

 ENDIF

 ENDFUNC 1

 //==

 // New char value handler

 //==

 FUNCTION HandlerCharVal(BYVAL charHandle, BYVAL offset, BYVAL len)

 DIM s$

 IF charHandle == hMyChar THEN

 PRINT "\n";len;" byte(s) have been written to char value attribute from

offset ";offset

 rc=BleCharValueRead(hMyChar,s$)

 PRINT "\nNew Char Value: ";s$

 ENDIF

 CloseConnections()

 ENDFUNC 1

 ONEVENT EVCHARVAL CALL HandlerCharVal

 ONEVENT EVBLEMSG CALL HndlrBleMsg

 IF OnStartup()==0 THEN

 rc = BleCharValueRead(hMyChar,at$)

 PRINT "\nThe characteristic's value is ";at$

 PRINT "\nWrite a new value to the characteristic\n"

 ELSE

 PRINT "\nFailure OnStartup"

 ENDIF

 WAITEVENT

 PRINT "\nExiting..."

Expected Output:

EVCHARHVC

This event is thrown when a value sent via an indication to a client gets acknowledged. It comes with one

parameter – the characteristic handle that was returned when the characteristic was registered using the

function BleCharCommit().

The characteristic’s value is Hi

Write a new value to the characteristic

--- Connected to client

5 byte(s) have been written to char value attribute from offset 0

New Char Value: Hello

--- Disconnected from client

Exiting...

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

36 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

// Example :: EVCHARHVC charHandle

// See example that is provided for EVCHARCCCD

EVCHARCCCD

This event is thrown when the client writes to the CCCD descriptor of a characteristic. It comes with two

parameters:

 1 – The characteristic handle returned when the characteristic was registered with BleCharCommit()

 2 – The 16-bit value in the updated CCCD attribute.

 //Example :: EvCharCccd.sb (See in BL600CodeSnippets.zip)

 DIM hMyChar,rc,at$,conHndl

 //==

 // Initialise and instantiate service, characteristic, start adverts

 //==

 FUNCTION OnStartup()

 DIM rc, hSvc, metaSuccess, at$, attr$, adRpt$, addr$, scRpt$

 attr$="Hi"

 DIM svcUuid : svcUuid=0x18EE

 DIM charUuid : charUuid = BleHandleUuid16(1)

 DIM charMet : charMet = BleAttrMetaData(0,0,20,1,metaSuccess)

 DIM hSvcUuid : hSvcUuid = BleHandleUuid16(svcUuid)

 DIM mdCccd : mdCccd = BleAttrMetadata(1,1,2,0,rc) //CCCD metadata for char

 //Create service

 rc=BleServiceNew(1,hSvcUuid,hSvc)

 //initialise char, write/read enabled, accept signed writes, indicatable

 rc=BleCharNew(0x20,charUuid,charMet,mdCccd,0)

 //commit char initialised above, with initial value "hi" to service 'hMyChar'

 rc=BleCharCommit(hSvc,attr$,hMyChar)

 //commit service to GATT table

 rc=BleServiceCommit(hSvc)

 rc=BleAdvertStart(0,addr$,20,300000,0)

 ENDFUNC rc

 //==

 // Close connections so that we can run another app without problems

 //==

 SUB CloseConnections()

 rc=BleDisconnect(conHndl)

 rc=BleAdvertStop()

 rc=GpioUnbindEvent(1)

 ENDSUB

 //==

 // Ble event handler

 //==

 FUNCTION HndlrBleMsg(BYVAL nMsgId, BYVAL nCtx)

 conHndl=nCtx

 IF nMsgID==1 THEN

 PRINT "\n\n--- Disconnected from client"

 EXITFUNC 0

 ELSEIF nMsgID==0 THEN

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

37 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 PRINT "\n--- Connected to client"

 ENDIF

 ENDFUNC 1

 //==

 // Indication acknowledgement from client handler

 //==

 FUNCTION HndlrCharHvc(BYVAL charHandle AS INTEGER) AS INTEGER

 IF charHandle == hMyChar THEN

 PRINT "\nGot confirmation of recent indication"

 ELSE

 PRINT "\nGot confirmation of some other indication: ";charHandle

 ENDIF

 ENDFUNC 1

 //==

 // Called when data received via the UART

 //==

 FUNCTION HndlrUartRx() AS INTEGER

 ENDFUNC 0

 //==

 // CCCD descriptor written handler

 //==

 FUNCTION HndlrCharCccd(BYVAL charHandle, BYVAL nVal) AS INTEGER

 DIM value$

 IF charHandle==hMyChar THEN

 IF nVal & 0x02 THEN

 PRINT "\nIndications have been enabled by client"

 value$="hello"

 IF BleCharValueIndicate(hMyChar,value$)!=0 THEN

 PRINT "\nFailed to indicate new value"

 ENDIF

 ELSE

 PRINT "\nIndications have been disabled by client"

 ENDIF

 ELSE

 PRINT "\nThis is for some other characteristic"

 ENDIF

 ENDFUNC 1

 ONEVENT EVBLEMSG CALL HndlrBleMsg

 ONEVENT EVCHARHVC CALL HndlrCharHvc

 ONEVENT EVCHARCCCD CALL HndlrCharCccd

 ONEVENT EVUARTRX CALL HndlrUartRx

 IF OnStartup()==0 THEN

 rc = BleCharValueRead(hMyChar,at$)

 PRINT "\nValue of the characteristic ";hMyChar;" is: ";at$

 PRINT "\nYou can write to the CCCD characteristic."

 PRINT "\nThe BL600 will then indicate a new characteristic value\n"

 PRINT "\n--- Press any key to exit"

 ELSE

 PRINT "\nFailure OnStartup"

 ENDIF

 WAITEVENT

 CloseConnections()

 PRINT "\nExiting..."

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

38 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Expected Output:

EVCHARSCCD

This event is thrown when the client writes to the SCCD descriptor of a characteristic. It comes with two

parameters:

 1 – The characteristic handle that was returned when the characteristic was registered using the

function BleCharCommit()

 2 – The new 16-bit value in the updated SCCD attribute.

The SCCD is used to manage broadcasts of characteristic values.

 //Example :: EvCharSccd.sb (See in BL600CodeSnippets.zip)

 DIM hMyChar,rc,chVal$,conHndl

 //==

 // Initialise and instantiate service, characteristic, start adverts

 //==

 FUNCTION OnStartup()

 DIM rc, hSvc, attr$, adRpt$, addr$, scRpt$,rc2

 attr$="Hi"

 DIM charMet : charMet = BleAttrMetaData(1,1,20,1,rc)

 //Create service

 rc=BleServiceNew(1,BleHandleUuid16(0x18EE),hSvc)

 //initialise broadcast capable, readable, writeable

 rc=BleCharNew(0x0B,BleHandleUuid16(1),charMet,0,BleAttrMetadata(1,1,1,0,rc2))

 //commit char initialised above, with initial value "hi" to service 'hMyChar'

 rc=BleCharCommit(hSvc,attr$,hMyChar)

 //commit service to GATT table

 rc=BleServiceCommit(hSvc)

 rc=BleAdvertStart(0,addr$,20,300000,0)

 ENDFUNC rc

 //==

 // Close connections so that we can run another app without problems

 //==

 SUB CloseConnections()

 rc=BleDisconnect(conHndl)

 rc=BleAdvertStop()

 rc=GpioUnbindEvent(1)

 ENDSUB

Value of the characteristic 1346437121 is: Hi

You can write to the CCCD characteristic.

The BL600 will then indicate a new characteristic value

--- Press any key to exit

--- Connected to client

Indications have been enabled by client

Got confirmation of recent indication

Exiting...

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

39 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 //==

 // Broadcast characterstic value

 //==

 FUNCTION PrepAdvReport()

 dim adRpt$, scRpt$, svcDta$

 //initialise new advert report

 rc=BleAdvRptinit(adRpt$, 2, 0, 0)

 //encode service UUID into service data string

 rc=BleEncode16(svcDta$, 0x18EE, 0)

 //append characteristic value

 svcDta$ = svcDta$ + chVal$

 //append service data to advert report

 rc=BleAdvRptAppendAD(adRpt$, 0x16, svcDta$)

 //commit new advert report, and empty scan report

 rc=BleAdvRptsCommit(adRpt$, scRpt$)

 ENDFUNC rc

 //==

 // Reset advert report

 //==

 FUNCTION ResetAdvReport()

 dim adRpt$, scRpt$

 //initialise new advert report

 rc=BleAdvRptinit(adRpt$, 2, 0, 20)

 //commit new advert report, and empty scan report

 rc=BleAdvRptsCommit(adRpt$, scRpt$)

 ENDFUNC rc

 //==

 // Ble event handler

 //==

 FUNCTION HndlrBleMsg(BYVAL nMsgId, BYVAL nCtx)

 conHndl=nCtx

 IF nMsgID==1 THEN

 PRINT "\n\n--- Disconnected from client"

 dim addr$

 rc=BleAdvertStart(0,addr$,20,300000,0)

 IF rc==0 THEN

 PRINT "\nYou should now see the new characteristic value in the

advertisment data"

 ENDIF

 ELSEIF nMsgID==0 THEN

 PRINT "\n--- Connected to client"

 ENDIF

 ENDFUNC 1

 //==

 // Called when data arrives via UART

 //==

 FUNCTION HndlrUartRx()

 ENDFUNC 0

 //==

 // CCCD descriptor written handler

 //==

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

40 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 FUNCTION HndlrCharSccd(BYVAL charHandle, BYVAL nVal) AS INTEGER

 DIM value$

 IF charHandle==hMyChar THEN

 IF nVal & 0x01 THEN

 PRINT "\nBroadcasts have been enabled by client"

 IF PrepAdvReport()==0 THEN

 rc=BleDisconnect(conHndl)

 PRINT "\nDisconnecting..."

 ELSE

 PRINT "\nError Committing advert reports: ";integer.h'rc

 ENDIF

 ELSE

 PRINT "\nBroadcasts have been disabled by client"

 IF ResetAdvReport()==0 THEN

 PRINT "\nAdvert reports reset"

 ELSE

 PRINT "\nError Resetting advert reports: ";integer.h'rc

 ENDIF

 ENDIF

 ELSE

 PRINT "\nThis is for some other characteristic"

 ENDIF

 ENDFUNC 1

 //==

 // New char value handler

 //==

 FUNCTION HndlrCharVal(BYVAL charHandle, BYVAL offset, BYVAL len)

 DIM s$

 IF charHandle == hMyChar THEN

 rc=BleCharValueRead(hMyChar,chVal$)

 PRINT "\nNew Char Value: ";chVal$

 ENDIF

 ENDFUNC 1

 //==

 // Called after a disconnection

 //==

 FUNCTION HndlrDiscon(hConn, nRsn)

 dim addr$

 rc=BleAdvertStart(0,addr$,20,300000,0)

 ENDFUNC 1

 ONEVENT EVBLEMSG CALL HndlrBleMsg

 ONEVENT EVCHARSCCD CALL HndlrCharSccd

 ONEVENT EVUARTRX CALL HndlrUartRx

 ONEVENT EVCHARVAL CALL HndlrCharVal

 ONEVENT EVDISCON CALL HndlrDiscon

 IF OnStartup()==0 THEN

 rc = BleCharValueRead(hMyChar,chVal$)

 PRINT "\nCharacteristic Value: ";chVal$

 PRINT "\nWrite a new value to the characteristic, then enable broadcasting.\nThe

module will then disconnect and broadcast the new characteristic value."

 PRINT "\n--- Press any key to exit\n"

 ELSE

 PRINT "\nFailure OnStartup"

 ENDIF

 WAITEVENT

 CloseConnections()

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

41 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 PRINT "\nExiting..."

Expected Output:

EVCHARDESC

This event is thrown when the client writes to writable descriptor of a characteristic which is not a CCCD or

SCCD as they are catered for with their own dedicated messages. It comes with two parameters:

 1 – The characteristic handle that was returned when the characteristic was registered using the

function BleCharCommit()

 2 – An index into an opaque array of handles managed inside the characteristic handle.

Both parameters are supplied as-is as the first two parameters to the function BleCharDescRead().

 //Example :: EvCharDesc.sb (See in BL600CodeSnippets.zip)

 DIM hMyChar,rc,at$,conHndl, hOtherDescr

 //==

 // Initialise and instantiate service, characteristic, start adverts

 //==

 FUNCTION OnStartup$()

 DIM rc, hSvc, at$, adRpt$, addr$, scRpt$, hOtherDscr,attr$, attr2$, rc2

 attr$="Hi"

 DIM charMet : charMet = BleAttrMetaData(1,0,20,0,rc)

 //Commit svc with handle 'hSvcUuid'

 rc=BleServiceNew(1,BleHandleUuid16(0x18EE),hSvc)

 //initialise characteristic - readable

 rc=BleCharNew(0x02,BleHandleUuid16(1),charMet,0,0)

 //Add user descriptor - variable length

 attr$="my char desc"

 rc=BleCharDescUserDesc(attr$,BleAttrMetadata(1,1,20,1,rc2))

 AssertRC(rc2,20)

 AssertRC(rc,33)

 //commit char initialised above, with initial value "char value" to service

'hSvc'

 attr2$="char value"

 rc=BleCharCommit(hSvc,attr2$,hMyChar)

Characteristic Value: Hi

Write a new value to the characteristic, then enable broadcasting.

The module will then disconnect and broadcast the new characteristic value.

--- Press any key to exit

--- Connected to client

New Char Value: hello

Broadcasts have been enabled by client

Disconnecting...

--- Disconnected from client

You should now see the new characteristic value in the advertisment data

Exiting...

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

42 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 //commit service to GATT table

 rc=BleServiceCommit(hSvc)

 rc=BleAdvertStart(0,addr$,20,300000,0)

 ENDFUNC attr$

 //==

 // Close connections so that we can run another app without problems

 //==

 SUB CloseConnections()

 rc=BleDisconnect(conHndl)

 rc=BleAdvertStop()

 rc=GpioUnbindEvent(1)

 ENDSUB

 //==

 // Ble event handler

 //==

 FUNCTION HndlrBleMsg(BYVAL nMsgId, BYVAL nCtx)

 conHndl=nCtx

 IF nMsgID==1 THEN

 PRINT "\n\n--- Disconnected from client"

 EXITFUNC 0

 ELSEIF nMsgID==0 THEN

 PRINT "\n--- Connected to client"

 ENDIF

 ENDFUNC 1

 //==

 // Called when data arrives via UART

 //==

 FUNCTION HndlrUartRx()

 ENDFUNC 0

 //==

 // Client has written to writeable descriptor

 //==

 FUNCTION HndlrCharDesc(BYVAL hChar AS INTEGER, BYVAL hDesc AS INTEGER) AS INTEGER

 dim duid,a$,rc

 IF hChar == hMyChar THEN

 rc = BleCharDescRead(hChar,hDesc,0,20,duid,a$)

 IF rc ==0 THEN

 PRINT "\nNew value for desriptor ";hDesc;" with uuid ";integer.h'duid;"

is ";a$

 ELSE

 PRINT "\nCould not read the descriptor value"

 ENDIF

 ELSE

 PRINT "\nThis is for some other characteristic"

 ENDIF

 ENDFUNC 1

 ONEVENT EVBLEMSG CALL HndlrBleMsg

 ONEVENT EVCHARDESC CALL HndlrCharDesc

 ONEVENT EVUARTRX CALL HndlrUartRx

 PRINT "\nOther Descriptor Value: ";OnStartup$()

 PRINT "\nWrite a new value \n--- Press any key to exit\n"

 WAITEVENT

 CloseConnections()

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

43 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 PRINT "\nExiting..."

Expected Output:

EVVSPRX

This event is thrown when the Virtual Serial Port service is open and data has arrived from the peer.

EVVSPTXEMPTY

This event is thrown when the Virtual Serial Port service is open and the last block of data in the transmit

buffer is sent via a notify or indicate. See VSP (Virtual Serial Port) Events

EVNOTIFYBUF

When in a connection and attribute data is sent to the GATT Client using a notify procedure (for example

using the function BleCharValueNotify() or when a Write_with_no_response is sent by the Gatt Client to a

remote server, they are stored in temporary buffers in the underlying stack. There is finite number of these

temporary buffers and, if they are exhausted, the notify function or the write_with_no_resp command fails

with a result code of 0x6803 (BLE_NO_TX_BUFFERS). Once the attribute data is transmitted over the air,

given there are no acknowledges for Notify messages, the buffer is freed to be reused.

This event is thrown when at least one buffer has been freed and so the smartBASIC application can handle

this event to retrigger the data pump for sending data using notifies or writes_with_no_resp commands.

Note: When sending data using Indications, this event is not thrown because those messages have to

be confirmed by the client which results in a EVCHARHVC message to the smartBASIC

application. Likewise, writes which are acknowledged also do not consume these buffers.

 //Example :: EvNotifyBuf.sb (See in BL600CodeSnippets.zip)

 DIM hMyChar,rc,at$,conHndl,ntfyEnabled

 //==

 // Initialise and instantiate service, characteristic, start adverts

 //==

 FUNCTION OnStartup()

 DIM rc, hSvc, at$, attr$, adRpt$, addr$, scRpt$

 attr$="Hi"

 DIM mdCccd : mdCccd = BleAttrMetadata(1,1,2,0,rc) //CCCD metadata for char

 //Commit svc with handle 'hSvc'

 rc=BleServiceNew(1, BleHandleUuid16(0x18EE), hSvc)

 rc=BleSvcCommit(1,BleHandleUuid16(0x18EE),hSvc)

 //initialise char, write/read enabled, accept signed writes, notifiable

 rc=BleCharNew(0x12,BleHandleUuid16(1),BleAttrMetaData(1,0,20,0,rc),mdCccd,0)

 //commit char initialised above, with initial value "hi" to service 'hMyChar'

 rc=BleCharCommit(hSvc,attr$,hMyChar)

 //commit changes to service

Other Descriptor Value: my char desc

Write a new value

--- Press any key to exit

--- Connected to client

New value for desriptor 0 with uuid FE012901 is hello

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

44 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 rc=BleServiceCommit(hSvc)

 rc=BleScanRptInit(scRpt$)

 //Add 1 service handle to scan report

 rc=BleAdvRptAddUuid16(scRpt$,hSvc,-1,-1,-1,-1,-1)

 //commit reports to GATT table - adRpt$ is empty

 rc=BleAdvRptsCommit(adRpt$,scRpt$)

 rc=BleAdvertStart(0,addr$,50,0,0)

 ENDFUNC rc

 //==

 // Close connections so that we can run another app without problems

 //==

 SUB CloseConnections()

 rc=BleDisconnect(conHndl)

 rc=BleAdvertStop()

 ENDSUB

 SUB SendData()

 DIM tx$, count

 IF ntfyEnabled then

 PRINT "\n--- Notifying"

 DO

 tx$="SomeData"

 rc=BleCharValueNotify(hMyChar,tx$)

 count=count+1

 UNTIL rc!=0

 PRINT "\n--- Buffer full"

 PRINT "\nNotified ";count;" times"

 ENDIF

 ENDSUB

 //==

 // Ble event handler

 //==

 FUNCTION HndlrBleMsg(BYVAL nMsgId, BYVAL nCtx)

 conHndl=nCtx

 IF nMsgID==0 THEN

 PRINT "\n--- Connected to client"

 ELSEIF nMsgID THEN

 PRINT "\n--- Disconnected from client"

 EXITFUNC 0

 ENDIF

 ENDFUNC 1

 //==

 // Tx Buffer free handler

 //==

 FUNCTION HndlrNtfyBuf()

 SendData()

 ENDFUNC 0

 //==

 // CCCD descriptor written handler

 //==

 FUNCTION HndlrCharCccd(BYVAL charHandle, BYVAL nVal) AS INTEGER

 DIM value$,tx$

 IF charHandle==hMyChar THEN

 IF nVal THEN

 PRINT " : Notifications have been enabled by client"

 ntfyEnabled=1

 tx$="Hello"

 rc=BleCharValueNotify(hMyChar,tx$)

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

45 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 ELSE

 PRINT "\nNotifications have been disabled by client"

 ntfyEnabled=0

 ENDIF

 ELSE

 PRINT "\nThis is for some other characteristic"

 ENDIF

 ENDFUNC 1

 ONEVENT EVNOTIFYBUF CALL HndlrNtfyBuf

 ONEVENT EVBLEMSG CALL HndlrBleMsg

 ONEVENT EVCHARCCCD CALL HndlrCharCccd

 IF OnStartup()==0 THEN

 rc = BleCharValueRead(hMyChar,at$)

 PRINT "\nYou can connect and write to the CCCD characteristic."

 PRINT "\nThe BL600 will then send you data until buffer is full\n"

 ELSE

 PRINT "\nFailure OnStartup"

 ENDIF

 WAITEVENT

 CloseConnections()

 PRINT "\nExiting..."

Expected Output:

Miscellaneous Functions

This section describes all BLE-related functions that are not related to advertising, connection, security

manager, or GATT.

BleTxPowerSet

FUNCTION

This function sets the power of all packets that are transmitted subsequently.

The actual value is determined by scanning through the value list (4, 0, -4, -8, -12, -16, -20, -30 , -55) so that

the highest value that is less than the desired value is selected. If the desired value is higher than -55, -55 is

set.

For example, setting 1000 results in +4, -3 results in -4, -100 results in -55.

You can connect and write to the CCCD characteristic.

The BL600 will then send you data until buffer is full

--- Connected to client

Notifications have been disabled by client : Notifications have been

enabled by client

--- Notifying

--- Buffer full

Notified 1818505336 times

Exiting...

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

46 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

At any time SYSINFO(2008) returns the actual transmit power setting. When in command mode, use the

command AT I 2008.

BLETXPOWERSET(nTxPower)

Returns
INTEGER, a result code.

Typical value: 0x0000 (indicates a successful operation)

Arguments

nTxPower

byVal nTxPower AS INTEGER

Specifies the new transmit power in dBm units to be used for all subsequent Tx packets.

The actual value is determined by scanning through the value list (4, 0, -4, -8, -12, -16, -

20, -30 , -55) so that the highest value that is less than the desired value is selected. If the
desired value is higher than -55, -55 is set.

Interactive
Command

No

//Example :: BleTxPowerSet.sb (See in BL600CodeSnippets.zip)

DIM rc,dp

dp=1000 : rc = BleTxPowerSet(dp)

PRINT "\nrc = ";rc

PRINT "\nTx power : desired= ";dp," actual= "; SysInfo(2008)

dp=8 : rc = BleTxPowerSet(dp)

PRINT "\nTx power : desired= ";dp," "," actual= "; SysInfo(2008)

dp=2 : rc = BleTxPowerSet(dp)

PRINT "\nTx power : desired= ";dp," "," actual= "; SysInfo(2008)

dp=-10 : rc = BleTxPowerSet(dp)

PRINT "\nTx power : desired= ";dp," "," actual= "; SysInfo(2008)

dp=-25 : rc = BleTxPowerSet(dp)

PRINT "\nTx power : desired= ";dp," "," actual= "; SysInfo(2008)

dp=-45 : rc = BleTxPowerSet(dp)

PRINT "\nTx power : desired= ";dp," "," actual= "; SysInfo(2008)

dp=-1000 : rc = BleTxPowerSet(dp)

PRINT "\nTx power : desired= ";dp," actual= "; SysInfo(2008)

Expected Output:

BLETXPOWERSET is an extension function.

BleTxPwrWhilePairing

FUNCTION

rc = 0

Tx power : desired= 1000 actual= 4

Tx power : desired= 8 actual= 4

Tx power : desired= 2 actual= 0

Tx power : desired= -10 actual= -12

Tx power : desired= -25 actual= -30

Tx power : desired= -45 actual= -55

Tx power : desired= -1000 actual= -55

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

47 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

This function sets the transmit power of all packets that are transmitted while a pairing is in progress. This

mode of pairing is referred to as Whsiper Mode Pairing. The actual value is clipped to the transmit power for

normal operation which is set using BleTxPowerSet() function.

The actual value is determined by scanning through the value list (4, 0, -4, -8, -12, -16, -20, -30 , -55) so that

the highest value that is less than the desired value is selected. If the desired value is higher than -55, -55 is

set.

For example, setting 1000 results in +4, -3 results in -4, -100 results in -55.

At any time, SYSINFO(2018) returns the actual transmit power setting. Or when in command mode, use the

command AT I 2018.

BLETXPWRWHILEPAIRING(nTxPower)

Returns
INTEGER, a result code.

Typical value: 0x0000 (indicates a successful operation)

Arguments

nTxPower

byVal nTxPower AS INTEGER

Specifies the new transmit power in dBm units to be used for all subsequent Tx packets.

The actual value is determined by scanning through the value list (4, 0, -4, -8, -12, -16, -

20, -30 , -55) so that the highest value that is less than the desired value is selected. If the
desired value is higher than -55, -55 is set.

Interactive
Command

No

//Example :: BleTxPwrWhilePairing.sb (See in BL600CodeSnippets.zip)

DIM rc,dp

dp=1000 : rc = BleTxPwrWhilePairing(dp)

PRINT "\nrc = ";rc

PRINT "\nTx power while pairing: desired= ";dp," actual= "; SysInfo(2018)

dp=8 : rc = BleTxPwrWhilePairing(dp)

PRINT "\nTx power while pairing: desired= ";dp," "," actual= "; SysInfo(2018)

dp=2 : rc = BleTxPwrWhilePairing(dp)

PRINT "\nTx power while pairing: desired= ";dp," "," actual= "; SysInfo(2018)

dp=-10 : rc = BleTxPwrWhilePairing(dp)

PRINT "\nTx power while pairing: desired= ";dp," actual= "; SysInfo(2018)

dp=-25 : rc = BleTxPwrWhilePairing(dp)

PRINT "\nTx power while pairing: desired= ";dp," actual= "; SysInfo(2018)

dp=-45 : rc = BleTxPwrWhilePairing(dp)

PRINT "\nTx power while pairing: desired= ";dp," actual= "; SysInfo(2018)

dp=-1000 : rc = BleTxPwrWhilePairing(dp)

PRINT "\nTx power while pairing: desired= ";dp," actual= "; SysInfo(2018)

Expected Output:

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

48 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

BLETXPOWERSET is an extension function.

BleConfigDcDc

SUBROUTINE

This routine is used to configure the DC to DC converter to one of 3 states:- OFF, ON or AUTOMATIC.

Note: Until a future revision when the chipset vendor has fixed a hardware issue at the silicon level this

function will not function as stated and any nNewState value will be interpreted as OFF

BLECONFIGDCDC(nNewState)

Returns None

Arguments

nNewState

byVal nNewState AS INTEGER.
Configure the internal DC to DC converter as follows:

0 Off

2 Auto

All other values On

Interactive
Command

No

 BleConfigDcDc(2) //Set for automatic operation

BLECONFIGDCDC is an extension function.

Advertising Functions

This section describes all advertising-related routines.

An advertisement consists of the following:

 A packet of information with a header identifying it as one of four types

 An optional payload that consists of multiple advertising records, referred to as AD in the rest of this

manual.

Each AD record consists of up to three fields:

 Field 1 – One octet in length and contains the number of octets that follow it that belong to that

record.

 Field 2 – One octet and is a tag value which identifies the type of payload that starts at the next octet.

Hence the payload data is ‘length – 1’.

 A special NULL AD record consists of only one field, that is, the length field, when it contains just the

00 value.

The specification also allows custom AD records to be created using the ‘Manufacturer Specific Data’ AD

record.

Tx power while pairing: desired= 1000 actual= 4

Tx power while pairing: desired= 8 actual= 4

Tx power while pairing: desired= 2 actual= 0

Tx power while pairing: desired= -10 actual= -12

Tx power while pairing: desired= -25 actual= -30

Tx power while pairing: desired= -45 actual= -55

Tx power while pairing: desired= -1000 actual= -55

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

49 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Note: Refer to the Supplement to the Bluetooth Core Specification, Version 1, Part A which has the

latest list of all AD records. You will need to register as at least an Adopter, which is free, to gain

access to this information.

BleAdvertStart

FUNCTION

This function causes a BLE advertisement event as per the Bluetooth Specification. An advertisement event

consists of an advertising packet in each of the three advertising channels.

The type of advertisement packet is determined by the nAdvType argument and the data in the packet is

initialised, created, and submitted by the BLEADVRPTINIT, BLEADVRPTADDxxx, and BLEADVRPTCOMMIT

functions respectively.

If the Advert packet type (nAdvType) is specified as 1 (ADV_DIRECT_IND) then the peerAddr$ string must not

be empty and should be a valid address. When advertising with this packet type, the timeout is automatically

set to 1280 ms.

When filter policy is enabled, the whitelist consisting of all bonded masters is submitted to the underlying

stack so that only those bonded masters result in scan and connection requests being serviced.

Note: nAdvTimeout is rounded up to the nearest 1000 msec.

BLEADVERTSTART (nAdvType,peerAddr$,nAdvInterval, nAdvTimeout, nFilterPolicy)

Returns
INTEGER, a result code.

Typical value: 0x0000 (indicates a successful operation)

If a 0x6A01 resultcode is received, it implies whitelist has been enabled but the Flags AD in the advertising
report is set for limited and/or general discoverability. The solution is to resubmit a new advert report which
is made up so that the nFlags argument to BleAdvRptInit() function is 0.

The BT 4.0 spec disallows discoverability when a whitelist is enabled during advertisement see Volume 3,
Sections 9.2.3.2 and 9.2.4.2.

Arguments

nAdvType

byVal nAdvType AS INTEGER.

Specifies the advertisement type as follows:

0 ADV_IND – Invites connection requests

1 ADV_DIRECT_IND – Invites connection from addressed device

2 ADV_SCAN_IND – Invites scan requests for more advert data

3 ADV_NONCONN_IND – Does not accept connections and/or active scans

http://ews-support.lairdtech.com/
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=245130

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

50 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

peerAddr$

byRef peerAddr$ AS STRING

It can be an empty string that is omitted if the advertisement type is not ADV_DIRECT_IND.
This is only required when nAdvType == 1.

When not empty, a valid address string is exactly seven octets long (such as
\00\11\22\33\44\55\66), where the first octet is the address type and the rest of the 6
octets is the usual MAC address in big endian format (so that most significant octet of the
address is at offset 1), whether public or random.

0 Public

1 Random Static

2 Random Private Resolvable

3 Random Private Non-resolvable

All other values are illegal.

nAdvInterval

byVal nAdvInterval AS INTEGER.

The interval between two advertisement events (in milliseconds).

An advertisement event consists of a total of three packets being transmitted in the three
advertising channels.

Interval range: Between 20 and 10240 milliseconds.

nAdvTimeout

byVal nAdvTimeout AS INTEGER.

The time after which the module stops advertising (in milliseconds).

Value range: Between 0 and 16383000 milliseconds (rounded up to the nearest one
seconds or 1000 ms).

A value of 0 means disable the timeout, but note that if limited advert modes was specified
in BleAdvRptInit() then the timeout is capped to 180000 ms as per the Bluetooth
Specification. When the advert type specified is ADV_DIRECT_IND , the timeout is
automatically set to 1280 ms as per the Bluetooth Specification.

Warning: To save power, do not set this to (e.g.) 100 ms.

nFilterPolicy

byVal nFilterPolicy AS INTEGER.

Specifies the filter policy for the whitelist consisting of all bonded masters as follows:

0 Disable whitelist

1 Filter scan request; allow connection request from any

2 Filter connection request; allow scan request from any

3 Filter scan request and connection request

If the filter policy is not 0, the whitelist is enabled and filled with all the addresses of all
the devices in the trusted device database.

Interactive
Command

No

 //Example :: BleAdvertStart.sb (See in BL600CodeSnippets.zip)

 DIM addr$: addr$=""

 FUNCTION HndlrBlrAdvTimOut()

 PRINT "\nAdvert stopped via timeout"

 PRINT "\nExiting..."

 ENDFUNC 0

 //The advertising interval is set to 25 milliseconds. The module will stop

 //advertising after 60000 ms (1 minute)

 IF BleAdvertStart(0,addr$,25,60000,0)==0 THEN

 PRINT "\nAdverts Started"

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

51 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 PRINT "\nIf you search for bluetooth devices on your device, you should see

'Laird BL600'"

 ELSE

 PRINT "\n\nAdvertisement not successful"

 ENDIF

 ONEVENT EVBLE_ADV_TIMEOUT CALL HndlrBlrAdvTimOut

 WAITEVENT

Expected Output:

BLEADVERTSTART is an extension function.

BleAdvertStop

FUNCTION

This function causes the BLE module to stop advertising.

BLEADVERTSTOP ()

Returns
INTEGER, a result code.

Typical value: 0x0000 (indicates a successful operation)

Arguments None

Interactive
Command

No

 //Example :: BleAdvertStop.sb (See in BL600CodeSnippets.zip)

 DIM addr$: addr$=""

 DIM rc

 FUNCTION HndlrBlrAdvTimOut()

 PRINT "\nAdvert stopped via timeout"

 PRINT "\nExiting..."

 ENDFUNC 0

 FUNCTION Btn0Press()

 IF BleAdvertStop()==0 THEN

 PRINT "\nAdvertising Stopped"

 ELSE

 PRINT "\n\nAdvertising failed to stop"

 ENDIF

 PRINT "\nExiting..."

 ENDFUNC 0

Adverts Started

If you search for bluetooth devices on your device, you should see 'Laird

BL600'

Advert stopped via timeout

Exiting...

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

52 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 IF BleAdvertStart(0,addr$,25,60000,0)==0 THEN

 PRINT "\nAdverts Started. Press button 0 to stop.\n"

 ELSE

 PRINT "\n\nAdvertisement not successful"

 ENDIF

 rc = GpioSetFunc(16,1,2)

 rc = GpioBindEvent(0,16,1)

 ONEVENT EVBLE_ADV_TIMEOUT CALL HndlrBlrAdvTimOut

 ONEVENT EVGPIOCHAN0 CALL Btn0Press

 WAITEVENT

Expected Output:

BLEADVERTSTOP is an extension function.

BleAdvRptInit

FUNCTION

This function is used to create and initialise an advert report with a minimal set of ADs (advertising records)

and store it the string specified. It is not advertised until BLEADVRPTSCOMMIT is called.

This report is for use with advertisement packets.

BLEADVRPTINIT(advRpt$, nFlagsAD, nAdvAppearance, nMaxDevName)

Returns
INTEGER, a result code.

Typical value: 0x0000 (indicates a successful operation)

Arguments

advRpt$
byRef advRpt$ AS STRING.

This will contain an advertisement report.

nFlagsAD

byVal nFlagsAD AS INTEGER.

Specifies the flags AD bits where bit 0 is set for limited discoverability and bit 1 is set for

general discoverability. Bit 2 will be forced to 1 and bits 3 & 4 will be forced to 0. Bits 3
to 7 are reserved for future use by the BT SIG and must be set to 0.

Note: If a whitelist is enabled in the BleAdvertStart() function then both Limited and

General Discoverability flags MUST be 0 as per the BT 4.0 specification (Volume
3, Sections 9.2.3.2 and 9.2.4.2)

nAdvAppearance

byVal nAdvAppearance AS INTEGER.

Determines whether the appearance advert should be added or omitted as follows:

0 Omit appearance advert

1
Add appearance advert as specified in the GAP service which is supplied via

the BleGapSvcInit() function.

nMaxDevName
byVal nMaxDevName AS INTEGER.

The n leftmost characters of the device name specified in the GAP service. If this value is
set to 0, then the device name is not included.

Adverts Started. Press button 0 to stop.

Advertising Stopped

Exiting...

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

53 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Interactive
Command

No

 //Example :: BleAdvRptInit.sb (See in BL600CodeSnippets.zip)

 DIM advRpt$: advRpt$=""

 DIM discovMode : discovMode=0

 DIM advAppearance : advAppearance = 1

 DIM maxDevName : maxDevName = 10

 IF BleAdvRptInit(advRpt$, discovMode, advAppearance, maxDevName)==0 THEN

 PRINT "\nAdvert report initialised"

 ENDIF

Expected Output:

BLEADVRPTINIT is an extension function.

BleScanRptInit

FUNCTION

This function is used to create and initialise a scan report which is sent in a SCAN_RSP message. It is not used

until BLEADVRPTSCOMMIT is called.

This report is for use with SCAN_RESPONSE packets.

BLESCANRPTINIT(scanRpt)

Returns
INTEGER, a result code.

Typical value: 0x0000 (indicates a successful operation)

Arguments

scanRpt
byRef scanRpt ASSTRING

This contains a scan report.

Interactive
Command

No

 //Example :: BleScanRptInit.sb (See in BL600CodeSnippets.zip)

 DIM scnRpt$: scnRpt$=""

 IF BleScanRptInit(scnRpt$)==0 THEN

 PRINT "\nScan report initialised"

 ENDIF

Expected Output:

BLESCANRPTINIT is an extension function.

BleAdvRptGetSpace

FUNCTION

Advert report initialised

Scan report initialised

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

54 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

This function returns the free space in the advert advRpt$

BLEADVRPTGETSPACE(advRpt)

Returns
INTEGER, a result code.

Typical value: 0x0000 (indicates a successful operation)

Arguments

advRpt$
byRef advRpt$ AS STRING.

This contains an advert/scan report.

Interactive
Command

No

dim rc, s$, dn$

rc=BleScanRptInit(s$)

dn$ = BleGetDeviceName$()

'//Add device name to scan report

rc=BleAdvRptAppendAD(s$,0x09,dn$)

print "\nFree space in scan report: "; BleAdvRptGetSpace(s$); " bytes"

Expected Output:

BLESCANRPTINIT is an extension function.

BleAdvRptAddUuid16

FUNCTION

This function is used to add a 16 bit UUID service list AD (Advertising record) to the advert report. This

consists of all of the 16 bit service UUIDs that the device supports as a server.

BLEADVRPTADDUUID16 (advRpt, nUuid1, nUuid2, nUuid3, nUuid4, nUuid5, nUuid6)

Returns
INTEGER, a result code.

Typical value: 0x0000 (indicates a successful operation)

Arguments

AdvRpt
byRef AdvRpt AS STRING.

The advert report onto which the 16 bit uuids AD record is added.

Uuid1

byVal uuid1 AS INTEGER
UUID in the range 0 to FFFF; if the value is outside that range it is ignored.

Set the value to -1 to have it ignored and then all further UUID arguments will also be
ignored.

Uuid2

byVal uuid2 AS INTEGER
UUID in the range 0 to FFFF; if the value is outside that range it is ignored.

Set the value to -1 to have it ignored and then all further UUID arguments will also be
ignored.

Uuid3
byVal uuid3 AS INTEGER
UUID in the range 0 to FFFF; if the value is outside that range it is ignored.

Free space in scan report: 18 bytes

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

55 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Set the value to -1 to have it ignored and then all further UUID arguments will also be
ignored.

Uuid4

byVal uuid4 AS INTEGER
UUID in the range 0 to FFFF; if the value is outside that range it is ignored.

Set the value to -1 to have it ignored and then all further UUID arguments will also be
ignored.

Uuid5

byVal uuid5 AS INTEGER

UUID in the range 0 to FFFF; if the value is outside that range it is ignored.

Set the value to -1 to have it ignored and then all further UUID arguments will also be
ignored.

Uuid6

byVal uuid6 AS INTEGER

UUID in the range 0 to FFFF; if the value is outside that range it is ignored.

Set the value to -1 to have it ignored.

Interactive
Command

No

 //Example :: BleAdvAddUuid16.sb (See in BL600CodeSnippets.zip)

 DIM advRpt$, rc

 DIM discovMode : discovMode=0

 DIM advAppearance : advAppearance = 1

 DIM maxDevName : maxDevName = 10

 rc = BleAdvRptInit(advRpt$, discovMode, advAppearance, maxDevName)

 //BatteryService = 0x180F

 //DeviceInfoService = 0x180A

 IF BleAdvRptAddUuid16(advRpt$,0x180F,0x180A, -1, -1, -1, -1)==0 THEN

 PRINT "\nUUID Service List AD added"

 ENDIF

 //Only the battery and device information services are included in the advert report

Expected Output:

BLEADVRPTADDUUID16 is an extension function.

BleAdvRptAddUuid128

FUNCTION

This function is used to add a 128 bit UUID service list AD (Advertising record) to the advert report specified.

Given that an advert can have a maximum of only 31 bytes, it is not possible to have a full UUID list unless

there is only one to advertise.

BLEADVRPTADDUUID128 (advRpt, nUuidHandle)

Returns
INTEGER, a result code.

Typical value: 0x0000 (indicates a successful operation)

Arguments

advRpt byRef AdvRpt AS STRING.

UUID Service List AD added

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

56 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

The advert report into which the 128 bit uuid AD record is to be added.

nUuidHandle
byVal nUuidHandle AS INTEGER
This is handle to a 128 bit uuid which was obtained using the function
BleHandleUuid128() or some other function which returns one, such as BleVSpOpen()

Interactive
Command

No

 //Example :: BleAdvAddUuid128.sb (See in BL600CodeSnippets.zip)

 DIM tx$,scRpt$,adRpt$,addr$, hndl

 scRpt$=""

 PRINT BleScanRptInit(scRpt$)

 //Open the VSP

 PRINT BleVSpOpen(128,128,0,hndl)

 //Advertise the VSPservice in a scan report

 PRINT BleAdvRptAddUuid128(scRpt$,hndl)

 adRpt$=""

 PRINT BleAdvRptsCommit(adRpt$,scRpt$)

 addr$="" //because we are not doing a DIRECT advert

 PRINT BleAdvertStart(0,addr$,20,30000,0)

Expected Output:

BLEADVRPTADDUUID128 is an extension function.

BleAdvRptAppendAD

FUNCTION

This function adds an arbitrary AD (Advertising record) field to the advert report. An AD element consists of a

LEN:TAG:DATA construct where TAG can be any value from 0 to 255 and DATA is a sequence of octets.

BLEADVRPTAPPENDAD (advRpt, nTag, stData$)

Returns
INTEGER, a result code.

Typical value: 0x0000 (indicates a successful operation)

Arguments

AdvRpt
byRef AdvRpt AS STRING.

The advert report onto which the AD record is to be appended.

nTag
TAG field for the record.

Valid range: 0 to FF

stData$
byRef stData$ AS STRING
This is an octet string which can be 0 bytes long. The maximum length is governed by
the space available in AdvRpt (a maximum of 31 bytes long).

Interactive
Command

No

 //Example :: BleAdvRptAppendAD.sb (See in BL600CodeSnippets.zip)

 DIM scnRpt$,ad$

 ad$="\01\02\03\04"

00000

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

57 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 PRINT BleScanRptInit(scnRpt$)

 IF BleAdvRptAppendAD(scnRpt$,0x31,ad$)==0 THEN //6 bytes will be used up in the

report

 PRINT "\nAD with data '";ad$;"' was appended to the advert report"

 ENDIF

Expected Output:

BLEADVRPTAPPENDAD is an extension function.

BleGetADbyIndex

FUNCTION

This function is used to extract a copy of the nth (zero based) advertising data (AD) element from a string

which is assumed to contain the data portion of an advert report, incoming or outgoing.

Note: If the last AD element is malformed, it will be treated as not existing. For example, it will be

malformed if the length byte for that AD element suggests that more data bytes are required

than actually exist in the report string.

BLEGETADBYINDEX (nIndex, rptData$, nADtag, ADval$)

Returns
INTEGER, a result code.

Typical value: 0x0000 (indicates a successful operation)

Arguments

nIndex
byVAL nIndex AS INTEGER

This is a zero based index of the AD element that will be copied into the output data
parameter ADval$.

rptData$

byREF rptData$ AS STRING.

This parameter is a string that contains concatenated AD elements which will have been

either constructed for an outgoing advert or will have been received in a scan (depends
on module variant)

nADTag
byREF nADTag AS INTEGER
When the nth index is found, the single byte tag value for that AD element is returned
in this parameter.

ADval$
byREF ADval$ AS STRING
When the nth index is found, the data excluding single byte the tag value for that AD
element is returned in this parameter.

Interactive
Command

No

 //Example :: BleAdvGetADbyIndex.sb (See in BL600CodeSnippets.zip)

 DIM rc, ad1$, ad2$, fullAD$, nADTag, ADval$

 '//AD with length = 6 bytes, tag = 0xDD

 ad1$="\06\DD\11\22\33\44\55"

0

AD with data '\01\02\03\04' was appended to the advert report

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

58 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

06DD112233445507EEAABBCCDDEEFF

First AD element with tag 0x000000DD is 1122334455

Second AD element with tag 0x000000EE is AABBCCDDEEFF

Error reading AD: 00006060

 '//AD with length = 7 bytes, tag = 0xDA

 ad2$="\07\EE\AA\BB\CC\DD\EE\FF"

 fullAD$ = ad1$ + ad2$

 PRINT "\n\n"; Strhexize$(fullAD$);"\n"

 rc=BleGetADbyIndex(0, fullAD$, nADTag, ADval$)

 IF rc==0 THEN

 PRINT "\nFirst AD element with tag 0x"; INTEGER.H'nADTag ;" is

";StrHexize$(ADval$)

 ELSE

 PRINT "\nError reading AD: " ;INTEGER.H'rc

 ENDIF

 rc=BleGetADbyIndex(1, fullAD$, nADTag, ADval$)

 IF rc==0 THEN

 PRINT "\nSecond AD element with tag 0x"; INTEGER.H'nADTag ;" is

";StrHexize$(ADval$)

 ELSE

 PRINT "\nError reading AD: "; INTEGER.H'rc

 ENDIF

 '//Will fail because there are only 2 AD elements

 rc=BleGetADbyIndex(2, fullAD$, nADTag, ADval$)

 IF rc==0 THEN

 PRINT "\nThird AD element with tag 0x"; INTEGER.H'nADTag ;" is

";StrHexize$(ADval$)

 ELSE

 PRINT "\nError reading AD: "; INTEGER.H'rc

 ENDIF

Expected Output:

BLEGETADBYINDEX is an extension function.

BleGetADbyTag

FUNCTION

This function is used to extract a copy of the first advertising data (AD) element that has the tag byte

specified from a string which is assumed to contain the data portion of an advert report, incoming or

outgoing. If multiple instances of that AD tag type are suspected, then use the function BleGetADbyIndex to

extract.

Note: If the last AD element is malformed then it will be treated as not existing. For example, it will be

malformed if the length byte for that AD element suggests that more data bytes are required

than actually exist in the report string.

BLEGETADBYTAG (rptData$, nADtag, ADval$)

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

59 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Returns
INTEGER, a result code.

Typical value: 0x0000 (indicates a successful operation)

Arguments

rptData$

byREF rptData$ AS STRING.

This parameter is a string that contains concatenated AD elements which will have been

either constructed for an outgoing advert or will have been received in a scan (depends on
module variant)

nADTag

byVAL nADTag AS INTEGER
This parameter specifies the single byte tag value for the AD element that is to returned in

the ADval$ parameter. Only the first instance can be catered for. If multiple instances are
suspected then use BleAdvADbyIndex() to extract it.

ADval$
byREF ADval$ AS STRING
When the nth index is found, the data excluding single byte the tag value for that AT
element is returned in this parameter.

Interactive
Command

No

 //Example :: BleAdvGetADbyIndex.sb (See in BL600CodeSnippets.zip)

 DIM rc, ad1$, ad2$, fullAD$, nADTag, ADval$

 '//AD with length = 6 bytes, tag = 0xDD

 ad1$="\06\DD\11\22\33\44\55"

 '//AD with length = 7 bytes, tag = 0xDA

 ad2$="\07\EE\AA\BB\CC\DD\EE\FF"

 fullAD$ = ad1$ + ad2$

 PRINT "\n\n"; Strhexize$(fullAD$);"\n"

 nADTag = 0xDD

 rc=BleGetADbyTag(fullAD$, nADTag, ADval$)

 IF rc==0 THEN

 PRINT "\nAD element with tag 0x"; INTEGER.H'nADTag ;" is ";StrHexize$(ADval$)

 ELSE

 PRINT "\nError reading AD: " ;INTEGER.H'rc

 ENDIF

 nADTag = 0xEE

 rc=BleGetADbyTag(fullAD$, nADTag, ADval$)

 IF rc==0 THEN

 PRINT "\nAD element with tag 0x"; INTEGER.H'nADTag ;" is ";StrHexize$(ADval$)

 ELSE

 PRINT "\nError reading AD: "; INTEGER.H'rc

 ENDIF

 nADTAG = 0xFF

 '//Will fail because no AD exists in 'fullAD$' with the tag 'FF'

 rc=BleGetADbyTag(fullAD$, nADTag, ADval$)

 IF rc==0 THEN

 PRINT "\nAD element with tag 0x"; INTEGER.H'nADTag ;" is ";StrHexize$(ADval$)

 ELSE

 PRINT "\nError reading AD: "; INTEGER.H'rc

 ENDIF

Expected Output:

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

60 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

06DD112233445507EEAABBCCDDEEFF

AD element with tag 0x000000DD is 1122334455

AD element with tag 0x000000EE is AABBCCDDEEFF

Error reading AD: 00006060

BLEGETADBYTAG is an extension function.

BleAdvRptsCommit

FUNCTION

This function is used to commit one or both advert reports. If the string is empty then that report type is not

updated. If both strings are empty, this call will have no effect.

The advertisements will not happen until they are started using BleAdvertStart() function.

BLEADVRPTSCOMMIT(advRpt, scanRpt)

Returns
INTEGER, a result code.

Typical value: 0x0000 (indicates a successful operation)

Arguments

advRpt
byRef advRpt AS STRING.
The most recent advert report.

scanRpt
byRef scanRpt AS STRING.

The most recent scan report.

Note: If any one of the two strings is not valid then the call will be aborted without updating the

other report even if this other report is valid.

Interactive
Command

No

 //Example :: BleAdvRptsCommit.sb (See in BL600CodeSnippets.zip)

 DIM advRpt$: advRpt$=""

 DIM scRpt$: scRpt$=""

 DIM discovMode : discovMode = 0

 DIM advApprnce : advApprnce = 1

 DIM maxDevName : maxDevName = 10

 PRINT BleAdvRptInit(advRpt$, discovMode, advApprnce, maxDevName)

 PRINT BleAdvRptAddUuid16(advRpt$, 0x180F,0x180A, -1, -1, -1, -1)

 PRINT BleAdvRptsCommit(advRpt$, scRpt$)

 // Only the advert report will be updated.

Expected Output:

BLEADVRPTSCOMMIT is an extension function.

Connection Functions

This section describes all the connection manager related routines.

000

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

61 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

The Bluetooth specification stipulates that a peripheral cannot initiate a connection, but can perform

disconnections. Only Central Role devices are allowed to connect when an appropriate advertising packet is

received from a peripheral.

Events and Messages

See also Events and Messages for BLE-related messages that are thrown to the application when there is a

connection or disconnection. The relevant message IDs are (0), (1), (14), (15), (16), (17), (18) and (20):

MsgId Description

0 There is a connection and the context parameter contains the connection handle.

1 There is a disconnection and the context parameter contains the connection handle.

14 New connection parameters for connection associated with connection handle.

15 Request for new connection parameters failed for connection handle supplied.

16 The connection is to a bonded master

17 The bonding has been updated with a new long term key

18 The connection is encrypted

20 The connection is no longer encrypted

BleDisconnect

FUNCTION

This function causes an existing connection identified by a handle to be disconnected from the peer.

When the disconnection is complete a EVBLEMSG message with msgId = 1 and context containing the

handle will be thrown to the smart BASIC runtime engine.

BLEDISCONNECT (nConnHandle)

Returns
INTEGER, a result code.

Typical value: 0x0000 (indicates a successful operation)

Arguments

nConnHandle
byVal nConnHandle AS INTEGER.

Specifies the handle of the connection that must be disconnected.

Interactive
Command

No

 //Example :: BleDisconnect.sb (See in BL600CodeSnippets.zip)

 DIM addr$: addr$=""

 DIM rc

 FUNCTION HndlrBleMsg(BYVAL nMsgId AS INTEGER, BYVAL nCtx AS INTEGER)

 SELECT nMsgId

 CASE 0

 PRINT "\nNew Connection ";nCtx

 rc = BleAuthenticate(nCtx)

 PRINT BleDisconnect(nCtx)

 CASE 1

 PRINT "\nDisconnected ";nCtx;"\n"

 EXITFUNC 0

 ENDSELECT

 ENDFUNC 1

 ONEVENT EVBLEMSG CALL HndlrBleMsg

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

62 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 IF BleAdvertStart(0,addr$,100,30000,0)==0 THEN

 PRINT "\nAdverts Started\n"

 ELSE

 PRINT "\n\nAdvertisement not successful"

 ENDIF

 WAITEVENT

Expected Output:

BLEDISCONNECT is an extension function.

BleSetCurConnParms

FUNCTION

This function triggers an existing connection identified by a handle to have new connection parameters. For

example: interval, slave latency, and link supervision timeout.

When the request is complete, a EVBLEMSG message with msgId = 14 and context containing the handle is

thrown to the smart BASIC runtime engine if it was successful. If the request to change the connection

parameters fails, an EVBLEMSG message with msgid = 15 is thrown to the smart BASIC runtime engine.

BLESETCURCONNPARMS (nConnHandle, nMinIntUs, nMaxIntUs, nSuprToutUs, nSlaveLatency)

Returns
INTEGER, a result code.

Typical value: 0x0000 (indicates a successful operation)

Arguments

nConnHandle
byVal nConnHandle AS INTEGER.

Specifies the handle of the connection that must have the connection parameters
changed.

nMinIntUs
byVal nMinIntUs AS INTEGER.

The minimum acceptable connection interval in microseconds.

nMaxIntUs
byVal nMaxIntUs AS INTEGER.

The maximum acceptable connection interval in microseconds.

nSuprToutUs
byVal nSuprToutUs AS INTEGER.

The link supervision timeout for the connection in microseconds. It should be greater
than the slave latency times the actual granted connection interval.

nSlaveLatency
byVal nSlaveLatency AS INTEGER.

The number of connection interval polls that the peripheral may ignore. This times the

connection interval shall not be greater than the link supervision timeout.

Note: Slave latency is a mechanism that reduces power usage in a peripheral device and maintains short

latency. Generally a slave reduces power usage by setting the largest connection interval possible.

This means the latency is equivalent to that connection interval. To mitigate this, the peripheral can

greatly reduce the connection interval and then have a non-zero slave latency.

For example, a keyboard could set the connection interval to 1000 msec and slave latency to 0. In

this case, key presses are reported to the central device once per second, a poor user experience.

Adverts Started

New Connection 35800

Disconnected 3580

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

63 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Instead, the connection interval can be set to e.g. 50 msec and slave latency to 19. If there are no

key presses, the power use is the same as before because ((19+1) * 50) equals 1000. When a key is

pressed, the peripheral knows that the central device will poll within 50 msec, so it can send that

keypress with a latency of 50 msec. A connection interval of 50 and slave latency of 19 means the

slave is allowed to NOT acknowledge a poll for up to 19 poll messages from the central device.

Interactive
Command

No

 //Example :: BleSetCurConnParms.sb (See in BL600CodeSnippets.zip)

 DIM rc

 DIM addr$: addr$=""

 FUNCTION HandlerBleMsg(BYVAL nMsgId AS INTEGER, BYVAL nCtx AS INTEGER) AS INTEGER

 DIM intrvl,sprvTo,sLat

 SELECT nMsgId

 CASE 0 //BLE_EVBLEMSGID_CONNECT

 PRINT "\n --- New Connection : ","",nCtx

 rc=BleGetCurconnParms(nCtx,intrvl,sprvto,slat)

 IF rc==0 THEN

 PRINT "\nConn Interval","","",intrvl

 PRINT "\nConn Supervision Timeout",sprvto

 PRINT "\nConn Slave Latency","",slat

 PRINT "\n\nRequest new parameters"

 //request connection interval in range 50ms to 75ms and link

 //supervision timeout of 4seconds with a slave latency of 19

 rc = BleSetCurconnParms(nCtx, 50000,75000,4000000,19)

 ENDIF

 CASE 1 //BLE_EVBLEMSGID_DISCONNECT

 PRINT "\n --- Disconnected : ",nCtx

 EXITFUNC 0

 CASE 14 //BLE_EVBLEMSGID_CONN_PARMS_UPDATE

 rc=BleGetCurconnParms(nCtx,intrvl,sprvto,slat)

 IF rc==0 THEN

 PRINT "\n\nConn Interval",intrvl

 PRINT "\nConn Supervision Timeout",sprvto

 PRINT "\nConn Slave Latency",slat

 ENDIF

 CASE 15 //BLE_EVBLEMSGID_CONN_PARMS_UPDATE_FAIL

 PRINT "\n ??? Conn Parm Negotiation FAILED"

 CASE ELSE

 PRINT "\nBle Msg",nMsgId

 ENDSELECT

 ENDFUNC 1

 ONEVENT EVBLEMSG CALL HandlerBleMsg

 IF BleAdvertStart(0,addr$,25,60000,0)==0 THEN

 PRINT "\nAdverts Started\n"

 PRINT "\nMake a connection to the BL600"

 ELSE

 PRINT "\n\nAdvertisement not successful"

 ENDIF

 WAITEVENT

Expected Output (Unsuccessful Negotiation):

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

64 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Expected Output (Successful Negotiation):

Note: First set of parameters will differ depending on your central device.

BLESETCURCONNPARMS is an extension function.

Adverts Started

Make a connection to the BL600

 --- New Connection : 1352

Conn Interval 7500

Conn Supervision Timeout 7000000

Conn Slave Latency 0

Request new parameters

 ??? Conn Parm Negotiation FAILED

 --- Disconnected : 1352

Adverts Started

Make a connection to the BL600

 --- New Connection : 134

Conn Interval 30000

Conn Supervision Timeout 720000

Conn Slave Latency 0

Request new parameters

New conn Interval 75000

New conn Supervision Timeout 4000000

New conn Slave Latency 19

--- Disconnected : 134

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

65 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

BleGetCurConnParms

FUNCTION

This function gets the current connection parameters for the connection identified by the connection handle.

Given there are three connection parameters, the function takes three variables by reference so that the

function can return the values in those variables.

BLEGETCURCONNPARMS (nConnHandle, nIntervalUs, nSuprToutUs, nSlaveLatency)

Returns
INTEGER, a result code.

Typical value: 0x0000 (indicates a successful operation)

Arguments

nConnHandle
byVal nConnHandle AS INTEGER.

Specifies the handle of the connection that needs to have the connection parameters
changed

nIntervalUs
byRef nIntervalUs AS INTEGER.

The current connection interval in microseconds

nSuprToutUs
byRef nSuprToutUs AS INTEGER.

The current link supervision timeout in microseconds for the connection.

nSlaveLatency

byRef nSlaveLatency AS INTEGER.

This is the current number of connection interval polls that the peripheral may ignore.

This value multiplied by the connection interval will not be greater than the link
supervision timeout.

 Note: See Note on Slave Latency.

Interactive
Command

No

See previous example

BLEGETCURCONNPARMS is an extension function.

Security Manager Functions

This section describes routines which manage all aspects of BLE security such as saving, retrieving, and

deleting link keys and creation of those keys using pairing and bonding procedures.

Events & Messages

The following security manager messages are thrown to the run-time engine using the EVBLEMSG message

with msgIDs as follows:

MsgId Description

9 Pairing in progress and display Passkey supplied in msgCtx.

10 A new bond has been successfully created

11

Pairing in progress and authentication key requested. Type of key is in msgCtx.
msgCtx is 1 for passkey_type which will be a number in the range 0 to 999999 and 2 for OOB key
which is a 16 byte key.

To submit a passkey, use the function BLESECMNGRPASSKEY.

BleSecMngrPasskey

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

66 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

FUNCTION

This function submits a passkey to the underlying stack during a pairing procedure when prompted by the

EVBLEMSG with msgId set to 11. See Events & Messages.

BLESECMNGRPASSKEY(connHandle, nPassKey)

Returns
INTEGER, a result code.

Typical value: 0x0000 (indicates a successful operation)

Arguments

connHandle
byVal connHandle AS INTEGER.

This is the connection handle as received via the EVBLEMSG event with msgId set to 0.

nPassKey
byVal nPassKey AS INTEGER.

This is the passkey to submit to the stack. Submit a value outside the range 0 to 999999
to reject the pairing.

Interactive
Command

No

//Example :: BleSecMngrPasskey.sb (See in BL600CodeSnippets.zip)

 DIM rc, connHandle

 DIM addr$: addr$=""

 FUNCTION HandlerBleMsg(BYVAL nMsgId AS INTEGER, BYVAL nCtx AS INTEGER) AS INTEGER

 SELECT nMsgId

 CASE 0

 connHandle = nCtx

 PRINT "\n--- Ble Connection, ",nCtx

 CASE 1

 PRINT "\n--- Disconnected ";nCtx;"\n"

 EXITFUNC 0

 CASE 11

 PRINT "\n +++ Auth Key Request, type=";nCtx

 rc=BleSecMngrPassKey(connHandle,123456)

 IF rc==0 THEN //key is 123456

 PRINT "\nPasskey 123456 was used"

 ELSE

 PRINT "\nResult Code 0x";integer.h'rc

 ENDIF

 CASE ELSE

 ENDSELECT

 ENDFUNC 1

 ONEVENT EVBLEMSG CALL HandlerBleMsg

 rc=BleSecMngrIoCap(4) //Set i/o capability - Keyboard Only (authenticated pairing)

 IF BleAdvertStart(0,addr$,25,0,0)==0 THEN

 PRINT "\nAdverts Started\n"

 PRINT "\nMake a connection to the BL600"

 ELSE

 PRINT "\n\nAdvertisement not successful"

 ENDIF

 WAITEVENT

Expected Output:

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

67 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

BLESECMNGRPASSKEY is an extension function.

BleSecMngrKeySizes

FUNCTION

This function sets minimum and maximum long term encryption key size requirements for subsequent

pairings.

If this function is not called, default values are 7 and 16 respectively. To ship your end product to a country

with an export restriction, reduce nMaxKeySize to an appropriate value and ensure it is not modifiable.

BLESECMNGRKEYSIZES(nMinKeysize, nMaxKeysize)

Returns
INTEGER, a result code.

Typical value: 0x0000 (indicates a successful operation)

Arguments

nMinKeysiz
byVal nMinKeysiz AS INTEGER.
The minimum key size. The range of this value is from 7 to 16.

nMaxKeysize
byVal nMaxKeysize AS INTEGER.

The maximum key size. The range of this value is from nMinKeysize to 16.

Interactive
Command

No

 //Example :: BleSecMngrKeySizes.sb (See in BL600CodeSnippets.zip)

 PRINT BleSecMngrKeySizes(8,15)

Expected Output:

BLESECMNGRKEYSIZES is an extension function.

BleSecMngrIoCap

FUNCTION

This function sets the user I/O capability for subsequent pairings and is used to determine if the pairing is

authenticated or not. This is related to Simple Secure Pairing as described in the following whitepapers:

https://www.bluetooth.org/docman/handlers/DownloadDoc.ashx?doc_id=86174

https://www.bluetooth.org/docman/handlers/DownloadDoc.ashx?doc_id=86173

In addition, the Security Manager Specification in the core 4.0 specification Part H provides a full description.

You must be registered with the Bluetooth SIG (www.bluetooth.org) to get access to all these documents.

An authenticated pairing is deemed to be one with less than 1 in a million probability that the pairing was

compromised by a MITM (Man in the middle) security attack.

Adverts Started

Make a connection to the BL600

--- Ble Connection, 1655

 +++ Auth Key Request, type=1

Passkey 123456 was used

--- Disconnected 1655

0

http://ews-support.lairdtech.com/
https://www.bluetooth.org/docman/handlers/DownloadDoc.ashx?doc_id=86174
https://www.bluetooth.org/docman/handlers/DownloadDoc.ashx?doc_id=86173
http://www.bluetooth.org/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

68 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

The valid user I/O capabilities are as described below.

BLESECMNGRIOCAP (nIoCap)

Returns
INTEGER, a result code.

Typical value: 0x0000 (indicates a successful operation)

Arguments

nloCap

byVal nIoCap AS INTEGER.

The user I/O capability for all subsequent pairings.

0 None also known as ‘Just Works’ (unauthenticated pairing)

1 Display with Yes/No input capability (authenticated pairing)

2 Keyboard Only (authenticated pairing)

3 Display Only (authenticated pairing – if other end has input cap)
4 Keyboard only (authenticated pairing)

Interactive
Command

No

 //Example :: BleSecMngrIoCap.sb (See in BL600CodeSnippets.zip)

 PRINT BleSecMngrIoCap(1)

Expected Output:

BLESECMNGRIOCAP is an extension function.

BleSecMngrBondReq

FUNCTION

This function is used to enable or disable bonding when pairing.

Note: This function will be deprecated in future releases. It is recommended to invoke this function,

with the parameter set to 0, before calling BleAuthenticate().

BLESECMNGRBONDREQ (nBondReq)

Returns
INTEGER, a result code.

Typical value: 0x0000 (indicates a successful operation)

Arguments

nBondReq
byVal nBondReq AS INTEGER.

0 Disable
1 Enable

Interactive
Command

No

 //Example :: BleSecMngrBondReq.sb (See in BL600CodeSnippets.zip)

 IF BleSecMngrBondReq(0)==0 THEN

 PRINT "\nBonding disabled"

 ENDIF

0

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

69 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Expected Output:

BLESECMNGRBONDREQ is an extension function.

BleAuthenticate

FUNCTION

This routine is used to induce the device to authenticate the peer. This will be deprecated in future firmware.

BLEAUTHENTICATE (nConnCtx)

Returns
INTEGER, a result code.

Typical value: 0x0000 (indicates a successful operation)

Arguments

nConnCtx
byVal nConnCtx AS INTEGER.

This is the context value provided in the EVBLEMSG(0) message which informed the
stack that a connection had been established.

Interactive
Command

No

See example for BleDisconnect:

Change “rc = BleAuthenticate(nCtx)” to “PRINT BleAuthenticate(nCtx)”

BLEAUTHENTICATE is an extension function.

GATT Server Functions

This section describes all functions related to creating and managing services that collectively define a GATT

table from a GATT server role perspective. These functions allow the developer to create any Service that has

been described and adopted by the Bluetooth SIG or any custom Service that implements some custom

unique functionality, within resource constraints such as the limited RAM and FLASH memory that is exist in

the module.

A GATT table is a collection of adopted or custom Services which in turn are a collection of adopted or

custom Characteristics. Although keep in mind that by definition an adopted service cannot contain custom

characteristics but the reverse is possible where a custom service can include both adopted and custom

characteristics.

Descriptions of Services and Characteristics are available in the Bluetooth Specification v4.0 or newer and like

most specifications are concise and difficult to understand. What follows is an attempt to familiarise the

reader with those concepts using the perspective of the smartBASIC programming environment.

To help understand the terms Service and Characteristic better, think of a Characteristic as a container (or a

pot) of data where the pot comes with space to store the data and a set of properties that are officially called

‘Descriptors’ in the BT spec. In the ‘pot’ analogy, think of Descriptor as colour of the pot, whether it has a lid,

whether the lid has a lock or whether it has a handle or a spout etc. For a full list of these Descriptors online

see http://developer.bluetooth.org/gatt/descriptors/Pages/DescriptorsHomePage.aspx . These descriptors are

assigned 16 bit UUIDs (value 0x29xx) and are referenced in some of the smartBASIC API functions if you

decide to add those to your characteristic definition.

To wrap up the loose analogy, think of Service as just a carrier bag to hold a group of related Characterisics

together where the printing on the carrier bag is a UUID. You will find that from a smartBASIC developer’s

Bonding disabled

http://ews-support.lairdtech.com/
http://developer.bluetooth.org/gatt/descriptors/Pages/DescriptorsHomePage.aspx

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

70 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

perspective, a set of characteristics is what you will need to manage and the concept of Service is only

required at GATT table creation time.

A GATT table can have many Services each containing one or more Characteristics. The differentiation

between Services and Characteristics is expedited using an identification number called a UUID (Universally

Unique Identifier) which is a 128 bit (16 byte) number. Adopted Services or Characteristics have a 16 bit (2

byte) shorthand identifier (which is just an offset plus a base 128 bit UUID defined and reserved by the

Bluetooth SIG) and custom Service or Characteristics shall have the full 128 bit UUID. The logic behind this is

that when you come across a 16 bit UUID, it implies that a specification will have been published by the

Bluetooth SIG whereas using a 128 bit UUID does NOT require any central authority to maintain a register of

those UUIDs or specifications describing them.

The lack of requirement for a central register is important to understand, in the sense that if a custom service

or characteristic needs to be created, the developer can use any publicly available UUID (sometimes also

known as GUID) generation utility.

These utilities use entropy from the real world to generate a 128 bit random number that has an extremely

low probability to be the same as that generated by someone else at the same time or in the past or future.

As an example, at the time of writing this document, the following website

http://www.guidgenerator.com/online-guid-generator.aspx offers an immediate UUID generation service,

although it uses the term GUID. From the GUID Generator website:

How unique is a GUID?

128-bits is big enough and the generation algorithm is unique enough that if 1,000,000,000
GUIDs per second were generated for 1 year the probability of a duplicate would be only
50%. Or if every human on Earth generated 600,000,000 GUIDs there would only be a 50%
probability of a duplicate.

This extremely low probability of generating the same UUID is why there is no need for a central register

maintained by the Bluetooth SIG for custom UUIDs.

Please note that Laird does not warrant or guarantee that the UUID generated by this website or any other

utility is unique. It is left to the judgement of the developer whether to use it or not.

Note: If the developer does intend to create custom Services and/or Characteristics then it is

recommended that a single UUID is generated and be used from then on as a 128 bit (16 byte)

company/developer unique base along with a 16 bit (2 byte) offset, in the same manner as the

Bluetooth SIG.

 This will then allow up to 65536 custom services and characteristics to be created, with the

added advantage that it will be easier to maintain a list of 16 bit integers.

 The main reason for avoiding more than one long UUID is to keep RAM usage down given that

16 bytes of RAM is used to store a long UUID. Smart BASIC functions have been provided to

manage these custom 2 byte UUIDs along with their 16 byte base UUIDs.

In this document when a Service or Characteristic is described as adopted, it implies that the Bluetooth SIG

has published a specification which defines that Service or Characteristic and there is a requirement that any

device claiming to support them SHALL have approval to prove that the functionality has been tested and

verified to behave as per that specification.

Currently there is no requirement for custom Service and/or Characteristics to have any approval. By

definition, interoperability is restricted to just the provider and implementer.

A Service is an abstraction of some collectivised functionality which, if broken down further into smaller

components, would cease to provide the intended behaviour. A couple of examples in the BLE domain that

http://ews-support.lairdtech.com/
http://www.guidgenerator.com/online-guid-generator.aspx

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

71 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

have been adopted by the Bluetooth SIG are Blood Pressure Service and Heart Rate Service. Each have sub-

components that map to Characteristics.

Blood Pressure is defined by a collection of data entities like for example Systolic Pressure, Diastolic Pressure,

Pulse Rate and many more. Likewise a Heart Rate service also has a collection which includes entities such as

the Pulse Rate and Body Sensor Location.

A list of all the adopted Services is at:http://developer.bluetooth.org/gatt/services/Pages/ServicesHome.aspx.

Laird recommends that if you decide to create a custom Service then it is defined and described in a similar

fashion, so that your goal should be to get the Bluetooth SIG to adopt it for everyone to use in an

interoperable manner.

These Services are also assigned 16 bit UUIDs (value 0x18xx) and are referenced in some of the smart BASIC

API functions described in this section.

Services, as described above, are a collection of one or more Characteristics. A list of all adopted

characteristics is found at http://developer.bluetooth.org/gatt/characteristics/Pages/CharacteristicsHome.aspx.

You should note that these descriptors are also assigned 16 bit UUIDs (value 0x2Axx) and are referenced in

some of the API functions described in this section. Custom Characteristics will have 128 bit (16 byte) UUIDs

and API functions are provided to handle those too.

Note: If you intend to create a custom Service or Characteristic, and adopt the recommendation, stated

above, of a single long 16 byte base UUID, so that the service can be identified using a 2 byte

UUID, then allocate a 16 bit value which is not going to coincide with any adopted values to

minimise confusion. Selecting a similar value is possible and legal given that the base UUID is

different. The recommendation is just for ease of maintenance.

Finally, having prepared a background to Services and Characteristics, the rest of this introduction will focus

on the specifics of how to create and manage a GATT table from a perspective of the smart BASIC API

functions in the module.

Recall that a Service has been described as a carrier bag that groups related characteristics together and a

Characteristic is just a data container (pot). Therefore, a remote GATT Client, looking at the Server, which is

presented in your GATT table, sees multiple carrier bags each containing one or more pots of data.

The GATT Client (remote end of the wireless connection) needs to see those carrier bags to determine the

groupings and once it has identified the pots it will only need to keep a list of references to the pots it is

interested in. Once that list is made at the client end, it can ‘throw away the carrier bag’.

http://ews-support.lairdtech.com/
http://developer.bluetooth.org/gatt/services/Pages/ServicesHome.aspx
http://developer.bluetooth.org/gatt/characteristics/Pages/CharacteristicsHome.aspx

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

72 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 Yes

 Yes
Broadcastable

Create a metadata object which
defines the permissions for the

characteristic value attribute

Notifiable OR
Indicatable

BleHandleUuid()

BleSvcCommit()

BleAttrMetadata()

BleAttrMetadata()

Create a metadata object which
defines the permissions for the
characteristic CCCD attribute

BleAttrMetadata()

Create a metadata object which
defines the permissions for the
characteristic SCCD attribute

Start the definition of a new characteristic
which will be later commited to the GATT

table in a single transaction
BleCharNew()

 Yes User Desc
Descriptor?

BleAttrMetadata()

Create a metadata object which
defines the permissions for the

User Desc Descriptor

Add parameters for creation of
User Desc Descriptor

BleCharDescUserDesc()

BleHandleUuid()

Create a UUID Handle for Service (16/128)

Create a UUID Handle for Characterisitic (16/128)

 Yes

BleAttrMetadata()

Add other
Descriptor?

Add parameters for creation of
other Descriptor

Create a metadata object which
defines the permissions for the

other Descriptor

BleCharDescAdd()

Commit the Characteristic to the
Gatt ServerTable in single transaction

BleCharCommit()

Commit a PRIMARY or SECONDARY
service which returns a service handle

 Yes

More
Services?

 Yes

More
Characteristics?

Save the handle

that is returned

as it is used to

interact with the

characteristic

 Yes Pres'tion Format
Descriptor?

Add parameters for creation of
Presentation Format Descriptor
BleCharDescPrstnFrmt()

Similarly in the module, once the GATT

table is created and after each Service is

fully populated with one or more

Characteristics there is no need to keep

that ‘carrier bag’. However, as each

Characterstic is ‘placed in the carrier bag’

using the appropriate smartBASIC API

function, a ‘receipt’ will be returned and is

referred to as a char_handle. The

developer will then need to keep those

handles to be able to read and write and

generally interact with that particular

characteristic. The handle does not care

whether the Characteristic is adopted or

custom because from then on the

firmware managing it behind the scenes in

smartBASIC does not care.

Therefore from the smartBASIC app

developer’s logical perspective a GATT

table looks nothing like the table that is

presented in most BLE literature. Instead

the GATT table is purely and simply just a

collection of char_handles that reference

the characteristics (data containers) which

have been registered with the underlying

GATT table in the BLE stack.

A particular char_handle is in turn used to

make something happen to the referenced

characteristic (data container) using a

smart BASIC function and conversely if

data is written into that characteristic (data

container), by a remote GATT Client, then

an event is thrown, in the form of a

message, into the smart BASIC runtime

engine which will get processed if and

only if a handler function has been

registered by the apps developer using the

ONEVENT statement.

With this simple model in mind, an

overview of how the smart BASIC

functions are used to register Services and

Characteristics is illustrated in the

flowchart on the right and sample code

follows.

 //Example :: ServicesAndCharacteristics.sb (See in BL600CodeSnippets.zip)

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

73 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 //==

 //Register two Services in the GATT Table. Service 1 with 2 Characteristics and

 //Service 2 with 1 characteristic. This implies a total of 3 characteristics to

 //manage.

 //The characteristic 2 in Service 1 will not be readable or writable but only

 //indicatable

 //The characteristic 1 in Service 2 will not be readable or writable but only

 //notifyable

 //==

 DIM rc //result code

 DIM hSvc //service handle

 DIM mdAttr

 DIM mdCccd

 DIM mdSccd

 DIM chProp

 DIM attr$

 DIM hChar11 // handles for characteristic 1 of Service 1

 DIM hChar21 // handles for characteristic 2 of Service 1

 DIM hChar12 // handles for characteristic 1 of Service 2

 DIM hUuidS1 // handles for uuid of Service 1

 DIM hUuidS2 // handles for uuid of Service 2

 DIM hUuidC11 // handles for uuid of characteristic 1 in Service 1

 DIM hUuidC12 // handles for uuid of characteristic 2 in Service 1

 DIM hUuidC21 // handles for uuid of characteristic 1 in Service 2

 //---Register Service 1

 hUuidS1 = BleHandleUuid16(0x180D)

 rc = BleServiceNew(BLE_SERVICE_PRIMARY, hUuidS1, hSvc)

 //---Register Characteristic 1 in Service 1

 mdAttr = BleAttrMetadata(BLE_ATTR_ACCESS_OPEN,BLE_ATTR_ACCESS_OPEN,10,0,rc)

 mdCccd = BLE_CHAR_METADATA_ATTR_NOT_PRESENT

 mdSccd = BLE_CHAR_METADATA_ATTR_NOT_PRESENT

 chProp = BLE_CHAR_PROPERTIES_READ + BLE_CHAR_PROPERTIES_WRITE

 hUuidC11 = BleHandleUuid16(0x2A37)

 rc = BleCharNew(chProp, hUuidC11,mdAttr,mdCccd,mdSccd)

 rc = BleCharCommit(shHrs,hrs$,hChar11)

 //---Register Characteristic 2 in Service 1

 mdAttr = BleAttrMetadata(BLE_ATTR_ACCESS_OPEN,BLE_ATTR_ACCESS_OPEN,10,0,rc)

 mdCccd = BleAttrMetadata(BLE_ATTR_ACCESS_OPEN,BLE_ATTR_ACCESS_OPEN,2,0,rc)

 mdSccd = BLE_CHAR_METADATA_ATTR_NOT_PRESENT

 chProp = BLE_CHAR_PROPERTIES_INDICATE

 hUuidC12 = BleHandleUuid16(0x2A39)

 rc = BleCharNew(chProp, hUuidC12,mdAttr,mdCccd,mdSccd)

 attr$="\00\00"

 rc = BleCharCommit(hSvc,attr$,hChar21)

 rc = BleServiceCommit(hSvc)

 //---Register Service 2 (can now reuse the service handle)

 hUuidS2 = BleHandleUuid16(0x1856)

 rc = BleServiceNew(BLE_SERVICE_PRIMARY, hUuidS2, hSvc)

 //---Register Characteristic 1 in Service 2

 mdAttr = BleAttrMetadata(BLE_ATTR_ACCESS_NONE,BLE_ATTR_ACCESS_NONE,10,0,rc)

 mdCccd = BleAttrMetadata(BLE_ATTR_ACCESS_OPEN,BLE_ATTR_ACCESS_OPEN,2,0,rc)

 mdSccd = BLE_CHAR_METADATA_ATTR_NOT_PRESENT

 chProp = BLE_CHAR_PROPERTIES_NOTIFY

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

74 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 hUuidC21 = BleHandleUuid16(0x2A54)

 rc = BleCharNew(chProp, hUuidC21,mdAttr,mdCccd,mdSccd)

 attr$="\00\00\00\00"

 rc = BleCharCommit(hSvc,attr$,hChar12)

 rc = BleServiceCommit(hSvc)
 //===The 2 services are now visible in the gatt table

Writes into a characteristic from a remote client is detected and processed as follow:

 //--

 // To deal with writes from a gatt client into characteristic 1 of Service 1

 // which has the handle hChar11

 //--

 // This handler is called when there is a EVCHARVAL message

 FUNCTION HandlerCharVal(BYVAL hChar AS INTEGER) AS INTEGER

 DIM attr$

 IF hChar == hChar11 THEN

 rc = BleCharValueRead(hChar11,attr$)

 print "Svc1/Char1 has been writen with = ";attr$

 ENDIF

 ENDFUNC 1

 //enable characteristic value write handler

 OnEvent EVCHARVAL call HandlerCharVal

 WAITEVENT

Assuming there is a connection and notify has been enabled then a value notification is expedited as follows:

 //--

 // Notify a value for characteristic 1 in service 2

 //--

 attr$="somevalue"

 rc = BleCharValueNotify(hChar12,attr$)

Assuming there is a connection and indicate has been enabled then a value indication is expedited as follows:

 //--

 // indicate a value for characteristic 2 in service 1

 //--

 // This handler is called when there is a EVCHARHVC message

 FUNCTION HandlerCharHvc(BYVAL hChar AS INTEGER) AS INTEGER

 IF hChar == hChar12 THEN

 PRINT "Svc1/Char2 indicate has been confirmed"

 ENDIF

 ENDFUNC 1

 //enable characteristic value indication confirm handler

 OnEvent EVCHARHVC CALL HandlerCharHvc

 attr$="somevalue"

 rc = BleCharValueIndicate(hChar12,attr$)

The rest of this section details all the smart BASIC functions that help create that framework.

Events and Messages

See also Events and Messages for the messages that are thrown to the application which are related to the

generic characteristics API. The relevant messages are those that start with EVCHARxxx.

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

75 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

BleGapSvcInit

FUNCTION

This function updates the GAP service, which is mandatory for all approved devices to expose, with the

information provided. If it is not called before adverts are started, default values are exposed. Given this is a

mandatory service, unlike other services which need to be registered, this one must only be initialised as the

underlying BLE stack unconditionally registers it when starting up.

The GAP service contains five characteristics as listed at the following site:

http://developer.bluetooth.org/gatt/services/Pages/ServiceViewer.aspx?u=org.bluetooth.service.generic_access

.xml

BLEGAPSVCINIT (deviceName, nameWritable, nAppearance, nMinConnInterval, nMaxConnInterval,

nSupervisionTout, nSlaveLatency)

Returns
INTEGER, a result code.

Typical value: 0x0000 (indicates a successful operation)

Arguments

deviceName
byRef deviceName AS STRING

The name of the device (e.g. Laird_Thermometer) to store in the ‘Device Name’
characteristic of the GAP service.

Note: When an advert report is created using BLEADVRPTINIT() this field is read from the service and an

attempt is made to append it in the Device Name AD. If the name is too long, that function fails to

initialise the advert report and a default name is transmitted. It is recommended that the device

name submitted in this call be as short as possible.

nameWritable
byVal nameWritable AS INTEGER

If non-zero, the peer device is allowed to write the device name. Some profiles allow
this to be made optional.

nAppearance

byVal nAppearance AS INTEGER

Field lists the external appearance of the device and updates the Appearance

characteristic of the GAP service. Possible values:

 org.bluetooth.characteristic.gap.appearance.

nMinConnInterval

byVal nMinConnInterval AS INTEGER

The preferred minimum connection interval, updates the ‘Peripheral Preferred

Connection Parameters’ characteristic of the GAP service. Range is between 7500

and 4000000 microseconds (rounded to the nearest 1250 microseconds). This must
be smaller than nMaxConnInterval.

nMaxConnInterval

byVal nMaxConnInterval AS INTEGER

The preferred maximum connection interval, updates the ‘Peripheral Preferred

Connection Parameters’ characteristic of the GAP service. Range is between 7500

and 4000000 microseconds (rounded to the nearest 1250 microseconds). This must
be larger than nMinConnInterval.

nSupervisionTimeout

byVal nSupervisionTimeout AS INTEGER

The preferred link supervision timeout and updates the ‘Peripheral Preferred

Connection Parameters’ characteristic of the GAP service. Range is between 100000
to 32000000 microseconds (rounded to the nearest 10000 microseconds).

nSlaveLatency

byVal nSlaveLatency AS INTEGER

The preferred slave latency is the number of communication intervals that a slave

may ignore without losing the connection and updates the ‘Peripheral Preferred

Connection Parameters’ characteristic of the GAP service. This value must be smaller

than (nSupervisionTimeout/ nMaxConnInterval) -1. i.e. nSlaveLatency <

http://ews-support.lairdtech.com/
http://developer.bluetooth.org/gatt/services/Pages/ServiceViewer.aspx?u=org.bluetooth.service.generic_access.xml
http://developer.bluetooth.org/gatt/services/Pages/ServiceViewer.aspx?u=org.bluetooth.service.generic_access.xml
https://developer.bluetooth.org/gatt/characteristics/Pages/CharacteristicViewer.aspx?u=org.bluetooth.characteristic.gap.appearance.xml

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

76 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

(nSupervisionTimeout / nMaxConnInterval) -1

Interactive
Command

No

 //Example :: BleGapSvcInit.sb (See in BL600CodeSnippets.zip)

 DIM rc,dvcNme$,nmeWrtble,apprnce,MinConnInt,MaxConnInt,ConnSupTO,sL,s$

 dvcNme$= "Laird_TS"

 nmeWrtble = 0 //Device name will not be writable by peer

 apprnce = 768 //The device will appear as a Generic Thermometer

 MinConnInt = 500000 //Minimum acceptable connection interval is 0.5 seconds

 MaxConnInt = 1000000 //Maximum acceptable connection interval is 1 second

 ConnSupTO = 4000000 //Connection supervisory timeout is 4 seconds

 sL = 0 //Slave latency--number of conn events that can be missed

 rc=BleGapSvcInit(dvcNme$,nmeWrtble,apprnce,MinConnInt,MaxConnInt,ConnSupTO,sL)

 IF !rc THEN

 PRINT "\nSuccess"

 ELSE

 PRINT "\nFailed 0x"; INTEGER.H'rc //Print result code as 4 hex digits

 ENDIF

Expected Output:

BLEGAPSVCINIT is an extension function.

Success

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

77 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

BleGetDeviceName$

FUNCTION

This function reads the device name characteristic value from the local gatt table. This value is the same as

that supplied in BleGapSvcInit() if the ‘nameWritable’ parameter was 0, otherwise it can be different.

EVBLEMSG event is thrown with ‘msgid’ == 21 when the GATT client writes a new value and is the best time

to call this function.

BLEGETDEVICENAME$ ()

Returns

STRING, the current device name in the local GATT table. It is the same as that
supplied in BleGapSvcInit() if the ‘nameWritable’ parameter was 0, otherwise it can
be different. EVBLEMSG event is thrown with ‘msgid’ == 21 when the GATT client
writes a new value.

Arguments None

Interactive
Command

No

 //Example :: BleGetDeviceName$.sb (See in BL600CodeSnippets.zip)

 DIM rc,dvcNme$,nmeWrtble,apprnce,MinConnInt,MaxConnInt,ConnSupTO,sL

 PRINT "\n --- DevName : "; BleGetDeviceName$()

 // Changing device name manually

 dvcNme$= "My BL600"

 nmeWrtble = 0

 apprnce = 768

 MinConnInt = 500000

 MaxConnInt = 1000000

 ConnSupTO = 4000000

 sL = 0

 rc = BleGapSvcInit(dvcNme$,nmeWrtble,apprnce,MinConnInt,MaxConnInt,ConnSupTO,sL)

 PRINT "\n --- New DevName : "; BleGetDeviceName$()

Expected Output:

BLEGETDEVICENAME$ is an extension function.

--- DevName : LAIRD BL600

--- New DevName : My BL600

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

78 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

BleSvcRegDevInfo

FUNCTION

This function is used to register the Device Information service with the GATT server. The ‘Device Information’

service contains nine characteristics as listed at the following website:

http://developer.bluetooth.org/gatt/services/Pages/ServiceViewer.aspx?u=org.bluetooth.service.device_inform

ation.xml

The firmware revision string will always be set to “BL600:vW.X.Y.Z” where W,X,Y,Z are as per the revision

information which is returned to the command AT I 4.

BLESVCREGDEVINFO (manfName$, modelNum$, serialNum$, hwRev$,

swRev$, sysId$, regDataList$, pnpId$)

FUNCTION

Returns
INTEGER, a result code.

Typical value: 0x0000 (indicates a successful operation)

Arguments

manfName$
byVal manfName$ AS STRING

The device manufacturer. Can be set empty to omit submission.

modelNum$
byVal modelNum$ AS STRING

The device model number. Can be set empty to omit submission.

serialNum$
byVal serialNum$ AS STRING

The device serial number. Can be set empty to omit submission.

hwRev$
byVal hwRev$ AS STRING

The device hardware revision string. Can be set empty to omit submission.

swRev$
byVal swRev$ AS STRING
The device software revision string. Can be set empty to omit submission.

sysId$

byVal sysId$ AS STRING

The device system ID as defined in the specifications. Can be set empty to omit submission.

Otherwise it shall be a string exactly 8 octets long, where:

 Byte 0..4 := Manufacturer Identifier

 Byte 5..7 := Organisationally Unique Identifier

For the special case of the string being exactly 1 character long and containing “@”, the

system ID is created from the MAC address if (and only if) an IEEE public address is set. If

the address is the random static variety, this characteristic is omitted.

regDataList$
byVal regDataList$ AS STRING

The device’s regulatory certification data list as defined in the specification. It can be set as
an empty string to omit submission.

pnpId$

byVal pnpId$ AS STRING

The device’s plug and play ID as defined in the specification. Can be set empty to omit

submission. Otherwise, it shall be exactly 7 octets long, where:

 Byte 0 := Vendor Id Source

 Byte 1,2 := Vendor Id (Byte 1 is LSB)

 Byte 3,4 := Product Id (Byte 3 is LSB)

 Byte 5,6 := Product Version (Byte 5 is LSB)

Interactive
Command

No

 //Example :: BleSvcRegDevInfo.sb (See in BL600CodeSnippets.zip)

http://ews-support.lairdtech.com/
http://developer.bluetooth.org/gatt/services/Pages/ServiceViewer.aspx?u=org.bluetooth.service.device_information.xml
http://developer.bluetooth.org/gatt/services/Pages/ServiceViewer.aspx?u=org.bluetooth.service.device_information.xml

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

79 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 DIM rc,manfNme$,mdlNum$,srlNum$,hwRev$,swRev$,sysId$,regDtaLst$,pnpId$

 manfNme$ = "Laird Technologies"

 mdlNum$ = "BL600"

 srlNum$ = "" //empty to omit submission

 hwRev$ = "1.0"

 swRev$ = "1.0"

 sysId$ = "" //empty to omit submission

 regDtaLst$ = "" //empty to omit submission

 pnpId$ = "" //empty to omit submission

 rc=BleSvcRegDevInfo(manfNme$,mdlNum$,srlNum$,hwRev$,swRev$,sysId$,regDtaLst$,pnpId$)

 IF !rc THEN

 PRINT "\nSuccess"

 ELSE

 PRINT "\nFailed 0x"; INTEGER.H'rc

 ENDIF

Expected Output:

BLESVCREGDEVINFO is an extension function.

BleHandleUuid16

FUNCTION

This function takes an integer in the range 0 to 65535 and converts it into a 32 bit integer handle that

associates the integer as an offset into the Bluetooth SIG 128 bit (16byte) base UUID which is used for all

adopted services, characteristics and descriptors.

If the input value is not in the valid range then an invalid handle (0) is returned

The returned handle shall be treated by the developer as an opaque entity and no further logic shall be based

on the bit content, apart from all 0’s which represents an invalid UUID handle.

BLEHANDLEUUID16 (nUuid16)

Returns INTEGER, a nonzero handle shorthand for the UUID. Zero is an invalid UUID handle.

Arguments

nUuid16
byVal nUuid16 AS INTEGER

nUuid16 is first bitwise ANDed with 0xFFFF and the result will be treated as an offset into the

Bluetooth SIG 128 bit base UUID.

Interactive
Command

No

 //Example :: BleHandleUuid16.sb (See in BL600CodeSnippets.zip)
 DIM uuid

 DIM hUuidHRS

 uuid = 0x180D //this is UUID for Heart Rate Service

 hUuidHRS = BleHandleUuid16(uuid)

 IF hUuidHRS == 0 THEN

 PRINT "\nFailed to create a handle"

 ELSE

 PRINT "Handle for HRS Uuid is "; integer.h' hUuidHRS;"(";hUuidHRS;")"
 ENDIF

Success

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

80 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Expected Output:

BLEHANDLEUUID16 is an extension function.

BleHandleUuid128

FUNCTION

This function takes a 16 byte string and converts it into a 32 bit integer handle. The handle consists of a 16

bit (2 byte) offset into a new 128 bit base UUID.

The base UUID is basically created by taking the 16 byte input string and setting bytes 12 and 13 to zero after

extracting those bytes and storing them in the handle object. The handle also contains an index into an array

of these 16 byte base UUIDs which are managed opaquely in the underlying stack.

The returned handle shall be treated by the developer as an opaque entity and no further logic shall be based

on the bit content. However, note that a string of zeroes represents an invalid UUID handle.

Please ensure that you use a 16 byte UUID that has been generated using a random number generator with

sufficient entropy to minimise duplication, as stated in an earlier section and that the first byte of the array is

the most significant byte of the UUID.

BLEHANDLEUUID128 (stUuid$)

Returns
INTEGER, A handle representing the shorthand UUID. If zero, which is an invalid UUID
handle, there is either no spare RAM memory to save the 16 byte base or more than 253
custom base UUIDs have been registered.

Arguments

stUuid$

byRef stUuid$ AS STRING

Any 16 byte string that was generated using a UUID generation utility that has enough entropy

to ensure that it is random. The first byte of the string is the MSB of the UUID – that is, big

endian format.

Interactive
Command

No

 //Example :: BleHandleUuid128.sb (See in BL600CodeSnippets.zip)
 DIM uuid$: hUuidCustom

 //create a custom uuid for my ble widget

 uuid$ = "ced9d91366924a1287d56f2764762b2a"

 uuid$ = StrDehexize$(uuid$)

 hUuidCustom = BleHandleUuid128(uuid$)

 IF hUuidCustom == 0 THEN

 PRINT "\nFailed to create a handle"

 ELSE

 PRINT "Handle for custom Uuid is ";integer.h’ hUuidCustom; "(";hUuidCustom;")"
 ENDIF

 // hUuidCustom now references an object which points to

 // a base uuid = ced9d91366924a1287d56f2747622b2a (note 0's in byte position 2/3)

 // and an offset = 0xd913

Expected Output:

Handle for HRS Uuid is FE01180D (-33482739)

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

81 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

BLEHANDLEUUID128 is an extension function.

BleHandleUuidSibling

FUNCTION

This function takes an integer in the range 0 to 65535 along with a UUID handle which had been previously

created using BleHandleUuid16() or BleHandleUuid128() to create a new UUID handle. This handle references

the same 128 base UUID as the one referenced by the UUID handle supplied as the input parameter.

The returned handle shall be treated by the developer as an opaque entity and no further logic shall be based

on the bit content, apart from all 0’s which represents an invalid UUID handle.

BLEHANDLEUUIDSIBLING (nUuidHandle, nUuid16)

Returns
INTEGER, a handle representing the shorthand UUID and can be zero which is an invalid
UUID handle, if nUuidHandle is an invalid handle in the first place.

Arguments

nUuidHandle
byVal nUuidHandle AS INTEGER

A handle that was previously created using either BleHandleUui16() or BleHandleUuid128().

nUuid16
byVal nUuid16 AS INTEGER

A UUID value in the range 0 t0 65535 which will be treated as an offset into the 128 bit
base UUID referenced by nUuidHandle.

Interactive
Command

No

 //Example :: BleHandleUuidSibling.sb (See in BL600CodeSnippets.zip)

 DIM uuid$,hUuid1, hUuid2 //hUuid2 will have the same base uuid as hUuid1

 //create a custom uuid for my ble widget

 uuid$ = "ced9d91366924a1287d56f2764762b2a"

 uuid$ = StrDehexize$(uuid$)

 hUuid1 = BleHandleUuid128(uuid$)

 IF hUuid1 == 0 THEN

 PRINT "\nFailed to create a handle"

 ELSE

 PRINT "Handle for custom Uuid is ";integer.h' hUuid1;"(";hUuid1;")"

 ENDIF

 // hUuid1 now references an object which points to

 // a base uuid = ced9000066924a1287d56f2747622b2a (note 0's in byte position 2/3)

 // and an offset = 0xd913

 hUuid2 = BleHandleUuidSibling(hUuid1,0x1234)

 IF hUuid2 == 0 THEN

 PRINT "\nFailed to create a handle"

 ELSE

 PRINT "\nHandle for custom sibling Uuid is ";integer.h';hUuid2;"(";hUuid2;")"

 ENDIF

 // hUuid2 now references an object which also points to

 // the base uuid = ced9000066924a1287d56f2700004762 (note 0's in byte position 2/3)

 // and has the offset = 0x1234

Expected Output:

Handle for custom Uuid is FC03D913 (-66856685)

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

82 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

BLEHANDLEUUIDSIBLING is an extension function.

BleSvcCommit

This function is now deprecated, use BleServiceNew() & BleServiceCommt() instead.

BleServiceNew

FUNCTION

As explained in an earlier section, a Service in the context of a GATT table is a collection of related

Characteristics. This function is used to inform the underlying GATT table manager that one or more related

characteristics are going to be created and installed in the GATT table and that until the next call of this

function they shall be associated with the service handle that it provides upon return of this call.

Under the hood, this call results in a single attribute being installed in the GATT table with a type signifying a

PRIMARY or a SECONDARY service. The value for this attribute shall be the UUID that will identify this service

and in turn have been precreated using one of the functions; BleHandleUuid16(), BleHandleUuid128() or

BleHandleUuidSibling().

Note: When a GATT Client queries a GATT Server for services over a BLE connection, it will only get a list

of PRIMARY services. SECONDARY services are a mechanism for multiple PRIMARY services to

reference single instances of shared Characteristics that are collected in a SECONDARY service. This

referencing is expedited within the definition of a service using the concept of ‘INCLUDED

SERVICE’ which itself is just an attribute that is grouped with the PRIMARY service definition. An

‘Included Service’ is expedited using the function BleSvcAddIncludeSvc() which is described

immediately after this function.

This function now replaces BleSvcCommit() and marks the beginning of a service definition in the gatt server

table. When the last descriptor of the last characteristic has been registered the service definition should be

terminated by calling BleServiceCommit().

BLESERVICENEW (nSvcType, nUuidHandle, hService)

Returns
INTEGER, a result code.

Typical value: 0x0000 (indicates a successful operation)

Arguments

nSvcType
byVal nSvcType AS INTEGER

This will be 0 for a SECONDARY service and 1 for a PRIMARY service and all other values are

reserved for future use and will result in this function failing with an appropriate result code.

nUuidHandle

byVal nUuidHandle AS INTEGER

This is a handle to a 16 bit or 128 bit UUID that identifies the type of Service function

provided by all the Characteristics collected under it. It will have been pre-created using one
of the three functions: BleHandleUuid16(), BleHandleUuid128() or BleHandleUuidSibling()

hService

byRef hService AS INTEGER

If the Service attribute is created in the GATT table then this will contain a composite handle

which references the actual attribute handle. This is then subsequently used when adding

Characteristics to the GATT table. If the function fails to install the Service attribute for any
reason this variable will contain 0 and the returned result code will be non-zero.

Interactive
Command

No

 //Example :: BleServiceNew.sb (See in BL600CodeSnippets.zip)

Handle for custom Uuid is FC03D913 (-66856685)

Handle for custom sibling Uuid is FC031234 (-66907596)

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

83 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 #DEFINE BLE_SERVICE_SECONDARY 0

 #DEFINE BLE_SERVICE_PRIMARY 1

 //--

 //Create a Health Thermometer PRIMARY service attribute which has a uuid of 0x1809

 //--

 DIM hHtsSvc //composite handle for hts primary service

 DIM hUuidHT : hUuidHT = BleHandleUuid16(0x1809) //HT Svc UUID Handle

 IF BleServiceNew(BLE_SERVICE_PRIMARY,hUuidHT,hHtsSvc)==0 THEN

 PRINT "\nHealth Thermometer Service attribute written to GATT table"

 PRINT "\nUUID Handle value: ";hUuidHT

 PRINT "\nService Attribute Handle value: ";hHtsSvc

 ELSE

 PRINT "\nService Commit Failed"

 ENDIF

 //--

 //Create a Battery PRIMARY service attribute which has a uuid of 0x180F

 //--

 DIM hBatSvc //composite handle for battery primary service

 //or we could have reused nHtsSvc

 DIM hUuidBatt : hUuidBatt = BleHandleUuid16(0x180F) //Batt Svc UUID Handle

 IF BleServiceNew(BLE_SERVICE_PRIMARY,hUuidBatt,hBatSvc)==0 THEN

 PRINT "\n\nBattery Service attribute written to GATT table"

 PRINT "\nUUID Handle value: ";hUuidBatt

 PRINT "\nService Attribute Handle value: ";hBatSvc

 ELSE

 PRINT "\nService Commit Failed"

 ENDIF

Expected Output:

BLESERVICENEW is an extension function.

BleServiceCommit

This function in the BL600 is a dummy function and does not do anything. However, for portability to other

Laird 4.0 compatible modules, always invoke this function after the last descriptor of the last characteristic of

a service has been committed to the gatt server.

BLESERVICECOMMIT (hService)

Returns
INTEGER, a result code.

Typical value: 0x0000 (indicates a successful operation)

Arguments

hService
byVal hService AS INTEGER

This handle will have been returned from BleServiceNew().

Health Thermometer Service attribute written to GATT table

UUID Handle value: -33482743

Service Attribute Handle value: 16

Battery Service attribute written to GATT table

UUID Handle value: -33482737

Service Attribute Handle value: 17

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

84 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

BleSvcAddIncludeSvc

FUNCTION

Note: This function is currently not available for use on this module

This function is used to add a reference to a service within another service. This will usually, but not

necessarily, be a SECONDARY service which is virtually identical to a PRIMARY service from the GATT Server

perspective and the only difference is that when a GATT client queries a device for all services it does not get

any mention of SECONDARY services.

When a GATT client encounters an INCLUDED SERVICE object when querying a particular service it shall

perform a sub-procedure to get handles to all the characteristics that are part of that INCLUDED service.

This mechanism is provided to allow for a single set of Characteristics to be shared by multiple primary

services. This is most relevant if a Characteristic is defined so that it can have only one instance in a GATT

table but needs to be offered in multiple PRIMARY services. Hence a typical implementation, where a

characteristic is part of many PRIMARY services, installs that Characteristic in a SECONDARY service (see

BleSvcCommit()) and then uses the function defined in this section to add it to all the PRIMARY services that

want to have that characteristic as part of their group.

It is possible to include a service which is also a PRIMARY or SECONDARY service, which in turn can include

further PRIMARY or SECONDARY services. The only restriction to nested includes is that there cannot be

recursion.

Further note that if a service has INCLUDED services, then they shall be installed in the GATT table

immediately after a Service is created using BleSvcCommit() and before BleCharCommit(). The BT 4.0

specification mandates that any ‘included service’ attribute be present before any characteristic attributes

within a particular service group declaration.

BleSvcAddIncludeSvc (hService)

Returns
INTEGER, a result code.

Typical value: 0x0000 (indicates a successful operation)

Arguments

hService
byVal hService AS INTEGER

This argument will contain a handle that was previously created using the function

BleSvcCommit().

Interactive
Command

No

 //Example :: BleSvcAddIncludeSvc.sb (See in BL600CodeSnippets.zip)

 #define BLE_SERVICE_SECONDARY 0

 #define BLE_SERVICE_PRIMARY 1

 //--

 //Create a Battery SECONDARY service attribure which has a uuid of 0x180F

 //--

 dim hBatSvc //composite handle for batteru primary service

 dim rc //or we could have reused nHtsSvc

 dim metaSuccess

 DIM charMet : charMet = BleAttrMetaData(1,1,10,1,metaSuccess)

 DIM s$: s$ = "Hello" //initial value of char in Battery Service

 DIM hBatChar

 rc = BleServiceNew(BLE_SERVICE_SECONDARY, BleHandleUuid16(0x180F), hBatSvc)

 rc = BleCharNew(3,BleHandleUuid16(0x2A1C),charMet,0,0)

 rc = BleCharCommit(hBatSvc, s$,hBatChar)

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

85 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 rc = BleServiceCommit(hBatSvc)

 //--

 //Create a Health Thermometer PRIMARY service attribure which has a uuid of 0x1809

 //--

 DIM hHtsSvc //composite handle for hts primary service

 rc = BleServiceNew(BLE_SERVICE_PRIMARY, BleHandleUuid16(0x1809), hHtsSvc)

 rc = BleServiceCommit(hHtsSvc)

 //Have to add includes before any characteristics are committed

 PRINT INTEGER.h'BleSvcAddIncludeSvc(hBatSvc)

BleSvcAddIncludeSvc is an extension function.

BleAttrMetadata

FUNCTION

A GATT Table is an array of attributes which are grouped into Characteristics which in turn are further

grouped into Services. Each attribute consists of a data value which can be anything from 1 to 512 bytes long

according to the specification and properties such as read and write permissions, authentication and security

properties. When Services and Characteristics are added to a GATT server table, multiple attributes with

appropriate data and properties get added.

This function allows a 32 bit integer to be created, which is an opaque object, which defines those properties

and is then submitted along with other information to add the attribute to the GATT table.

When adding a Service attribute (not the whole service, in this present context), the properties are defined in

the BT specification so that it is open for reads without any security requirements but cannot be written and

always has the same data content structure. This implies that a metadata object does NOT need to be

created.

However, when adding Characteristics, which consists of a minimum of 2 attributes, one similar in function

as the aforementioned Service attribute and the other the actual data container, then properties for the value

attribute must be specified. Here, ‘properties’ refers to properties for the attribute, not properties for the

Characteristic container as a whole. These also exist and must be specified, but that is done in a different

manner as explained later.

For example, the value attribute must be specified for read / write permission and whether it needs security

and authentication to be accessed.

If the Characteristic is capable of notification and indication, the client implicitly must be able to enable or

disable that. This is done through a Characteristic Descriptor which is also another attribute. The attribute will

also need to have a metadata supplied when the Characteristic is created and registered in the GATT table.

This attribute, if it exists, is called a Client Characteristic Configuration Descriptor or CCCD for short. A CCCD

always has 2 bytes of data and currently only 2 bits are used as on/off settings for notification and indication.

A Characteristic can also optionally be capable of broadcasting its value data in advertisements. For the GATT

client to be able to control this, there is yet another type of Characteristic Descriptor which also needs a

metadata object to be supplied when the Characteristic is created and registered in the GATT table. This

attribute, if it exists, is called a Server Characteristic Configuration Descriptor or SCCD for short. A SCCD

always has 2 bytes of data and currently only 1 bit is used as on/off settings for broadcasts.

Finally if the Characteristic has other Descriptors to qualify its behaviour, a separate API function is also

supplied to add that to the GATT table and when setting up a metadata object will also need to be supplied.

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

86 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

In a nutshell, think of a metadata object as a note to define how an attribute will behave and the GATT table

manager will need that before it is added. Some attributes have those ‘notes’ specified by the BT specification

and so the GATT table manager will not need to be provided with any, but the rest require it.

This function helps write that metadata.

BLEATTRMETADATA (nReadRights, nWriteRights, nMaxDataLen, fIsVariableLen, resCode)

Returns
INTEGER, a 32 bit opaque data object to be used in subsequent calls when adding
Characteristics to a GATT table.

Arguments

nReadRights

byVal nReadRights AS INTEGER

This specifies the read rights and shall have one of the following values:

0 No Access

1 Open

2 Encrypted with No Man-In-The-Middle (MITM) Protection

3 Encrypted with Man-In-The-Middle (MITM) Protection

4 Signed with No Man-In-The-Middle (MITM) Protection (not available)

5 Signed with Man-In-The-Middle (MITM) Protection (not available)

Note: In early releases of the firmware, 4 and 5 are not available.

nWriteRights

byVal nWriteRights AS INTEGER

This specifies the write rights and shall have one of the following values:

0 No Access

1 Open

2 Encrypted with No Man-In-The-Middle (MITM) Protection

3 Encrypted with Man-In-The-Middle (MITM) Protection

4 Signed with No Man-In-The-Middle (MITM) Protection (not available)

5 Signed with Man-In-The-Middle (MITM) Protection (not available)

Note: In early releases of the firmware, 4 and 5 are not available.

nMaxDataLen

byVal nMaxDataLen AS INTEGER

This specifies the maximum data length of the VALUE attribute. Range is from 1 to 512

bytes according to the BT specification; the stack implemented in the module may limit it
for early versions. At the time of writing the limit is 20 bytes.

fIsVariableLen

byVal fIsVariableLen AS INTEGER

Set this to non-zero only if you want the attribute to automatically shorten it’s length

according to the number of bytes written by the client. For example, if the initial length is 2

and the client writes only 1 byte, then if this is 0, then only the first byte gets updated and

the rest remain unchanged. If this parameter is set to 1, then when a single byte is written

the attribute will shorten it’s length to accommodate. If the client tries to write more bytes

than the initial maximum length, then the client will get an error response.

resCode

byRef resCode AS INTEGER

This variable will be updated with result code which will be 0 if a metadata object was

successfully returned by this call. Any other value implies a metadata object did not get

created.

Interactive
Command

No

 //Example :: BleAttrMetadata.sb (See in BL600CodeSnippets.zip)

 DIM mdVal //metadata for value attribute of Characteristic

 DIM mdCccd //metadata for CCCD attribute of Characteristic

 DIM mdSccd //metadata for SCCD attribute of Characteristic

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

87 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 DIM rc

 //++++

 // Create the metadata for the value attribute in the characteristic

 // and Heart Rate attribute has variable length

 //++++

 //There is always a Value attribute in a characteristic

 mdVal=BleAttrMetadata(17,0,20,0,rc)

 //There is a CCCD and SCCD in this characteristic

 mdCccd=BleAttrMetadata(1,2,2,0,rc)

 mdSccd=BleAttrMetadata(0,0,2,0,rc)

 //Create the Characteristic object

 IF BleCharNew(3,BleHandleUuid16(0x2A1C),mdVal,mdCccd,mdSccd)==0 THEN

 PRINT "\nSuccess"

 ELSE

 PRINT "\nFailed"

 ENDIF

Expected Output:

BLEATTRMETADATA is an extension function.

BleCharNew

FUNCTION

When a Characteristic is to be added to a GATT table, multiple attribute ‘objects’ must be precreated. After

they are all created successfully, they are committed to the GATT table in a single atomic transaction.

This function is the first function that SHALL be called to start the process of creating those multiple attribute

‘objects’. It is used to select the Characteristic properties (which are distinct and different from attribute

properties), the UUID to be allocated for it and then up to three metadata objects for the value attribute, and

CCCD/SCCD Descriptors respectively.

BLECHARNEW (nCharProps,nUuidHandle,mdVal,mdCccd,mdSccd)

Returns
INTEGER, a result code.

Typical value: 0x0000 (indicates a successful operation)

Arguments

nCharProps

byVal nCharProps AS INTEGER

This variable contains a bit mask to specify the following high level properties for the

Characteristic that will get added to the GATT table:

Bit Description

0 Broadcast capable (Sccd Descriptor has to be present)

1 Can be read by the client

2 Can be written by the client without response

3 Can be written

4 Can be Notifiable (Cccd Descriptor has to be present)

5 Can be Indicatable (Cccd Descriptor has to be present)

6 Can accept signed writes

7 Reliable writes

Success

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

88 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

nUuidHandle

byVal nUuidHandle AS INTEGER

This specifies the UUID that will be allocated to the Characteristic, either 16 or 128 bits.

This variable is a handle, pre-created using one of the following functions:
BleHandleUuid16() , BleHandleUuid128() , BleHandleUuidSibling().

mdVal

byVal mdVal AS INTEGER

This is the mandatory metadata that is used to define the properties of the Value attribute

that will be created in the Characteristic and will have been pre-created using the help of
the function BleAttrMetadata().

mdCccd

byVal mdCccd AS INTEGER

This is an optional metadata that is used to define the properties of the CCCD Descriptor

attribute that will be created in the Characteristic and will have been pre-created using the

help of the function BleAttrMetadata() or set to 0 if CCCD is not to be created. If

nCharProps specifies that the Characteristic is notifiable or indicatable and this value
contains 0, this function will abort with an appropriate result code.

mdSccd

byVal mdSccd AS INTEGER

This is an optional metadata that is used to define the properties of the SCCD Descriptor

attribute that will be created in the Characteristic and will have been pre-created using the

help of the function BleAttrMetadata() or set to 0 if SCCD is not to be created. If

nCharProps specifies that the Characteristic is broadcastable and this value contains 0, this
function will abort with an appropriate resultcode.

Interactive
Command

No

 // Example :: BleCharNew.sb (See in BL600CodeSnippets.zip)

 DIM rc

 DIM charUuid : charUuid = BleHandleUuid16(2) //Characteristic's UUID

 DIM mdVal : mdVal = BleAttrMetadata(1,0,20,0,rc) //Metadata for value attribute

 DIM mdCccd : mdCccd = BleAttrMetadata(1,1,2,0,rc) //Metadata for CCCD attribute of

Characteristic

 //==

 // Create a new char:

 // --- Indicatable, not Broadcastable (so mdCccd is included, but not mdSccd)

 // --- Can be read, not written (shown in mdVal as well)

 //==

 IF BleCharNew(0x22,charUuid,mdVal,mdCccd,0)==0 THEN

 PRINT "\nNew Characteristic created"

 ELSE

 PRINT "\nFailed"

 ENDIF

Expected Output:

BLECHARNEW is an extension function.

BleCharDescUserDesc

FUNCTION

This function adds an optional User Description Descriptor to a Characteristic and can only be called after

BleCharNew() has started the process of describing a new Characteristic.

New Characteristic created

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

89 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

The BT 4.0 specification describes the User Description Descriptor as “.. a UTF-8 string of variable size that is a

textual description of the characteristic value.” It further stipulates that this attribute is optionally writable

and so a metadata argument exists to configure it to be so. The metadata automatically updates the

“Writable Auxilliaries” properties flag for the Characteristic. This is why that flag bit is NOT specified for the

nCharProps argument to the BleCharNew() function.

BLECHARDESCUSERDESC(userDesc$, mdUser)

Returns
INTEGER, a result code.

Typical value: 0x0000 (indicates a successful operation)

Arguments

userDesc$
byRef userDesc$ AS STRING

The user description string to initiliase the Descriptor with. If the length of the string exceeds

the maximum length of an attribute then this function will abort with an error result code.

mdUser

byVal mdUser AS INTEGER

This is a mandatory metadata that defines the properties of the User Description Descriptor

attribute created in the Characteristic and will have been pre-created using the help of

BleAttrMetadata(). If the write rights are set to 1 or greater, the attribute will be marked as

writable and the client will be able to provide a user description that overwrites the one
provided in this call.

Interactive
Command

No

 //Example :: BleCharDescUserDesc.sb (See in BL600CodeSnippets.zip)

 DIM rc, metaSuccess,usrDesc$: usrDesc$="A description"

 DIM charUuid : charUuid = BleHandleUuid16(1)

 DIM charMet : charMet = BleAttrMetaData(1,1,20,0,metaSuccess)

 DIM mdUsrDsc : mdUsrDsc = BleAttrMetaData(1,1,20,0,metaSuccess)

 DIM mdSccd : mdSccd = BleAttrMetadata(1,1,2,0,rc) //CCCD metadata for char

 //initialise char, write/read enabled, accept signed writes, indicatable

 rc=BleCharNew(0x4B,charUuid,charMet,0,mdSccd)

 rc=BleCharDescUserDesc(usrDesc$,mdUsrDsc)

 IF rc==0 THEN

 PRINT "\nChar created and User Description '";usrDesc$;"' added"

 ELSE

 PRINT "\nFailed"

 ENDIF

Expected Output:

BLECHARDESCUSERDESC is an extension function.

BleCharDescPrstnFrmt

FUNCTION

This function adds an optional Presentation Format Descriptor to a Characteristic and can only be called after

BleCharNew() has started the process of describing a new Characteristic. It adds the descriptor to the gatt

table with open read permission and no write access, which means a metadata parameter is not required.

Char created and User Description 'A description' added

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

90 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

The BT 4.0 specification states that one or more presentation format descriptors can occur in a Characteristic

and that, if more than one, then an Aggregate Format description is also included.

The book “Bluetooth Low Energy: The Developer's Handbook” by Robin Heydon, says the following on the

subject of the Presentation Format Descriptor:

“One of the goals for the Generic Attribute Profile was to enable generic clients. A generic client
is defined as a device that can read the values of a characteristic and display them to the user
without understanding what they mean…
The most important aspect that denotes if a characteristic can be used by a generic client is the
Characteristic Presentation Format descriptor. If this exists, it’s possible for the generic client to
display its value, and it is safe to read this value.”

BLECHARDESCPRSTNFRMT (nFormat,nExponent,nUnit,nNameSpace,nNSdesc)

Returns
INTEGER, a result code.

Typical value: 0x0000 (indicates a successful operation)

Arguments

nFormat

byVal nFormat AS INTEGER

Valid range 0 to 255.

The format specifies how the data in the Value attribute is structured. A list of valid

values for this argument is found at

http://developer.bluetooth.org/gatt/Pages/FormatTypes.aspx and the enumeration is

described in the BT 4.0 spec, section 3.3.3.5.2.

At the time of writing, the enumeration list is as follows:

0x00 RFU 0x01 boolean

0x02 2bit 0x03 nibble

0x04 uint8 0x05 uint12

0x06 uint16 0x07 uint24

0x08 uint32 0x09 uint48

0x0A uint64 0x0B uint128

0x0C sint8 0x0D sint12

0x0E sint16 0x0F sint24

0x10 sint32 0x11 sint48

0x12 sint64 0x13 sint128

0x14 float32 0x15 float64

0x16 SFLOAT 0x17 FLOAT

0x18 duint16 0x19 utf8s

0x1A utf16s 0x1B struct

0x1C-0xFF RFU

nExponent

byVal nExponent AS INTEGER

Valid range: -128 to 127

This value is used with integer data types given by the enumeration in nFormat to

further qualify the value so that the actual value is:
actual value = Characteristic Value * 10 to the power of nExponent.

nUnit

byVal nUnit AS INTEGER
Valid range: 0 to 65535.

This value is a 16 bit UUID used as an enumeration to specify the units which are

listed in the Assigned Numbers document published by the Bluetooth SIG, found
at: http://developer.bluetooth.org/gatt/units/Pages/default.aspx

nNameSpace
byVal nNameSpace AS INTEGER
Valid range: 0 to 255.

http://ews-support.lairdtech.com/
http://developer.bluetooth.org/gatt/Pages/FormatTypes.aspx
http://developer.bluetooth.org/gatt/units/Pages/default.aspx

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

91 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

The value identifies the organization, defined in the Assigned Numbers document

published by the Bluetooth SIG, found at:
https://developer.bluetooth.org/gatt/Pages/GattNamespaceDescriptors.aspx

nNSdesc
byVal nNSdesc AS INTEGER
Valid range: 0 to 65535.

This value is a description of the organisation specified by nNameSpace.

Interactive Command No

 //Example :: BleCharDescPrstnFrmt.sb (See in BL600CodeSnippets.zip)

 DIM rc, metaSuccess,usrDesc$: usrDesc$="A description"

 DIM charUuid : charUuid = BleHandleUuid16(1)

 DIM charMet : charMet = BleAttrMetaData(1,1,20,0,metaSuccess)

 DIM mdUsrDsc : mdUsrDsc = BleAttrMetaData(1,1,20,0,metaSuccess)

 DIM mdSccd : mdSccd = BleAttrMetadata(1,1,2,0,rc) //CCCD metadata for char

 //initialise char, write/read enabled, accept signed writes, indicatable

 rc=BleCharNew(0x4B,charUuid,charMet,0,mdSccd)

 rc=BleCharDescUserDesc(usrDesc$,mdUsrDsc)

 IF rc==0 THEN

 PRINT "\nChar created and User Description '";usrDesc$;"' added"

 ELSE

 PRINT "\nFailed"

 ENDIF

 // ~ ~ ~

 // other optional descriptors

 // ~ ~ ~

 // 16 bit signed integer = 0x0E

 // exponent = 2

 // unit = 0x271A (amount concentration (mole per cubic metre))

 // namespace = 0x01 == Bluetooth SIG

 // description = 0x0000 == unknown

 IF BleCharDescPrstnFrmt(0x0E,2,0x271A,0x01,0x0000)==0 THEN

 PRINT "\nPresentation Format Descriptor added"

 ELSE

 PRINT "\nPresentation Format Descriptor not added"

 ENDIF

Expected Output:

BLECHARDESCPRSTNFRMT is an extension function.

BleCharDescAdd

Note: This function has a bug for firmware versions prior to 1.4.X.Y

FUNCTION

Char created and User Description 'A description' added

Presentation Format Descriptor added

http://ews-support.lairdtech.com/
https://developer.bluetooth.org/gatt/Pages/GattNamespaceDescriptors.aspx

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

92 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

This function is used to add any Characteristic Descriptor as long as its UUID is not in the range 0x2900 to

0x2904 inclusive as they are treated specially using dedicated API functions. For example, 0x2904 is the

Presentation Format Descriptor and it is catered for by the API function BleCharDescPrstnFrmt().

Since this function allows existing / future defined Descriptors to be added that may or may not have write

access or require security requirements, a metadata object must be supplied allowing that to be configured.

BLECHARDESCADD (nUuid16, attr$, mdDesc)

Returns
INTEGER, a result code.

Typical value: 0x0000 (indicates a successful operation)

Arguments

nUuid16

byVal nUuid16 AS INTEGER

Value range: 0x2905 to 0x2999

Note: This is the actual UUID value, NOT the handle..

The highest value at the time of writing is 0x2908, defined for the Report Reference

Descriptor. See

http://developer.bluetooth.org/gatt/descriptors/Pages/DescriptorsHomePage.aspx for a list

of Descriptors defined and adopted by the Bluetooth SIG.

attr$
byRef attr$ AS STRING

This is the data that will be saved in the Descriptor’s attribute

mdDesc

byVal n AS INTEGER

This is mandatory metadata that is used to define the properties of the Descriptor

attribute that will be created in the Characteristic and will have been pre-created

using the help of the function BleAttrMetadata(). If the write rights are set to 1 or

greater, then the attribute is marked as writable and so the client will be able to
modify the attribute value.

Interactive
Command

No

 //Example :: BleCharDescAdd.sb (See in BL600CodeSnippets.zip)

 DIM rc, metaSuccess,usrDesc$: usrDesc$="A description"

 DIM charUuid : charUuid = BleHandleUuid16(1)

 DIM charMet : charMet = BleAttrMetaData(1,1,20,0,metaSuccess)

 DIM mdUsrDsc : mdUsrDsc = charMet

 DIM mdSccd : mdSccd = charMet

 //initialise char, write/read enabled, accept signed writes, indicatable

 rc=BleCharNew(0x4B,charUuid,charMet,0,mdSccd)

 rc=BleCharDescUserDesc(usrDesc$,mdUsrDsc)

 rc=BleCharDescPrstnFrmt(0x0E,2,0x271A,0x01,0x0000)

 // ~ ~ ~

 // other descriptors

 // ~ ~ ~

 //++++

 //Add the other Descriptor 0x29XX -- first one

 //++++

 DIM mdChrDsc : mdChrDsc = BleAttrMetadata(1,0,20,0,metaSuccess)

 DIM attr$: attr$="some_value1"

 rc=BleCharDescAdd(0x2905,attr$,mdChrDsc)

 //++++

 //Add the other Descriptor 0x29XX -- second one

http://ews-support.lairdtech.com/
http://developer.bluetooth.org/gatt/descriptors/Pages/DescriptorsHomePage.aspx

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

93 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 //++++

 attr$="some_value2"

 rc=rc+BleCharDescAdd(0x2906,attr$,mdChrDsc)

 //++++

 //Add the other Descriptor 0x29XX -- last one

 //++++

 attr$="some_value3"

 rc=rc+BleCharDescAdd(0x2907,attr$,mdChrDsc)

 IF rc==0 THEN

 PRINT "\nOther descriptors added successfully"

 ELSE

 PRINT "\nFailed"

 ENDIF

Expected Output:

BLECHARDESCADD is an extension function.

BleCharCommit

FUNCTION

This function commits a Characteristic which was prepared by calling BleCharNew() and optionally

BleCharDescUserDesc(), BleCharDescPrstnFrmt(), or BleCharDescAdd().

It is an instruction to the GATT table manager that all relevant attributes that make up the Characteristic

should appear in the GATT table in a single atomic transaction. If it successfully created, a single composite

Characteristic handle is returned which should not be confused with GATT table attribute handles. If the

Characteristic was not accepted then this function returns a non-zero result code which conveys the reason;

and the handle argument that is returned has a special invalid handle of 0.

The characteristic handle that is returned refers to an internal opaque object that is a linked list of all the

attribute handles in the Characteristic. This implies that there is a minimum of one (for the characteristic value

attribute) and more as appropriate. For example, if the Characteristic’s property specified is notifiable, then a

single CCCD attribute also exists.

Note: In the GATT table, when a Characteristic is registered there are actually a minimum of two

attribute handles, one for the Characteristic Declaration and the other for the Value. However

there is no need for the smart BASIC apps developer to ever access it, so it is not exposed. Access

is not required because the Characteristic was created by the application developer and so shall

already know its content – which never changes once created.

BLECHARCOMMIT (hService,attr$,charHandle)

Returns
INTEGER, a result code.

Typical value: 0x0000 (indicates a successful operation)

Arguments

hService
byVal hService AS INTEGER

This is the handle of the service that this Characteristic shall belong to, which in turn was

created using the function BleSvcCommit().

Other descriptors added successfully

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

94 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

attr$

byRef attr$ AS STRING

This string contains the initial value of the Value attribute in the Characteristic. The

content of this string is copied into the GATT table and so the variable can be reused after
this function returns.

charHandle

byRef charHandle AS INTEGER

The composite handle for the newly created Characteristic is returned in this argument. It

is zero if the function fails with a non-zero result code. This handle is then used as an

argument in subsequent function calls to perform read/write actions, so it is must be

placed in a global smartBASIC variable. When a significant event occurs as a result of

action by a remote client, an event message is sent to the application which can be

serviced using a handler. That message contains a handle field corresponding to this

composite characteristic handle. Standard procedure is to ‘select’ on that value to

determine which Characteristic the message is intended for.

See event messages: EVCHARHVC, EVCHARVAL, EVCHARCCCD, EVCHARSCCD,
EVCHARDESC.

Interactive
Command

No

 // Example :: BleCharCommit.sb (See in BL600CodeSnippets.zip)

 #DEFINE BLE_SERVICE_SECONDARY 0

 #DEFINE BLE_SERVICE_PRIMARY 1

 DIM rc

 DIM attr$,usrDesc$: usrDesc$="A description"

 DIM hHtsSvc //composite handle for hts primary service

 DIM mdCharVal : mdCharVal = BleAttrMetaData(1,1,20,0,rc)

 DIM mdCccd : mdCccd = BleAttrMetadata(1,1,2,0,rc)

 DIM mdUsrDsc : mdUsrDsc = BleAttrMetaData(1,1,20,0,rc)

 DIM hHtsMeas //composite handle for htsMeas characteristic

 //--

 //Create a Health Thermometer PRIMARY service attribute which has a uuid of 0x1809

 //--

 rc=BleServiceNew(BLE_SERVICE_PRIMARY, BleHandleUuid16(0x1809), hHtsSvc)

 //--

 //Create the Measurement Characteristic object, add user description descriptor

 //--

 rc=BleCharNew(0x2A,BleHandleUuid16(0x2A1C),mdCharVal,mdCccd,0)

 rc=BleCharDescUserDesc(usrDesc$,mdUsrDsc)

 //--

 //Commit the characteristics with some initial data

 //--

 attr$="hello\00worl\64"

 IF BleCharCommit(hHtsSvc,attr$,hHtsMeas)==0 THEN

 PRINT "\nCharacteristic Commited"

 ELSE

 PRINT "\nFailed"

 ENDIF

 rc=BleServiceCommit(hHtsSvc)

 //the characteristic will now be visible in the GATT table

 //and is refrenced by ‘hHtsMeas’for subsequent calls

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

95 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Expected Output:

BLECHARCOMMIT is an extension function.

BleCharValueRead

FUNCTION

This function reads the current content of a characteristic identified by a composite handle that was

previously returned by the function BleCharCommit().

In most cases a read will be performed when a GATT client writes to a characteristic value attribute. The write

event is presented asynchronously to the smart BASIC application in the form of EVCHARVAL event and so

this function will most often be accessed from the handler that services that event.

BLECHARVALUEREAD (charHandle,attr$)

Returns
INTEGER, a result code.

Typical value: 0x0000 (indicates a successful operation)

Arguments

charHandle
byVal charHandle AS INTEGER

This is the handle to the characteristic whose value must be read which was returned

when BleCharCommit() was called.

attr$
byRef attr$ AS STRING
This string variable contains the new value from the characteristic.

Interactive
Command

No

 //Example :: BleCharValueRead.sb (See in BL600CodeSnippets.zip)

 DIM hMyChar,rc, conHndl

 //==

 // Initialise and instantiate service, characteristic,

 //==

 FUNCTION OnStartup()

 DIM rc, hSvc, scRpt$, adRpt$, addr$, attr$: attr$="Hi"

 //commit service

 rc=BleServiceNew(1, BleHandleUuid16(0x18EE), hSvc)

 //initialise char, write/read enabled, accept signed writes

 rc=BleCharNew(0x0A,BleHandleUuid16(1),BleAttrMetaData(1,1,20,0,rc),0,0)

 //commit char initialised above, with initial value "hi" to service 'hSvc'

 rc=BleCharCommit(hSvc,attr$,hMyChar)

 //commit changes to service

 rc=BleServiceCommit(hSvc)

 //initialise scan report

 rc=BleScanRptInit(scRpt$)

 //Add 1 service handle to scan report

 rc=BleAdvRptAddUuid16(scRpt$,hSvc,-1,-1,-1,-1,-1)

 //commit reports to GATT table - adRpt$ is empty

 rc=BleAdvRptsCommit(adRpt$,scRpt$)

 rc=BleAdvertStart(0,addr$,150,0,0)

 ENDFUNC rc

Characteristic Commited

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

96 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 //==

 // New char value handler

 //==

 FUNCTION HndlrChar(BYVAL chrHndl, BYVAL offset, BYVAL len)

 dim s$

 IF chrHndl == hMyChar THEN

 PRINT "\n";len;" byte(s) have been written to char value attribute from

offset ";offset

 rc=BleCharValueRead(hMyChar,s$)

 PRINT "\nNew Char Value: ";s$

 ENDIF

 rc=BleAdvertStop()

 rc=BleDisconnect(conHndl)

 ENDFUNC 0

 //==

 // Get the connnection handle

 //==

 FUNCTION HndlrBleMsg(BYVAL nMsgId, BYVAL nCtn)

 conHndl=nCtn

 ENDFUNC 1

 IF OnStartup()==0 THEN

 DIM at$: rc = BleCharValueRead(hMyChar,at$)

 PRINT "\nCharacteristic value attribute: ";at$;"\nConnect to BL600 and send a new

value\n"

 ELSE

 PRINT "\nFailure OnStartup"

 ENDIF

 ONEVENT EVCHARVAL CALL HndlrChar

 ONEVENT EVBLEMSG CALL HndlrBleMsg

 WAITEVENT

 PRINT "\nExiting..."

Expected Output:

BLECHARVALUEREAD is an extension function.

BleCharValueWrite

Note: For firmware versions prior to 1.4.X.Y, the module must be in a connection for this function to

work.

FUNCTION

This function writes new data into the VALUE attribute of a Characteristic, which is in turn identified by a

composite handle returned by the function BleCharCommit().

Characteristic value attribute: Hi

Connect to BL600 and send a new value

New characteristic value: Laird

Exiting...

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

97 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

BLECHARVALUEWRITE (charHandle,attr$)

Returns
INTEGER, a result code.

Typical value: 0x0000 (indicates a successful operation)

Arguments

charHandle
byVal charHandle AS INTEGER

This is the handle to the characteristic whose value must be updated which was returned

when BleCharCommit() was called.

attr$
byRef attr$ AS STRING

String variable, contains new value to write to the characteristic.

Interactive
Command

No

 //Example :: BleCharValueWrite.sb (See in BL600CodeSnippets.zip)

 DIM hMyChar,rc

 //==

 // Initialise and instantiate service, characteristic,

 //==

 FUNCTION OnStartup()

 DIM rc, hSvc, attr$: attr$="Hi"

 //commit service

 rc = BleServiceNew(1, BleHandleUuid16(0x18EE), hSvc)

 //initialise char, write/read enabled, accept signed writes

 rc=BleCharNew(0x4A,BleHandleUuid16(1),BleAttrMetaData(1,1,20,0,rc),0,0)

 //commit char initialised above, with initial value "hi" to service 'hSvc'

 rc=BleCharCommit(hSvc,attr$,hMyChar)

 //commit changes to service

 rc = BleServiceCommit(hSvc)

 ENDFUNC rc

 //==

 // Uart Rx handler - write input to characteristic

 //==

 FUNCTION HndlrUartRx()

 TimerStart(0,10,0)

 ENDFUNC 1

 //==

 // Timer0 timeout handler

 //==

 FUNCTION HndlrTmr0()

 DIM t$: rc=UartRead(t$)

 rc = BleCharValueWrite(hMyChar,t$)

 IF rc==0 THEN

 PRINT "\nNew characteristic value: ";t$

 ELSE

 PRINT "\nFailed to write new characteristic value ";integer.h'rc;"\n"

 ENDIF

 ENDFUNC 0

 IF OnStartup()==0 THEN

 DIM at$: rc = BleCharValueRead(hMyChar,at$)

 PRINT "\nCharacteristic value attribute: ";at$;"\nType a new value\n"

 ELSE

 PRINT "\nFailure OnStartup"

 ENDIF

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

98 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 ONEVENT EVUARTRX CALL HndlrUartRx

 ONEVENT EVTMR0 CALL HndlrTmr0

 WAITEVENT

 PRINT "\nExiting..."

Expected Output:

BLECHARVALUEWRITE is an extension function.

BleCharValueNotify

FUNCTION

If there is BLE connection, this function writes new data into the VALUE attribute of a Characteristic so that it

can be sent as a notification to the GATT client. The characteristic is identified by a composite handle that

was returned by the function BleCharCommit().

A notification does not result in an acknowledgement from the client.

BLECHARVALUENOTIFY (charHandle,attr$)

Returns
INTEGER, a result code.

Typical value: 0x0000 (indicates a successful operation)

Arguments

charHandle
byVal charHandle AS INTEGER

This is the handle to the characteristic whose value must be updated which was returned

when BleCharCommit() was called.

attr$

byRef attr$ AS STRING

String variable containing new value to write to the characteristic and then send as a

notification to the client. If there is no connection, this function fails with an
appropriate result code.

Interactive
Command

No

 //Example :: BleCharValueNotify.sb (See in BL600CodeSnippets.zip)

 DIM hMyChar,rc,at$,conHndl

 //==

 // Initialise and instantiate service, characteristic, start adverts

 //==

 FUNCTION OnStartup()

 DIM rc, hSvc, at$, attr$, adRpt$, addr$, scRpt$

 attr$="Hi"

 DIM mdCccd : mdCccd = BleAttrMetadata(1,1,2,0,rc) //CCCD metadata for char

Characteristic value attribute: Hi

Send a new value

Laird

New characteristic value: Laird

Exiting...

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

99 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 //Commit svc with handle 'hSvcUuid'

 rc=BleServiceNew(1, BleHandleUuid16(0x18EE), hSvc)

 //initialise char, write/read enabled, accept signed writes, notifiable

 rc=BleCharNew(0x12,BleHandleUuid16(1),BleAttrMetaData(1,0,20,0,rc),mdCccd,0)

 //commit char initialised above, with initial value "hi" to service 'hMyChar'

 rc=BleCharCommit(hSvc,attr$,hMyChar)

 //commit changes to service

 rc=BleServiceCommit(hSvc)

 rc=BleScanRptInit(scRpt$)

 //Add 1 service handle to scan report

 rc=BleAdvRptAddUuid16(scRpt$,hSvc,-1,-1,-1,-1,-1)

 //commit reports to GATT table - adRpt$ is empty

 rc=BleAdvRptsCommit(adRpt$,scRpt$)

 rc=BleAdvertStart(0,addr$,50,0,0)

 ENDFUNC rc

 //==

 // Close connections so that we can run another app without problems

 //==

 SUB CloseConnections()

 rc=BleDisconnect(conHndl)

 rc=BleAdvertStop()

 ENDSUB

 //==

 // Ble event handler

 //==

 FUNCTION HndlrBleMsg(BYVAL nMsgId, BYVAL nCtx)

 conHndl=nCtx

 IF nMsgID==1 THEN

 PRINT "\n\n--- Disconnected from client"

 EXITFUNC 0

 ELSEIF nMsgID==0 THEN

 PRINT "\n--- Connected to client"

 ENDIF

 ENDFUNC 1

 //==

 // CCCD descriptor written handler

 //==

 FUNCTION HndlrCharCccd(BYVAL charHandle, BYVAL nVal) AS INTEGER

 DIM value$

 IF charHandle==hMyChar THEN

 PRINT "\nCCCD Val: ";nVal

 IF nVal THEN

 PRINT " : Notifications have been enabled by client"

 value$="hello"

 IF BleCharValueNotify(hMyChar,value$)!=0 THEN

 PRINT "\nFailed to notify new value :";INTEGER.H'rc

 ELSE

 PRINT "\nSuccessful notification of new value"

 EXITFUNC 0

 ENDIF

 ELSE

 PRINT " : Notifications have been disabled by client"

 ENDIF

 ELSE

 PRINT "\nThis is for some other characteristic"

 ENDIF

 ENDFUNC 1

 ONEVENT EVBLEMSG CALL HndlrBleMsg

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

100 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 ONEVENT EVCHARCCCD CALL HndlrCharCccd

 IF OnStartup()==0 THEN

 rc = BleCharValueRead(hMyChar,at$)

 PRINT "\nCharacteristic Value: ";at$

 PRINT "\nYou can connect and write to the CCCD characteristic."

 PRINT "\nThe BL600 will then notify your device of a new characteristic value\n"

 ELSE

 PRINT "\nFailure OnStartup"

 ENDIF

 WAITEVENT

 CloseConnections()

 PRINT "\nExiting..."

Expected Output:

BLECHARVALUENOTIFY is an extension function.

BleCharValueIndicate

FUNCTION

If there is BLE connection this function is used to write new data into the VALUE attribute of a Characteristic

so that it can be sent as an indication to the GATT client. The characteristic is identified by a composite

handle returned by the function BleCharCommit().

An indication results in an acknowledgement from the client and that will be presented to the smart BASIC

application as the EVCHARHVC event.

BLECHARVALUEINDICATE (charHandle,attr$)

Returns
INTEGER, a result code.

Typical value: 0x0000 (indicates a successful operation)

Arguments

charHandle
byVal charHandle AS INTEGER

This is the handle to the characteristic whose value must be updated which was returned

when BleCharCommit() was called.

attr$

byRef attr$ AS STRING

String variable containing new value to write to the characteristic and then to send

as a notification to the client. If there is no connection, this function fails with an
appropriate result code.

Interactive
Command

No

 //Example :: BleCharValueIndicate.sb (See in BL600CodeSnippets.zip)

 DIM hMyChar,rc,at$,conHndl

Characteristic Value: Hi

You can connect and write to the CCCD characteristic.

The BL600 will then notify your device of a new characteristic value

--- Connected to client

CCCD Val: 0 : Notifications have been disabled by client

CCCD Val: 1 : Notifications have been enabled by client

Successful notification of new value

Exiting...

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

101 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 //==

 // Initialise and instantiate service, characteristic, start adverts

 //==

 FUNCTION OnStartup()

 DIM rc, hSvc, at$, attr$, adRpt$, addr$, scRpt$

 attr$="Hi"

 DIM mdCccd : mdCccd = BleAttrMetadata(1,1,2,0,rc) //CCCD metadata for char

 //Commit svc with handle 'hSvcUuid'

 rc=BleServiceNew(1, BleHandleUuid16(0x18EE), hSvc)

 //initialise char, write/read enabled, accept signed writes, notifiable

 rc=BleCharNew(0x22,BleHandleUuid16(1),BleAttrMetaData(1,0,20,0,rc),mdCccd,0)

 //commit char initialised above, with initial value "hi" to service 'hMyChar'

 rc=BleCharCommit(hSvc,attr$,hMyChar)

 //commit changes to service

 rc=BleServiceCommit(hSvc)

 rc=BleScanRptInit(scRpt$)

 //Add 1 service handle to scan report

 rc=BleAdvRptAddUuid16(scRpt$,hSvc,-1,-1,-1,-1,-1)

 //commit reports to GATT table - adRpt$ is empty

 rc=BleAdvRptsCommit(adRpt$,scRpt$)

 rc=BleAdvertStart(0,addr$,50,0,0)

 ENDFUNC rc

 //==

 // Ble event handler

 //==

 FUNCTION HndlrBleMsg(BYVAL nMsgId, BYVAL nCtx)

 conHndl=nCtx

 IF nMsgID==1 THEN

 PRINT "\n\n--- Disconnected from client"

 EXITFUNC 0

 ELSEIF nMsgID==0 THEN

 PRINT "\n--- Connected to client"

 ENDIF

 ENDFUNC 1

 //==

 // CCCD descriptor written handler

 //==

 FUNCTION HndlrCharCccd(BYVAL charHandle, BYVAL nVal)

 DIM value$

 IF charHandle==hMyChar THEN

 PRINT "\nCCCD Val: ";nVal

 IF nVal THEN

 PRINT " : Indications have been enabled by client"

 value$="hello"

 rc=BleCharValueIndicate(hMyChar,value$)

 IF rc!=0 THEN

 PRINT "\nFailed to indicate new value :";INTEGER.H'rc

 ELSE

 PRINT "\nSuccessful indication of new value"

 EXITFUNC 1

 ENDIF

 ELSE

 PRINT " : Indications have been disabled by client"

 ENDIF

 ELSE

 PRINT "\nThis is for some other characteristic"

 ENDIF

 ENDFUNC 1

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

102 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 //==

 // Indication Acknowledgement Handler

 //==

 FUNCTION HndlrChrHvc(BYVAL charHandle)

 IF charHandle == hMyChar THEN

 PRINT "\n\nGot confirmation of recent indication"

 ELSE

 PRINT "\n\nGot confirmation of some other indication: ";charHandle

 ENDIF

 ENDFUNC 0

 ONEVENT EVBLEMSG CALL HndlrBleMsg

 ONEVENT EVCHARCCCD CALL HndlrCharCccd

 ONEVENT EVCHARHVC CALL HndlrChrHvc

 IF OnStartup()==0 THEN

 rc = BleCharValueRead(hMyChar,at$)

 PRINT "\nCharacteristic Value: ";at$

 PRINT "\nYou can connect and write to the CCCD characteristic."

 PRINT "\nThe BL600 will then indicate a new characteristic value\n"

 ELSE

 PRINT "\nFailure OnStartup"

 ENDIF

 WAITEVENT

 rc=BleDisconnect(conHndl)

 rc=BleAdvertStop()

 PRINT "\nExiting..."

Expected Output:

BLECHARVALUEINDICATE is an extension function.

BleCharDescRead

FUNCTION

This function reads the current content of a writable Characteristic Descriptor identified by the two

parameters supplied in the EVCHARDESC event message after a Gatt Client writes to it.

In most cases a local read is performed when a GATT client writes to a characteristic descriptor attribute. The

write event is presented asynchronously to the smart BASIC application in the form of an EVCHARDESC event

and so this function is most often accessed from the handler that services that event.

Characteristic Value: Hi

You can connect and write to the CCCD characteristic.

The BL600 will then indicate a new characteristic value

--- Connected to client

CCCD Val: 0 : Indications have been disabled by client

CCCD Val: 2 : Indications have been enabled by client

Successful indication of new value

Got confirmation of recent indication

Exiting...

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

103 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

BLECHARDESCREAD (charHandle,nDescHandle,nOffset,nLength,nDescUuidHandle,attr$))

Returns
INTEGER, a result code.

Typical value: 0x0000 (indicates a successful operation)

Arguments

charHandle

byVal charHandle AS INTEGER

This is the handle to the characteristic whose descriptor must be read which was

returned when BleCharCommit() was called and will have been supplied in the

EVCHARDESC event message.

nDescHandle

byVal nDescHandle AS INTEGER

This is an index into an opaque array of descriptor handles inside the charHandle and

will have been supplied as the second parameter in the EVCHARDESC event
message.

nOffset
byVal nOffset AS INTEGER

This is the offset into the descriptor attribute from which the data shoud be read
and copied into attr$.

nLength
byVal nLength AS INTEGER

This is the number of bytes to read from the descriptor attribute from offset nOffset
and copied into attr$.

nDescUuidHandle
byRef nDescUuidHandle AS INTEGER
On exit this will be updated with the uuid handle of the descriptor that got updated.

attr$
byRef attr$ AS STRING

On exit this string variable contains the new value from the characteristic descriptor.

Interactive
Command

No

 //Example :: BleCharDescRead.sb (See in BL600CodeSnippets.zip)

 DIM rc,conHndl,hMyChar

 //--

 //Create some PRIMARY service attribure which has a uuid of 0x18FF

 //--

 SUB OnStartup()

 DIM hSvc,attr$,scRpt$,adRpt$,addr$

 rc=BleSvcCommit(1,BleHandleUuid16(0x18FF),hSvc)

 // Add one or more characteristics

 rc=BleCharNew(0x0a,BleHandleUuid16(0x2AFF),BleAttrMetadata(1,1,20,1,rc),0,0)

 //Add a user description

 DIM s$: s$="You can change this"

 rc=BleCharDescAdd(0x2999,s$,BleAttrMetadata(1,1,20,1,rc))

 //commit characteristic

 attr$="\00" //no initial alert

 rc = BleCharCommit(hSvc,attr$,hMyChar)

 rc=BleScanRptInit(scRpt$)

 //Add 1 char handle to scan report

 rc=BleAdvRptAddUuid16(scRpt$,hMyChar,-1,-1,-1,-1,-1)

 //commit reports to GATT table - adRpt$ is empty

 rc=BleAdvRptsCommit(adRpt$,scRpt$)

 rc=BleAdvertStart(0,addr$,200,0,0)

 ENDSUB

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

104 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 //==

 // Close connections so that we can run another app without problems

 //==

 SUB CloseConnections()

 rc=BleDisconnect(conHndl)

 rc=BleAdvertStop()

 ENDSUB

 //==

 // Ble event handler - Just to get the connection handle

 //==

 FUNCTION HndlrBleMsg(BYVAL nMsgId, BYVAL nCtx)

 conHndl=nCtx

 ENDFUNC 1

 //==

 // Handler to service writes to descriptors by a gatt client

 //==

 FUNCTION HandlerCharDesc(BYVAL hChar AS INTEGER, BYVAL hDesc AS INTEGER)

 DIM instnc,nUuid,a$, offset,duid

 IF hChar == hMyChar THEN

 rc = BleCharDescRead(hChar,hDesc,0,20,duid,a$)

 IF rc==0 THEN

 PRINT "\nRead 20 bytes from index ";offset;" in new char value."

 PRINT "\n ::New Descriptor Data: ";StrHexize$(a$);

 PRINT "\n ::Length=";StrLen(a$)

 PRINT "\n ::Descriptor UUID ";integer.h' duid

 EXITFUNC 0

 ELSE

 PRINT "\nCould not access the uuid"

 ENDIF

 ELSE

 PRINT "\nThis is for some other characteristic"

 ENDIF

 ENDFUNC 1

 //install a handler for writes to characteristic values

 ONEVENT EVCHARDESC CALL HandlerCharDesc

 ONEVENT EVBLEMSG CALL HndlrBleMsg

 OnStartup()

 PRINT "\nWrite to the User Descriptor with UUID 0x2999"

 //wait for events and messages

 WAITEVENT

 CloseConnections()

 PRINT "\nExiting..."

Expected Output:

Write to the User Descriptor with UUID 0x2999

Read 20 bytes from index 0 in new char value.

 ::New Descriptor Data: 4C61697264

 ::Length=5

 ::Descriptor UUID FE012999

Exiting...

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

105 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

BLECHARDESCREAD is an extension function.

GATT Client Functions

This section describes all functions related to GATT Client capability which enables interaction with GATT

servers at the other end of the BLE connection. The Bluetooth Specification 4.0 and newer allows for a device

to be a GATT server and/or GATT Client simultaneously and the fact that a peripheral mode device accepts a

connection and in all use cases has a GATT server table does not preclude it from interacting with a GATT

table in the central role device which is connected to it.

These GATT Client functions allow the developer to discover services, characteristics and descriptors, read and

write to characteristics and descriptors and handle either notifications or indications.

To interact with a remote GATT server it is important to have a good understanding of how it is constructed

and the best way is to see it as a table consisting of many rows and 3 visible columns (handle, type, value)

and at least one more column which is not visible but the content will affect access to the data column.

16 bit Handle Type (16 or 128 bit) Value (1 to 512 bytes) Permissions

These rows are grouped into collections called services and characteristics. The grouping is achieved by

creating a row with Type = 0x2800 or 0x2801 for services (primary and secondary respectively) and 0x2803

for characteristics.

Basically, a table should be scanned from top to bottom and the specification stipulates that the 16 bit

handle field SHALL contain values in the range 1 to 65535 and SHALL be in ascending order and gaps are

allowed.

When scanning, if a row is encountered with the value 0x2800 or 0x2801 in the ‘Type’ column then it SHALL

be understood as the start of a primary or secondary service which in turn SHALL contain at least one

charactestic or one ‘included service’ which have Type=0x2803 and 0x2802 respectively.

When a row with Type = 0x2803, a characteristic, is encountered, then the next row shall contain the value

for that characteristic and then after that there may be 0 or more descriptors.

This means each characteristic shall consist of at least 2 rows in the table, and if descriptors exist for that

characteristic then a single row per descriptor.

Handle Type Value Comments

0x0001 0x2800 UUID of the Service Primary Service 1 Start

0x0002 0x2803 Properties, Value Handle, Value UUID1 Characteristic 1 Start

0x0003 Value UUID1 Value : 1 to 512 bytes Actual data

0x0004 0x2803 Properties, Value Handle, Value UUID2 Characteristic 2 Start

0x0005 Value UUID2 Value : 1 to 512 bytes Actual data

0x0006 0x2902 Value Descriptor 1(CCCD)

0x0007 0x2903 Value Descriptor 2 (SCCD)

0x0008 0x2800 UUID of the Service Primary Service 2 Start

0x0009 0x2803 Properties, Value Handle, Value UUID3 Characteristic 1 Start

0x000A Value UUID3 Value : 1 to 512 bytes Actual data

0x000B 0x2800 UUID of the Service Primary Service 3 Start

0x000C 0x2803 Properties, Value Handle, Value UUID3 Characteristic 3 Start

0x000D Value UUID3 Value : 1 to 512 bytes Actual data

0x000E 0x2902 Value Descriptor 1(CCCD)

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

106 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Handle Type Value Comments

0x000F 0x2903 Value Descriptor 2 (SCCD)

0x0010 0x2904 Value (presentation format data) Descriptor 3

0x00111 0x2906 Value (valid range) Descriptor 4 (Range)

A colour highlighted example of a GATT Server table is shown above which shows there are 3 services (at

handles 0x0001,0x0008 and 0x000B) because there are 3 rows where the Type = 0x2803 and all rows up to

the next instance of a row with Type=0x2800 or 2801 belong to that service.

In each group of rows for a service, you can see one or more characteristics where Type=0x2803. For

example the service beginning at handle 0x0008 has one characteristic which contains 2 rows identified by

handles 0x0009 and 0x000A and the actual value for the characteristic starting at 0x0009 is in the row

identified by 0x000A.

Likewise, each characteristic starts with a row with Type=0x2803 and all rows following it up to a row with

type = 0x2800/2801/2803 are considered belonging to that characteristic. For example see characteristic at

row with handle = 0x0004 which has the mandatory value row and then 2 descriptors.

The Bluetooth specification allows for multiple instances of the same service or characteristics or descriptors

and they are differentiated by the unique handle. Hence when a handle is known there is no ambiguity.

Each GATT Server table allocates the handle numbers, the only stipulation being that they be in ascending

order (gaps are allowed). This is important to understand because two devices containing the same services

and characteristic and in EXACTLY the same order may NOT allocate the same handle values, especially if one

device increments handles by 1 and another with some other arbitrary random value. The specification DOES

however stipulate that once the handle values are allocated they be fixed for all subsequent connections,

unless the device exposes a GATT Service which allows for indications to the client that the handle order has

changed and thus force it to flush it’s cache and rescan the GATT table.

When a connection is first established, there is no prior knowledge as to which services exist and of their

handles, so the GATT protocol which is used to interact with GATT servers provides procedures that allow for

the GATT table to be scanned so that the client can ascertain which services are offered. This section

describes smartBASIC functions which encapsulate and manage those procedures to enable a smartBASIC

application to map the table.

These helper functions have been written to help gather the handles of all the rows which contain the value

type for appropriate characteristics as those are the ones that will be read or written to. The smartBASIC

internal engine also maintains data objects so that it is possible to interact with descriptors associated with

the characteristic.

In a nutshell, the table scanning process will reveal characteristic handles (as handles of handles) and these

are then used in other GATT client related smartBASIC functions to interact with the table to for example

read/write or accept and process incoming notifications and indications.

This encapsulated approach is to ensure that the least amount of RAM resource is required to implement a

GATT Client and given that these procedures operate at speeds many orders of magnitude slower compared

to the speed of the cpu and energy consumption is to be kept as low as possible, the response to a command

will be delivered asynchnornously as an event for which a handler will have to be specified in the user

smartBASIC application.

The rest of this chapter describes all the GATT Client commands, responses and events in detail along with

example code demonstrating usage and expected output.

Events and Messages

The nature of GATT Client operation consists of multiple queries and acting on the responses. Due to the

connection intervals being vastly slower than the speed of the cpu, responses can arrive many 10s of

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

107 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

milliseconds after the precudure was triggered, which are delivered to an app using an event or message.

Since these event/messages are tightly coupled with the appropriate commands, all but one will be described

when the command that triggers them is described.

The event EVGATTCTOUT is applicable for all Gatt Client related functions which result in transactions over

the air. The Bluetooth specification states that if an operation is initiated and is not completed within 30

seconds then the connection shall be dropped as no further Gatt Client transaction can be initiated.

EVGATTCTOUT event message

This event message WILL be thrown if a Gatt Client transaction takes longer than 30 seconds. It contains 1

INTEGER parameter:

 Connection Handle

//Example :: EVGATTCTOUT.sb (See in BL600CodeSnippets.zip)

//

DIM rc,conHndl

//==

// Initialise and instantiate service, characteristic, start adverts

//==

FUNCTION OnStartup()

 DIM rc, adRpt$, addr$, scRpt$

 rc=BleAdvRptInit(adRpt$, 2, 0, 10)

 IF rc==0 THEN : rc=BleScanRptInit(scRpt$) : ENDIF

 IF rc==0 THEN : rc=BleAdvRptsCommit(adRpt$,scRpt$) : ENDIF

 IF rc==0 THEN : rc=BleAdvertStart(0,addr$,50,0,0) : ENDIF

 //open the gatt client with default notify/indicate ring buffer size

 IF rc==0 THEN : rc = BleGattcOpen(0,0) : ENDIF

ENDFUNC rc

//==

// Ble event handler

//==

FUNCTION HndlrBleMsg(BYVAL nMsgId, BYVAL nCtx)

 conHndl=nCtx

 IF nMsgID==1 THEN

 PRINT "\n\n- Disconnected"

 EXITFUNC 0

 ELSEIF nMsgID==0 THEN

 PRINT "\n- Connected"

 ENDIF

ENDFUNC 1

'//==

'//==

FUNCTION HandlerGattcTout(cHndl) AS INTEGER

 PRINT "\nEVGATTCTOUT connHandle=";cHndl

ENDFUNC 1

//==

// Main() equivalent

//==

ONEVENT EVBLEMSG CALL HndlrBleMsg

OnEvent EVGATTCTOUT call HandlerGattcTout

rc = OnStartup()

WAITEVENT

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

108 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Expected Output:

BleGattcOpen

FUNCTION

This function is used to initialise the GATT Client functionality for immediate use so that appropriate buffers

for caching GATT responses are created in the heap memory. About 300 bytes of RAM is required by the

GATT Client manager and given that a majority of BL600 use cases will not utilise it, the sacrifice of 300

bytes, which is nearly 15% of the available memory, is not worth the permament allocation of memory.

There are various buffers that need to be created that are needed for scanning a remote GATT table which

are of fixed size. There is however, one buffer which can be configured by the smartBASIC apps developer

and that is the ring buffer that is used to store incoming notifiable and indicatable characteristics. At the time

of writing this user manual the default minimum size is 64 unless a bigger one is desired and in that case the

input parameter to this function specifies that size. A maximum of 2048 bytes is allowed, but that can result

in unreliable operation as the smartBASIC runtime engine will be starved of memory very quickly.

Use SYSINFO(2019) to obtain the actual default size and SYSINFO(2020) to obtain the maximum allowed. The

same information can be obtained in interactive mode using the commands AT I 2019 and 2020 respectively.

Note that when the ring buffer for the notifiable and indicatable characteristics is full, then any new

messages will get discarded and depending on the flags parameter the indicates will or will not get

confirmed.

This function is safe to call when the gatt client manager is already open, however, in that case the

parameters are ignored and existing values are retained and any existing gattc client operations are not

interrupted.

It is recommended that this function NOT be called when in a connection.

BLEGATTCOPEN (nNotifyBufLen, nFlags)

Returns
INTEGER, a result code.

Typical value: 0x0000 (indicates a successful operation)

Arguments

nNotifyBufLen
byVal nNotifyBufLen AS INTEGER

This is the size of the ring buffer used for incoming notifiable and indicatable

characterstic data. Set to 0 to use the default size.

nFlags

byVal nFlags AS INTEGER

Bit 0: Set to 1 to disable automatic indication confirmations if buffer is full

then the Handle Value Confirmation will only be sent when
BleGattcNotifyRead() is called to read the ring buffer.

Bit 1..31: Reserved for future use and must be set to 0s

Interactive
Command

No

 //Example :: BleGattcOpen.sb (See in BL600CodeSnippets.zip)

. . .

. . .

EVGATTCTOUT connHandle=123

. . .

. . .

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

109 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

DIM rc

//open the gatt client with default notify/indicate ring buffer size

rc = BleGattcOpen(0,0)

IF rc == 0 THEN

 PRINT "\nGatt Client is now open"

ENDIF

//open the client with default notify/indicate ring buffer size - again

rc = BleGattcOpen(128,1)

IF rc == 0 THEN

 PRINT "\nGatt Client is still open, because already open"

ENDIF

Expected Output:

BLEGATTCOPEN is an extension function.

Gatt Client is now open

Gatt Client is still open, because already open

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

110 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

BleGattcClose

SUBROUTINE

This function is used to close the GATT client manager and is safe to call if it is already closed.

It is recommended that this function NOT be called when in a connection.

BLEGATTCCLOSE ()

Arguments None

Interactive
Command

No

//Example :: BleGattcClose.sb (See in BL600CodeSnippets.zip)

DIM rc

//open the gatt client with default notify/indicate ring buffer size

rc = BleGattcOpen(0,0)

IF rc == 0 THEN

 PRINT "\nGatt Client is now open"

ENDIF

BleGattcClose()

PRINT "\nGatt Client is now closed"

BleGattcClose()

PRINT "\nGatt Client is closed - was safe to call when already closed"

Expected Output:

BLEGATTCCLOSE is an extension subroutine.

BleDiscServiceFirst / BleDiscServiceNext

FUNCTIONS

This pair of functions is used to scan the remote Gatt Server for all primary services with the help of the

EVDISCPRIMSVC message event and when called a handler for the event message must be registered as the

discovered primary service information is passed back in that message.

A generic or uuid based scan can be initiated. The former will scan for all primary services and the latter will

scan for a primary service with a particular uuid, the handle of which must be supplied and is generated by

using either BleHandleUuid16() or BleHandleUuid128().

While the scan is in progress and waiting for the next piece of data from a Gatt server the module will enter

low power state as the WAITEVENT statement is used as normal to wait for events and messages.

Depending on the size of the remote GATT server table and the connection interval, the scan of all primary

may take many 100s of milliseconds, and while this is in progress it is safe to do other non Gatt related

operations like for example servicing sensors and displays or any of the onboard peripherals.

EVDISCPRIMSVC event message

Gatt Client is now open

Gatt Client is now closed

Gatt Client is closed - was safe to call when already closed

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

111 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

This event message WILL be thrown if either BleDiscServiceFirst() or BleDiscServiceNext() returns a success. The

message contains 4 INTEGER parameters:-

 Connection Handle

 Service Uuid Handle

 Start Handle of the service in the Gatt Table

 End Handle for the service.

If no more services were discovered because the end of the table was reached, then all parameters will

contain 0 apart from the Connection Handle.

BLEDISCSERVICEFIRST (connHandle,startAttrHandle,uuidHandle)

A typical pseudo code for discovering primary services involves first calling BleDiscServiceFirst(), then waiting

for the EVDISCPRIMSVC event message and depending on the information returned in that message calling

BleDiscServiceNext(), which in turn will result in another EVDISCPRIMSVC event message and typically is as

follows:-

Register a handler for the EVDISCPRIMSVC event message

On EVDISCPRIMSVC event message

 If Start/End Handle == 0 then scan is complete

 Else Process information then

 call BleDiscServiceNext()

 if BleDiscServiceNext() not OK then scan complete

Call BleDiscServiceFirst()

If BleDiscServiceFirst() ok then Wait for EVDISCPRIMSVC

Returns

INTEGER, a result code.

Typical value: 0x0000

Indicates a successful operation and means an EVDISCPRIMSVC event message WILL
be thrown by the smartBASIC runtime engine containing the results. A non-zero
return value implies an EVDISCPRIMSVC message will NOT be thrown.

Arguments

nConnHandle

byVal nConnHandle AS INTEGER

This is the connection handle as returned in the on-connect event for the connection

on which the remote Gatt Server can be accessed. This will have been returned in the

EVBLEMSG event message with msgId == 0 and msgCtx will have been the connection

handle.

startAttrHandle

byVal startAttrHandle AS INTEGER

This is the attribute handle from where the scan for primary services will be started

and you can typically set it to 0 to ensure that the entire remote Gatt Server is
scanned.

uuidHandle

byVal uuidHandle AS INTEGER

Set this to 0 if you want to scan for any service, otherwise this value will have been

generated either by BleHandleUuid16() or BleHandleUuid128() or
BleHandleUuidSibling().

Interactive
Command

No

BLEDISCSERVICENEXT (connHandle)

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

112 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Calling this assumes that BleDiscServiceFirst() has been called at least once to set up the internal primary

services scanning state machine.

Returns

INTEGER, a result code.

Typical value: 0x0000

Indicates a successful operation and it means an EVDISCPRIMSVC event message WILL be
thrown by the smartBASIC runtime engine containing the results. A non-zero return value
implies an EVDISCPRIMSVC message will NOT be thrown.

Arguments

nConnHandle

byVal nConnHandle AS INTEGER

This is the connection handle as returned in the on-connect event for the connection on which

the remote Gatt Server can be accessed. This will have been returned in the EVBLEMSG event

message with msgId == 0 and msgCtx will have been the connection handle.

Interactive
Command

No

//Example :: BleDiscServiceFirst.Next.sb (See in BL600CodeSnippets.zip)

//

//Remote server has 5 prim services with 16 bit uuid and 3 with 128 bit uuids

// 3 of the 16 bit uuid are the same value 0xDEAD and

// 2 of the 128 bit uuids are also the same 112233445566778899AABBCCDDEEFF

//

// Server created using BleGattcTblDiscPrimSvc.sub invoked in _OpenMcp.scr

// using Nordic Usb Dongle PC10000

DIM rc,at$,conHndl,uHndl,uuid$

//==

// Initialise and instantiate service, characteristic, start adverts

//==

FUNCTION OnStartup()

 DIM rc, adRpt$, addr$, scRpt$

 rc=BleAdvRptInit(adRpt$, 2, 0, 10)

 IF rc==0 THEN : rc=BleScanRptInit(scRpt$) : ENDIF

 IF rc==0 THEN : rc=BleAdvRptsCommit(adRpt$,scRpt$) : ENDIF

 IF rc==0 THEN : rc=BleAdvertStart(0,addr$,50,0,0) : ENDIF

 //open the gatt client with default notify/indicate ring buffer size

 IF rc==0 THEN : rc = BleGattcOpen(0,0) : ENDIF

ENDFUNC rc

//==

// Close connections so that we can run another app without problems

//==

SUB CloseConnections()

 rc=BleDisconnect(conHndl)

 rc=BleAdvertStop()

ENDSUB

//==

// Ble event handler

//==

FUNCTION HndlrBleMsg(BYVAL nMsgId, BYVAL nCtx)

 DIM uu$

 conHndl=nCtx

 IF nMsgID==1 THEN

 PRINT "\n\n- Disconnected"

 EXITFUNC 0

 ELSEIF nMsgID==0 THEN

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

113 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 PRINT "\n- Connected, so scan remote Gatt Table for ALL services"

 rc = BleDiscServiceFirst(conHndl,0,0)

 IF rc==0 THEN

 //HandlerPrimSvc() will exit with 0 when operation is complete

 WAITEVENT

 PRINT "\nScan for service with uuid = 0xDEAD"

 uHndl = BleHandleUuid16(0xDEAD)

 rc = BleDiscServiceFirst(conHndl,0,uHndl)

 IF rc==0 THEN

 //HandlerPrimSvc() will exit with 0 when operation is complete

 WAITEVENT

 uu$ = "112233445566778899AABBCCDDEEFF00"

 PRINT "\nScan for service with custom uuid ";uu$

 uu$ = StrDehexize$(uu$)

 uHndl = BleHandleUuid128(uu$)

 rc = BleDiscServiceFirst(conHndl,0,uHndl)

 IF rc==0 THEN

 //HandlerPrimSvc() will exit with 0 when operation is complete

 WAITEVENT

 ENDIF

 ENDIF

 ENDIF

 CloseConnections()

 ENDIF

ENDFUNC 1

//==

// EVDISCPRIMSVC event handler

//==

FUNCTION HandlerPrimSvc(cHndl,svcUuid,sHndl,eHndl) AS INTEGER

 PRINT "\nEVDISCPRIMSVC :"

 PRINT " cHndl=";cHndl

 PRINT " svcUuid=";integer.h' svcUuid

 PRINT " sHndl=";sHndl

 PRINT " eHndl=";eHndl

 IF sHndl == 0 THEN

 PRINT "\nScan complete"

 EXITFUNC 0

 ELSE

 rc = BleDiscServiceNext(cHndl)

 IF rc != 0 THEN

 PRINT "\nScan abort"

 EXITFUNC 0

 ENDIF

 ENDIF

endfunc 1

//==

// Main() equivalent

//==

ONEVENT EVBLEMSG CALL HndlrBleMsg

OnEvent EVDISCPRIMSVC call HandlerPrimSvc

//Register base uuids with the underlying stack, otherwise the services with the

//128bit uuid's will be delivered with a uuid handle == FF000000 == UNKNOWN

uuid$ = "112233445566778899AABBCCDDEEFF00"

uuid$ = StrDehexize$(uuid$)

uHndl = BleHandleUuid128(uuid$)

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

114 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

uuid$ = "1122DEAD5566778899AABBCCDDBEEF00"

uuid$ = StrDehexize$(uuid$)

uHndl = BleHandleUuid128(uuid$)

IF OnStartup()==0 THEN

 PRINT "\nAdvertising, and Gatt Client is open\n"

ELSE

 PRINT "\nFailure OnStartup"

ENDIF

WAITEVENT

PRINT "\nExiting..."

Expected Output:

BLEDISCSERVICEFIRST and BLEDISCSERVICENEXT are both extension functions.

BleDiscCharFirst / BleDiscCharNext

FUNCTIONS

These pair of functions are used to scan the remote Gatt Server for characteristics in a service with the help of

the EVDISCCHAR message event and when called a handler for the event message must be registered as the

discovered characteristics information is passed back in that message

Advertising, and Gatt Client is open

- Connected, so scan remote Gatt Table for ALL services

EVDISCPRIMSVC : cHndl=2804 svcUuid=FE01FE01 sHndl=1 eHndl=3

EVDISCPRIMSVC : cHndl=2804 svcUuid=FC033344 sHndl=4 eHndl=6

EVDISCPRIMSVC : cHndl=2804 svcUuid=FE01DEAD sHndl=7 eHndl=9

EVDISCPRIMSVC : cHndl=2804 svcUuid=FB04BEEF sHndl=10 eHndl=12

EVDISCPRIMSVC : cHndl=2804 svcUuid=FC033344 sHndl=13 eHndl=15

EVDISCPRIMSVC : cHndl=2804 svcUuid=FE01DEAD sHndl=16 eHndl=18

EVDISCPRIMSVC : cHndl=2804 svcUuid=FE01FE03 sHndl=19 eHndl=21

EVDISCPRIMSVC : cHndl=2804 svcUuid=FE01DEAD sHndl=22 eHndl=24

EVDISCPRIMSVC : cHndl=2804 svcUuid=00000000 sHndl=0 eHndl=0

Scan complete

Scan for service with uuid = 0xDEAD

EVDISCPRIMSVC : cHndl=2804 svcUuid=FE01DEAD sHndl=7 eHndl=9

EVDISCPRIMSVC : cHndl=2804 svcUuid=FE01DEAD sHndl=16 eHndl=18

EVDISCPRIMSVC : cHndl=2804 svcUuid=FE01DEAD sHndl=22 eHndl=65535

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

115 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

A generic or UUID based scan can be initiated. The former scans for all characteristics and the latter scans for

a characteristic with a particular UUID, the handle of which must be supplied and is generated by using either

BleHandleUuid16() or BleHandleUuid128().

If instead it is known that a Gatt table has a specific service and a specific characteristic, then a more efficient

method for locating details of that characteristic is to use the function BleGattcFindChar() which is described

later.

While the scan is in progress and waiting for the next piece of data from a Gatt server the module will enter

low power state as the WAITEVENT statement is used as normal to wait for events and messages.

Depending on the size of the remote GATT server table and the connection interval, the scan of all

characteristics may take many 100s of milliseconds, and while this is in progress it is safe to do other non

Gatt related operations like for example servicing sensors and displays or any of the onboard peripherals.

Note: It is not currently possible to scan for characteristics in included services. This will be a future

enhancement.

EVDISCCHAR event message

This event message is thrown if either BleDiscCharFirst() or BleDiscCharNext() returns a success. The message

contains 5 INTEGER parameters:

 Connection Handle

 Characteristic Uuid Handle

 Characteristic Properties

 Handle for the Value Attribute of the Characteristic

 Included Service Uuid Handle

If no more characteristics were discovered because the end of the table was reached, then all parameters will

contain 0 apart from the Connection Handle.

‘Characteristic Uuid Handle’ contains the uuid of the characteristic and supplied as a handle.

‘Characteristic Properties’ contains the properties of the characteristic and is a bit mask as follows:

 Bit 0 : Set if BROADCAST is enabled

 Bit 1 : Set if READ is enabled

 Bit 2 : Set if WRITE_WITHOUT_RESPONSE is enabled

 Bit 3 : Set if WRITE is enabled

 Bit 4 : Set if NOTIFY is enabled

 Bit 5 : Set if INDICATE is enabled

 Bit 6 : Set if AUTHENTICATED_SIGNED_WRITE is enabled

 Bit 7 : Set if RELIABLE_WRITE is enabled

 Bit 15 : Set if the characteristic has extended properties

‘Handle for the Value Attribute of the Characteristic’ is the handle for the value attribute and is the value to

store to keep track of important characteristics in a gatt server for later read/write operations.

‘Included Service Uuid Handle’ is for future use and will always be 0.

BLEDISCCHARFIRST (connHandle, charUuidHandle, startAttrHandle,endAttrHandle)

A typical pseudo code for discovering characteristic involves first calling BleDiscCharFirst() with information

obtained from a primary services scan and then waiting for the EVDISCCHAR event message and depending

on the information returned in that message calling BleDiscCharNext() which in turn will result in another

EVDISCCHAR event message and typically is as follows:-

Register a handler for the EVDISCCHAR event message

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

116 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

On EVDISCCHAR event message

 If Char Value Handle == 0 then scan is complete

 Else Process information then

 call BleDiscCharNext()

 if BleDiscCharNext() not OK then scan complete

Call BleDiscCharFirst(--information from EVDISCPRIMSVC)

If BleDiscCharFirst() ok then Wait for EVDISCCHAR

Returns

INTEGER, a result code.

Typical value: 0x0000

Indicates a successful operation and means an EVDISCCHAR event message WILL be
thrown by the smartBASIC runtime engine containing the results. A non-zero return
value implies an EVDISCCHAR message will NOT be thrown.

Arguments

nConnHandle

byVal nConnHandle AS INTEGER

This is the connection handle as returned in the on-connect event for the connection on

which the remote Gatt Server can be accessed. This will have been returned in the

EVBLEMSG event message with msgId == 0 and msgCtx will have been the connection

handle.

charUuidHandle

byVal charUuidHandle AS INTEGER

Set this to 0 if you want to scan for any characteristic in the service, otherwise this value

will have been generated either by BleHandleUuid16() or BleHandleUuid128() or
BleHandleUuidSibling().

startAttrHandle

byVal startAttrHandle AS INTEGER

This is the attribute handle from where the scan for characteristic will be started and will

have been acquired by doing a primary services scan, which returns the start and end
handles of services.

endAttrHandle
byVal endAttrHandle AS INTEGER

This is the end attribute handle for the scan and will have been acquired by doing a
primary services scan, which returns the start and end handles of services.

Interactive
Command

No

BLEDISCCHARNEXT (connHandle)

Calling this assumes that BleDiscCharFirst() has been called at least once to set up the internal characteristics

scanning state machine. It scans for the next characteristic.

Returns

INTEGER, a result code.

Typical value: 0x0000

Indicates a successful operation and means an EVDISCCHAR event message WILL be
thrown by the smartBASIC runtime engine containing the results. A non-zero return value
implies an EVDISCCHAR message will NOT be thrown.

Arguments

nConnHandle

byVal nConnHandle AS INTEGER

This is the connection handle as returned in the on-connect event for the connection on which

the remote Gatt Server can be accessed. This will have been returned in the EVBLEMSG event

message with msgId == 0 and msgCtx will have been the connection handle.

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

117 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Interactive
Command

No

//Example :: BleDiscCharFirst.Next.sb (See in BL600CodeSnippets.zip)

//

//Remote server has 1 prim service with 16 bit uuid and 8 characteristics where

// 5 uuids are 16 bit and 3 are 128 bit

// 3 of the 16 bit uuid are the same value 0xDEAD and

// 2 of the 128 bit uuids are also the same 112233445566778899AABBCCDDEEFF

//

// Server created using BleGattcTblDiscChar.sub invoked in _OpenMcp.scr

// using Nordic Usb Dongle PC10000

DIM rc,at$,conHndl,uHndl,uuid$,sAttr,eAttr

//==

// Initialise and instantiate service, characteristic, start adverts

//==

FUNCTION OnStartup()

 DIM rc, adRpt$, addr$, scRpt$

 rc=BleAdvRptInit(adRpt$, 2, 0, 10)

 IF rc==0 THEN : rc=BleScanRptInit(scRpt$) : ENDIF

 IF rc==0 THEN : rc=BleAdvRptsCommit(adRpt$,scRpt$) : ENDIF

 IF rc==0 THEN : rc=BleAdvertStart(0,addr$,50,0,0) : ENDIF

 //open the gatt client with default notify/indicate ring buffer size

 IF rc==0 THEN : rc = BleGattcOpen(0,0) : ENDIF

ENDFUNC rc

//==

// Close connections so that we can run another app without problems

//==

SUB CloseConnections()

 rc=BleDisconnect(conHndl)

 rc=BleAdvertStop()

ENDSUB

//==

// Ble event handler

//==

FUNCTION HndlrBleMsg(BYVAL nMsgId, BYVAL nCtx)

 DIM uu$

 conHndl=nCtx

 IF nMsgID==1 THEN

 PRINT "\n\n- Disconnected"

 EXITFUNC 0

 ELSEIF nMsgID==0 THEN

 PRINT "\n- Connected, so scan remote Gatt Table for first service"

 PRINT "\n- and a characeristic scan will be initiated in the event"

 rc = BleDiscServiceFirst(conHndl,0,0)

 IF rc==0 THEN

 //wait for start and end handles for first primary service

 WAITEVENT

 PRINT "\n\nScan for characteristic with uuid = 0xDEAD"

 uHndl = BleHandleUuid16(0xDEAD)

 rc = BleDiscCharFirst(conHndl,uHndl,sAttr,eAttr)

 IF rc == 0 THEN

 //HandlerCharDisc() will exit with 0 when operation is complete

 WAITEVENT

 uu$ = "112233445566778899AABBCCDDEEFF00"

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

118 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 PRINT "\n\nScan for service with custom uuid ";uu$

 uu$ = StrDehexize$(uu$)

 uHndl = BleHandleUuid128(uu$)

 rc = BleDiscCharFirst(conHndl,uHndl,sAttr,eAttr)

 IF rc==0 THEN

 //HandlerCharDisc() will exit with 0 when operation is complete

 WAITEVENT

 ENDIF

 ENDIF

 ENDIF

 CloseConnections()

 ENDIF

ENDFUNC 1

//==

// EVDISCPRIMSVC event handler

//==

FUNCTION HandlerPrimSvc(cHndl,svcUuid,sHndl,eHndl) AS INTEGER

 PRINT "\nEVDISCPRIMSVC :"

 PRINT " cHndl=";cHndl

 PRINT " svcUuid=";integer.h' svcUuid

 PRINT " sHndl=";sHndl

 PRINT " eHndl=";eHndl

 IF sHndl == 0 THEN

 PRINT "\nPrimary Service Scan complete"

 EXITFUNC 0

 ELSE

 PRINT "\nGot first primary service so scan for ALL characteristics"

 sAttr = sHndl

 eAttr = eHndl

 rc = BleDiscCharFirst(conHndl,0,sAttr,eAttr)

 IF rc != 0 THEN

 PRINT "\nScan characteristics failed"

 EXITFUNC 0

 ENDIF

 ENDIF

endfunc 1

'//==

// EVDISCCHAR event handler

'//==

function HandlerCharDisc(cHndl,cUuid,cProp,hVal,isUuid) as integer

 print "\nEVDISCCHAR :"

 print " cHndl=";cHndl

 print " chUuid=";integer.h' cUuid

 print " Props=";cProp

 print " valHndl=";hVal

 print " ISvcUuid=";isUuid

 IF hVal == 0 THEN

 PRINT "\nCharacteristic Scan complete"

 EXITFUNC 0

 ELSE

 rc = BleDiscCharNext(conHndl)

 IF rc != 0 THEN

 PRINT "\nCharacteristics scan abort"

 EXITFUNC 0

 ENDIF

 ENDIF

endfunc 1

//==

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

119 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

// Main() equivalent

//==

ONEVENT EVBLEMSG CALL HndlrBleMsg

OnEvent EVDISCPRIMSVC call HandlerPrimSvc

OnEvent EVDISCCHAR call HandlerCharDisc

//Register base uuids with the underlying stack, otherwise the services with the

//128bit uuid's will be delivered with a uuid handle == FF000000 == UNKNOWN

uuid$ = "112233445566778899AABBCCDDEEFF00"

uuid$ = StrDehexize$(uuid$)

uHndl = BleHandleUuid128(uuid$)

uuid$ = "1122DEAD5566778899AABBCCDDBEEF00"

uuid$ = StrDehexize$(uuid$)

uHndl = BleHandleUuid128(uuid$)

IF OnStartup()==0 THEN

 PRINT "\nAdvertising, and Gatt Client is open\n"

ELSE

 PRINT "\nFailure OnStartup"

ENDIF

WAITEVENT

PRINT "\nExiting..."

Expected Output:

BLEDISCCHARFIRST and BLEDISCCHARNEXT are both extension functions.

Advertising, and Gatt Client is open

- Connected, so scan remote Gatt Table for first service

- and a characeristic scan will be initiated in the event

EVDISCPRIMSVC : cHndl=3549 svcUuid=FE01FE02 sHndl=1 eHndl=17

Got first primary service so scan for ALL characteristics

EVDISCCHAR : cHndl=3549 chUuid=FE01FC21 Props=2 valHndl=3 ISvcUuid=0

EVDISCCHAR : cHndl=3549 chUuid=FC033344 Props=2 valHndl=5 ISvcUuid=0

EVDISCCHAR : cHndl=3549 chUuid=FE01DEAD Props=2 valHndl=7 ISvcUuid=0

EVDISCCHAR : cHndl=3549 chUuid=FB04BEEF Props=2 valHndl=9 ISvcUuid=0

EVDISCCHAR : cHndl=3549 chUuid=FC033344 Props=2 valHndl=11 ISvcUuid=0

EVDISCCHAR : cHndl=3549 chUuid=FE01FC23 Props=2 valHndl=13 ISvcUuid=0

EVDISCCHAR : cHndl=3549 chUuid=FE01DEAD Props=2 valHndl=15 ISvcUuid=0

EVDISCCHAR : cHndl=3549 chUuid=FE01DEAD Props=2 valHndl=17 ISvcUuid=0

EVDISCCHAR : cHndl=3549 chUuid=00000000 Props=0 valHndl=0 ISvcUuid=0

Characteristic Scan complete

Scan for characteristic with uuid = 0xDEAD

EVDISCCHAR : cHndl=3549 chUuid=FE01DEAD Props=2 valHndl=7 ISvcUuid=0

EVDISCCHAR : cHndl=3549 chUuid=FE01DEAD Props=2 valHndl=15 ISvcUuid=0

EVDISCCHAR : cHndl=3549 chUuid=FE01DEAD Props=2 valHndl=17 ISvcUuid=0

EVDISCCHAR : cHndl=3549 chUuid=00000000 Props=0 valHndl=0 ISvcUuid=0

Characteristic Scan complete

Scan for service with custom uuid 112233445566778899AABBCCDDEEFF00

EVDISCCHAR : cHndl=3549 chUuid=FC033344 Props=2 valHndl=5 ISvcUuid=0

EVDISCCHAR : cHndl=3549 chUuid=FC033344 Props=2 valHndl=11 ISvcUuid=0

EVDISCCHAR : cHndl=3549 chUuid=00000000 Props=0 valHndl=0 ISvcUuid=0

Characteristic Scan complete

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

120 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

BleDiscDescFirst / BleDiscDescNext

FUNCTIONS

These pair of functions are used to scan the remote Gatt Server for descriptors in a characteristic with the

help of the EVDISCDESC message event and when called a handler for the event message must be registered

as the discovered descriptor information is passed back in that

A generic or uuid based scan can be initiated. The former will scan for all descriptors and the latter will scan

for a descriptor with a particular uuid, the handle of which must be supplied and is generated by using either

BleHandleUuid16() or BleHandleUuid128().

If instead it is known that a gatt table has a specific service, characteristic and a specific descriptor, then a

more efficient method for locating details of that characteristic is to use the function BleGattcFindDesc()

which is described later.

While the scan is in progress and waiting for the next piece of data from a Gatt server the module will enter

low power state as the WAITEVENT statement is used as normal to wait for events and messages.

Depending on the size of the remote GATT server table and the connection interval, the scan of all

descriptors may take many 100s of milliseconds, and while this is in progress it is safe to do other non Gatt

related operations like for example servicing sensors and displays or any of the onboard peripherals.

EVDISCDESC event message

This event message WILL be thrown if either BleDissDescFirst() or BleDiscDescNext() returns a success. The

message contains 3 INTEGER parameters:-

 Connection Handle

 Descriptor Uuid Handle

 Handle for the Descriptor in the remote Gatt Table

If no more descriptors were discovered because the end of the table was reached, then all parameters will

contain 0 apart from the Connection Handle.

‘Descriptor Uuid Handle’ contains the uuid of the descriptor and supplied as a handle.

‘Handle for the Descriptor in the remote Gatt Table’ is the handle for the descriptor, and also is the value to

store to keep track of important characteristics in a gatt server for later read/write operations.

BLEDISCDESCFIRST (connHandle, descUuidHandle, charValHandle)

A typical pseudo code for discovering descriptors involves first calling BleDiscDescFirst() with information

obtained from a characteristics scan and then waiting for the EVDISCDESC event message and depending on

the information returned in that message calling BleDiscDescNext() which in turn will result in another

EVDISCDESC event message and typically is as follows:-

Register a handler for the EVDISCDESC event message

On EVDISCDESC event message

 If Descriptor Handle == 0 then scan is complete

 Else Process information then

 call BleDiscDescNext()

 if BleDiscDescNext() not OK then scan complete

Call BleDiscDescFirst(--information from EVDISCCHAR)

If BleDiscDescFirst() ok then Wait for EVDISCDESC

Returns INTEGER, a result code.

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

121 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Typical value: 0x0000

Indicates a successful operation and means an EVDISCDESC event message WILL be
thrown by the smartBASIC runtime engine containing the results. A non-zero return value
implies an EVDISCDESC message will NOT be thrown.

Arguments

connHandle

byVal nConnHandle AS INTEGER

This is the connection handle as returned in the on-connect event for the connection on

which the remote Gatt Server can be accessed. This will have been returned in the

EVBLEMSG event message with msgId == 0 and msgCtx will have been the connection

handle.

descUuidHandle

byVal descUuidHandle AS INTEGER

Set this to 0 if you want to scan for any descriptor in the characteristic, otherwise this

value will have been generated either by BleHandleUuid16() or BleHandleUuid128() or
BleHandleUuidSibling().

charValHandle
byVal charValHandle AS INTEGER

This is the value attribute handle of the characteristic on which the descriptor scan is to be
performed. It will have been acquired from an EVDISCCHAR event

Interactive
Command

No

BLEDISCDESCNEXT (connHandle)

Calling this assumes that BleDiscCharFirst() has been called at least once to set up the internal characteristics

scanning state machine, and that BleDiscDescFirst() has been called at least once to start the descriptor

discovery process.

Returns

INTEGER, a result code.

Typical value: 0x0000

Indicates a successful operation and means an EVDISCDESC event message WILL be
thrown by the smartBASIC runtime engine containing the results. A non-zero return
value implies an EVDISCDESC message will NOT be thrown.

Arguments

connHandle

byVal nConnHandle AS INTEGER

This is the connection handle as returned in the on-connect event for the connection on

which the remote Gatt Server can be accessed. This will have been returned in the

EVBLEMSG event message with msgId == 0 and msgCtx will have been the connection

handle.

Interactive
Command

No

//Example :: BleDiscDescFirst.Next.sb (See in BL600CodeSnippets.zip)

//

//Remote server has 1 prim service with 16 bit uuid and 1 characteristics

// which contains 8 descriptors, that are ...

// 5 uuids are 16 bit and 3 are 128 bit

// 3 of the 16 bit uuid are the same value 0xDEAD and

// 2 of the 128 bit uuids are also the same 112233445566778899AABBCCDDEEFF

//

// Server created using BleGattcTblDiscDesc.sub invoked in _OpenMcp.scr

// using Nordic Usb Dongle PC10000

DIM rc,at$,conHndl,uHndl,uuid$,sAttr,eAttr,cValAttr

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

122 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

//==

// Initialise and instantiate service, characteristic, start adverts

//==

FUNCTION OnStartup()

 DIM rc, adRpt$, addr$, scRpt$

 rc=BleAdvRptInit(adRpt$, 2, 0, 10)

 IF rc==0 THEN : rc=BleScanRptInit(scRpt$) : ENDIF

 IF rc==0 THEN : rc=BleAdvRptsCommit(adRpt$,scRpt$) : ENDIF

 IF rc==0 THEN : rc=BleAdvertStart(0,addr$,50,0,0) : ENDIF

 //open the gatt client with default notify/indicate ring buffer size

 IF rc==0 THEN : rc = BleGattcOpen(0,0) : ENDIF

ENDFUNC rc

//==

// Close connections so that we can run another app without problems

//==

SUB CloseConnections()

 rc=BleDisconnect(conHndl)

 rc=BleAdvertStop()

ENDSUB

//==

// Ble event handler

//==

FUNCTION HndlrBleMsg(BYVAL nMsgId, BYVAL nCtx)

 DIM uu$

 conHndl=nCtx

 IF nMsgID==1 THEN

 PRINT "\n\n- Disconnected"

 EXITFUNC 0

 ELSEIF nMsgID==0 THEN

 PRINT "\n- Connected, so scan remote Gatt Table for first service"

 PRINT "\n- and a characeristic scan will be initiated in the event"

 rc = BleDiscServiceFirst(conHndl,0,0)

 IF rc==0 THEN

 //wait for start and end handles for first primary service

 WAITEVENT

 PRINT "\n\nScan for descritors with uuid = 0xDEAD"

 uHndl = BleHandleUuid16(0xDEAD)

 rc = BleDiscDescFirst(conHndl,uHndl,cValAttr)

 IF rc == 0 THEN

 //HandlerDescDisc() will exit with 0 when operation is complete

 WAITEVENT

 uu$ = "112233445566778899AABBCCDDEEFF00"

 PRINT "\n\nScan for service with custom uuid ";uu$

 uu$ = StrDehexize$(uu$)

 uHndl = BleHandleUuid128(uu$)

 rc = BleDiscDescFirst(conHndl,uHndl,cValAttr)

 IF rc==0 THEN

 //HandlerDescDisc() will exit with 0 when operation is complete

 WAITEVENT

 ENDIF

 ENDIF

 ENDIF

 CloseConnections()

 ENDIF

ENDFUNC 1

//==

// EVDISCPRIMSVC event handler

//==

FUNCTION HandlerPrimSvc(cHndl,svcUuid,sHndl,eHndl) AS INTEGER

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

123 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 PRINT "\nEVDISCPRIMSVC :"

 PRINT " cHndl=";cHndl

 PRINT " svcUuid=";integer.h' svcUuid

 PRINT " sHndl=";sHndl

 PRINT " eHndl=";eHndl

 IF sHndl == 0 THEN

 PRINT "\nPrimary Service Scan complete"

 EXITFUNC 0

 ELSE

 PRINT "\nGot first primary service so scan for ALL characteristics"

 sAttr = sHndl

 eAttr = eHndl

 rc = BleDiscCharFirst(conHndl,0,sAttr,eAttr)

 IF rc != 0 THEN

 PRINT "\nScan characteristics failed"

 EXITFUNC 0

 ENDIF

 ENDIF

endfunc 1

'//==

// EVDISCCHAR event handler

'//==

function HandlerCharDisc(cHndl,cUuid,cProp,hVal,isUuid) as integer

 print "\nEVDISCCHAR :"

 print " cHndl=";cHndl

 print " chUuid=";integer.h' cUuid

 print " Props=";cProp

 print " valHndl=";hVal

 print " ISvcUuid=";isUuid

 IF hVal == 0 THEN

 PRINT "\nCharacteristic Scan complete"

 EXITFUNC 0

 ELSE

 PRINT "\nGot first characteristic service at handle ";hVal

 PRINT "\nScan for ALL Descs"

 cValAttr = hVal

 rc = BleDiscDescFirst(conHndl,0,cValAttr)

 IF rc != 0 THEN

 PRINT "\nScan descriptors failed"

 EXITFUNC 0

 ENDIF

 ENDIF

endfunc 1

'//==

// EVDISCDESC event handler

'//==

function HandlerDescDisc(cHndl,cUuid,hndl) as integer

 print "\nEVDISCDESC"

 print " cHndl=";cHndl

 print " dscUuid=";integer.h' cUuid

 print " dscHndl=";hndl

 IF hndl == 0 THEN

 PRINT "\nDescriptor Scan complete"

 EXITFUNC 0

 ELSE

 rc = BleDiscDescNext(cHndl)

 IF rc != 0 THEN

 PRINT "\nDescriptor scan abort"

 EXITFUNC 0

 ENDIF

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

124 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 ENDIF

endfunc 1

//==

// Main() equivalent

//==

ONEVENT EVBLEMSG CALL HndlrBleMsg

OnEvent EVDISCPRIMSVC call HandlerPrimSvc

OnEvent EVDISCCHAR call HandlerCharDisc

OnEvent EVDISCDESC call HandlerDescDisc

//Register base uuids with the underlying stack, otherwise the services with the

//128bit uuid's will be delivered with a uuid handle == FF000000 == UNKNOWN

uuid$ = "112233445566778899AABBCCDDEEFF00"

uuid$ = StrDehexize$(uuid$)

uHndl = BleHandleUuid128(uuid$)

uuid$ = "1122DEAD5566778899AABBCCDDBEEF00"

uuid$ = StrDehexize$(uuid$)

uHndl = BleHandleUuid128(uuid$)

IF OnStartup()==0 THEN

 PRINT "\nAdvertising, and Gatt Client is open\n"

ELSE

 PRINT "\nFailure OnStartup"

ENDIF

WAITEVENT

PRINT "\nExiting..."

Expected Output:

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

125 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

BLEDISCDESCFIRST and BLEDISCDESCNEXT are both extension functions.

Advertising, and Gatt Client is open

- Connected, so scan remote Gatt Table for first service

- and a characeristic scan will be initiated in the event

EVDISCPRIMSVC : cHndl=3790 svcUuid=FE01FE02 sHndl=1 eHndl=11

Got first primary service so scan for ALL characteristics

EVDISCCHAR : cHndl=3790 chUuid=FE01FC21 Props=2 valHndl=3 ISvcUuid=0

Got first characteristic service at handle 3

Scan for ALL Descs

EVDISCDESC cHndl=3790 dscUuid=FE01FD21 dscHndl=4

EVDISCDESC cHndl=3790 dscUuid=FC033344 dscHndl=5

EVDISCDESC cHndl=3790 dscUuid=FE01DEAD dscHndl=6

EVDISCDESC cHndl=3790 dscUuid=FB04BEEF dscHndl=7

EVDISCDESC cHndl=3790 dscUuid=FC033344 dscHndl=8

EVDISCDESC cHndl=3790 dscUuid=FE01FD23 dscHndl=9

EVDISCDESC cHndl=3790 dscUuid=FE01DEAD dscHndl=10

EVDISCDESC cHndl=3790 dscUuid=FE01DEAD dscHndl=11

EVDISCDESC cHndl=3790 dscUuid=00000000 dscHndl=0

Descriptor Scan complete

Scan for descritors with uuid = 0xDEAD

EVDISCDESC cHndl=3790 dscUuid=FE01DEAD dscHndl=6

EVDISCDESC cHndl=3790 dscUuid=FE01DEAD dscHndl=10

EVDISCDESC cHndl=3790 dscUuid=FE01DEAD dscHndl=11

EVDISCDESC cHndl=3790 dscUuid=00000000 dscHndl=0

Descriptor Scan complete

Scan for service with custom uuid 112233445566778899AABBCCDDEEFF00

EVDISCDESC cHndl=3790 dscUuid=FC033344 dscHndl=5

EVDISCDESC cHndl=3790 dscUuid=FC033344 dscHndl=8

EVDISCDESC cHndl=3790 dscUuid=00000000 dscHndl=0

Descriptor Scan complete

- Disconnected

Exiting...

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

126 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

BleGattcFindChar

FUNCTION

This function facilitates a quick and efficient way of locating the details of a characteristic if the uuid is known

along with the uuid of the service containing it and the results will be delived in a EVFINDCHAR event

message. If the Gatt server table has multiple instances of the same service/characteristic combination then

this function will work because in addition to the uuid handles to be searched for, it also accepts instance

parameters which are indexed from 0, which means the 4th instance of a characteristic with the same uuid in

the 3rd instance of a service with the same uuid will be located with index values 3 and 2 respectively.

Given that the results are returned in an event message, a handler must be registered for the EVFINDCHAR

event.

Depending on the size of the remote GATT server table and the connection interval, the search of the

characteristic may take many 100s of milliseconds, and while this is in progress it is safe to do other non Gatt

related operations like for example servicing sensors and displays or any of the onboard peripherals.

Note: It is not currently possible to scan for characteristics in included services. This will be a future

enhancement.

EVFINDCHAR event message

This event message WILL be thrown if BleGattcFindChar() returns a success. The message contains 4 INTEGER

parameters:-

 Connection Handle

 Characteristic Properties

 Handle for the Value Attribute of the Characteristic

 Included Service Uuid Handle

If the specified instance of the service/characteristic is not present in the remote Gatt Server Table then all

parameters will contain 0 apart from the Connection Handle.

 ‘Characteristic Properties’ contains the properties of the characteristic and is a bit mask as follows:

Bit 0 Set if BROADCAST is enabled

Bit 1 Set if READ is enabled

Bit 2 Set if WRITE_WITHOUT_RESPONSE is enabled

Bit 3 Set if WRITE is enabled

Bit 4 Set if NOTIFY is enabled

Bit 5 Set if INDICATE is enabled

Bit 6 Set if AUTHENTICATED_SIGNED_WRITE is enabled

Bit 7 Set if RELIABLE_WRITE is enabled

Bit 15 Set if the characteristic has extended properties

‘Handle for the Value Attribute of the Characteristic’ is the handle for the value attribute and is the value to

store to keep track of important characteristics in a gatt server for later read/write operations.

‘Included Service Uuid Handle’ is for future use and will always be 0.

BLEGATTCFINDCHAR (connHandle, svcUuidHndl, svcIndex,charUuidHndl, charIndex)

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

127 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

A typical pseudo code for finding a characteristic involves calling BleGattcFindChar() which in turn will result

in the EVFINDCHAR event message and typically is as follows:-

Register a handler for the EVFINDCHAR event message

On EVFINDCHAR event message

 If Char Value Handle == 0 then

 Characteristic not found

 Else

 Characteristic has been found

Call BleGattcFindChar()

If BleGattcFindChar () ok then Wait for EVFINDCHAR

Returns

INTEGER, a result code.

Typical value: 0x0000

Indicates a successful operation and it means an EVFINDCHAR event message WILL be
thrown by the smartBASIC runtime engine containing the results. A non-zero return value
implies an EVFINDCHAR message will NOT be thrown.

Arguments

connHandle

byVal nConnHandle AS INTEGER

This is the connection handle as returned in the on-connect event for the connection on which

the remote Gatt Server can be accessed. This will have been returned in the EVBLEMSG event

message with msgId == 0 and msgCtx will have been the connection handle.

svcUuidHndl
byVal svcUuidHndl AS INTEGER

Set this to the service uuid handle which will have been generated either by
BleHandleUuid16() or BleHandleUuid128() or BleHandleUuidSibling().

svcIndex
byVal svcIndex AS INTEGER

This is the instance of the service to look for with the uuid handle svcUuidHndl, where 0 is
the first instance, 1 is the second etc

charUuidHndl
byVal charUuidHndl AS INTEGER

Set this to the characteristic uuid handle which will have been generated either by
BleHandleUuid16() or BleHandleUuid128() or BleHandleUuidSibling().

charIndex
byVal charIndex AS INTEGER

This is the instance of the characteristic to look for with the uuid handle charUuidHndl,
where 0 is the first instance, 1 is the second etc

Interactive
Command

No

//Example :: BleGattcFindChar.sb (See in BL600CodeSnippets.zip)

//

//Remote server has 5 prim services with 16 bit uuid and 3 with 128 bit uuids

// 3 of the 16 bit uuid are the same value 0xDEAD and

// 2 of the 128 bit uuids are also the same 112233445566778899AABBCCDDEEFF

//

// Server created using BleGattcTblFindChar.sub invoked in _OpenMcp.scr

// using Nordic Usb Dongle PC10000

DIM rc,at$,conHndl,uHndl,uuid$,sIdx,cIdx

//==

// Initialise and instantiate service, characteristic, start adverts

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

128 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

//==

FUNCTION OnStartup()

 DIM rc, adRpt$, addr$, scRpt$

 rc=BleAdvRptInit(adRpt$, 2, 0, 10)

 IF rc==0 THEN : rc=BleScanRptInit(scRpt$) : ENDIF

 IF rc==0 THEN : rc=BleAdvRptsCommit(adRpt$,scRpt$) : ENDIF

 IF rc==0 THEN : rc=BleAdvertStart(0,addr$,50,0,0) : ENDIF

 //open the gatt client with default notify/indicate ring buffer size

 IF rc==0 THEN : rc = BleGattcOpen(0,0) : ENDIF

ENDFUNC rc

//==

// Close connections so that we can run another app without problems

//==

SUB CloseConnections()

 rc=BleDisconnect(conHndl)

 rc=BleAdvertStop()

ENDSUB

//==

// Ble event handler

//==

FUNCTION HndlrBleMsg(BYVAL nMsgId, BYVAL nCtx)

 DIM uu$,uHndS,uHndC

 conHndl=nCtx

 IF nMsgID==1 THEN

 PRINT "\n\n- Disconnected"

 EXITFUNC 0

 ELSEIF nMsgID==0 THEN

 PRINT "\n- Connected, so scan remote Gatt Table for an instance of char"

 uHndS = BleHandleUuid16(0xDEAD)

 uu$ = "112233445566778899AABBCCDDEEFF00"

 uu$ = StrDehexize$(uu$)

 uHndC = BleHandleUuid128(uu$)

 sIdx = 2

 cIdx = 1 //valHandle will be 32

 rc = BleGattcFindChar(conHndl,uHndS,sIdx,uHndC,cIdx)

 IF rc==0 THEN

 //BleDiscCharFirst() will exit with 0 when operation is complete

 WAITEVENT

 ENDIF

 sIdx = 1

 cIdx = 3 //does not exist

 rc = BleGattcFindChar(conHndl,uHndS,sIdx,uHndC,cIdx)

 IF rc==0 THEN

 //BleDiscCharFirst() will exit with 0 when operation is complete

 WAITEVENT

 ENDIF

 CloseConnections()

 ENDIF

ENDFUNC 1

'//==

'//==

function HandlerFindChar(cHndl,cProp,hVal,isUuid) as integer

 print "\nEVFINDCHAR "

 print " cHndl=";cHndl

 print " Props=";cProp

 print " valHndl=";hVal

 print " ISvcUuid=";isUuid

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

129 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 IF hVal == 0 THEN

 PRINT "\nDid NOT find the characteristic"

 ELSE

 PRINT "\nFound the characteristic at handle ";hVal

 PRINT "\nSvc Idx=";sIdx;" Char Idx=";cIdx

 ENDIF

endfunc 0

//==

// Main() equivalent

//==

ONEVENT EVBLEMSG CALL HndlrBleMsg

OnEvent EVFINDCHAR call HandlerFindChar

//Register base uuids with the underlying stack, otherwise the services with the

//128bit uuid's will be delivered with a uuid handle == FF000000 == UNKNOWN

uuid$ = "112233445566778899AABBCCDDEEFF00"

uuid$ = StrDehexize$(uuid$)

uHndl = BleHandleUuid128(uuid$)

uuid$ = "1122DEAD5566778899AABBCCDDBEEF00"

uuid$ = StrDehexize$(uuid$)

uHndl = BleHandleUuid128(uuid$)

IF OnStartup()==0 THEN

 PRINT "\nAdvertising, and Gatt Client is open\n"

ELSE

 PRINT "\nFailure OnStartup"

ENDIF

WAITEVENT

PRINT "\nExiting..."

Expected Output:

BLEGATTCFINDCHAR is an extension function.

BleGattcFindDesc

Advertising, and Gatt Client is open

- Connected, so scan remote Gatt Table for an instance of char

EVFINDCHAR cHndl=866 Props=2 valHndl=32 ISvcUuid=0

Found the characteristic at handle 32

Svc Idx=2 Char Idx=1

EVFINDCHAR cHndl=866 Props=0 valHndl=0 ISvcUuid=0

Did NOT find the characteristic

- Disconnected

Exiting...

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

130 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

FUNCTION

This function facilitates a quick and efficient way of locating the details of a descriptor if the UUID is known

along with the UUID of the service and the UUID of the characteristic containing it and the results are

delivered in a EVFINDDESC event message. If the Gatt server table has multiple instances of the same

service/characteristic/descriptor combination then this function works because, in addition to the UUID

handles to be searched for, it also accepts instance parameters which are indexed from 0, which means the

2nd instance of a descriptor in the 4th instance of a characteristic with the same UUID in the 3rd instance of a

service with the same UUID is located with index values 1, 3, and 2 respectively.

Given that the results are returned in an event message, a handler must be registered for the EVFINDDESC

event.

Depending on the size of the remote GATT server table and the connection interval, the search of the

characteristic may take many 100s of milliseconds, and while this is in progress it is safe to do other non Gatt

related operations like for example servicing sensors and displays or any of the onboard peripherals.

Note: It is not currently possible to scan for characteristics in included services. This will be a future

enhancement.

EVFINDDESC event message

This event message WILL be thrown if BleGattcFindDesc()returned a success. The message contains 2

INTEGER parameters:-

 Connection Handle

 Handle of the Descriptor

If the specified instance of the service/characteristic/descriptor is not present in the remote Gatt Server Table

then all parameters will contain 0 apart from the Connection Handle.

‘Handle of the Descriptor’ is the handle for the descriptor and is the value to store to keep track of important

descriptors in a gatt server for later read/write operations – for example CCCD’s to enable notifications

and/or indications.

BLEGATTCFINDDESC (connHndl, svcUuHndl, svcIdx, charUuHndl, charIdx,descUuHndl, descIdx)

A typical pseudo code for finding a descrirptor involves calling BleGattcFindDesc() which in turn will result in

the EVFINDDESC event message and typically is as follows:-

Register a handler for the EVFINDDESC event message

On EVFINDDESC event message

 If Descriptor Handle == 0 then

 Descriptor not found

 Else

 Descriptor has been found

Call BleGattcFindDesc()

If BleGattcFindDesc() ok then Wait for EVFINDDESC

Returns

INTEGER, a result code.

Typical value: 0x0000

Indicates a successful operation and means an EVFINDDESC event message WILL be thrown
by the smartBASIC runtime engine containing the results. A non-zero return value implies an
EVFINDDESC message will NOT be thrown.

Arguments

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

131 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

connHndl

byVal connHndl AS INTEGER

This is the connection handle as returned in the on-connect event for the connection on which

the remote Gatt Server can be accessed. This will have been returned in the EVBLEMSG event

message with msgId == 0 and msgCtx will have been the connection handle.

svcUuHndl
byVal svcUuHndl AS INTEGER

Set this to the service uuid handle which will have been generated either by
BleHandleUuid16() or BleHandleUuid128() or BleHandleUuidSibling().

svcIdx
byVal svcIdx AS INTEGER

This is the instance of the service to look for with the uuid handle svcUuidHndl, where 0 is
the first instance, 1 is the second etc

charUuHndl
byVal charUuHndl AS INTEGER

Set this to the characteristic uuid handle which will have been generated either by
BleHandleUuid16() or BleHandleUuid128() or BleHandleUuidSibling().

charIdx
byVal charIdx AS INTEGER

This is the instance of the characteristic to look for with the uuid handle charUuidHndl,
where 0 is the first instance, 1 is the second etc

descUuHndl
byVal descUuHndl AS INTEGER

Set this to the descriptor uuid handle which will have been generated either by

BleHandleUuid16() or BleHandleUuid128() or BleHandleUuidSibling().

descIdx
byVal descIdx AS INTEGER

This is the instance of the descriptor to look for with the uuid handle charUuidHndl, where 0
is the first instance, 1 is the second etc

Interactive
Command

No

//Example :: BleGattcFindDesc.sb (See in BL600CodeSnippets.zip)

//

//Remote server has 5 prim services with 16 bit uuid and 3 with 128 bit uuids

// 3 of the 16 bit uuid are the same value 0xDEAD and

// 2 of the 128 bit uuids are also the same 112233445566778899AABBCCDDEEFF

//

// Server created using BleGattcTblFindDesc.sub invoked in _OpenMcp.scr

// using Nordic Usb Dongle PC10000

DIM rc,at$,conHndl,uHndl,uuid$,sIdx,cIdx,dIdx

//==

// Initialise and instantiate service, characteristic, start adverts

//==

FUNCTION OnStartup()

 DIM rc, adRpt$, addr$, scRpt$

 rc=BleAdvRptInit(adRpt$, 2, 0, 10)

 IF rc==0 THEN : rc=BleScanRptInit(scRpt$) : ENDIF

 IF rc==0 THEN : rc=BleAdvRptsCommit(adRpt$,scRpt$) : ENDIF

 IF rc==0 THEN : rc=BleAdvertStart(0,addr$,50,0,0) : ENDIF

 //open the gatt client with default notify/indicate ring buffer size

 IF rc==0 THEN : rc = BleGattcOpen(0,0) : ENDIF

ENDFUNC rc

//==

// Close connections so that we can run another app without problems

//==

SUB CloseConnections()

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

132 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 rc=BleDisconnect(conHndl)

 rc=BleAdvertStop()

ENDSUB

//==

// Ble event handler

//==

FUNCTION HndlrBleMsg(BYVAL nMsgId, BYVAL nCtx)

 DIM uu$,uHndS,uHndC,uHndD

 conHndl=nCtx

 IF nMsgID==1 THEN

 PRINT "\n\n- Disconnected"

 EXITFUNC 0

 ELSEIF nMsgID==0 THEN

 PRINT "\n- Connected, so scan remote Gatt Table for ALL services"

 uHndS = BleHandleUuid16(0xDEAD)

 uu$ = "112233445566778899AABBCCDDEEFF00"

 uu$ = StrDehexize$(uu$)

 uHndC = BleHandleUuid128(uu$)

 uu$ = "1122C0DE5566778899AABBCCDDEEFF00"

 uu$ = StrDehexize$(uu$)

 uHndD = BleHandleUuid128(uu$)

 sIdx = 2

 cIdx = 1

 dIdx = 1 // handle will be 37

 rc = BleGattcFindDesc(conHndl,uHndS,sIdx,uHndC,cIdx,uHndD,dIdx)

 IF rc==0 THEN

 //BleDiscCharFirst() will exit with 0 when operation is complete

 WAITEVENT

 ENDIF

 sIdx = 1

 cIdx = 3

 dIdx = 4 //does not exist

 rc = BleGattcFindDesc(conHndl,uHndS,sIdx,uHndC,cIdx,uHndD,dIdx)

 IF rc==0 THEN

 //BleDiscCharFirst() will exit with 0 when operation is complete

 WAITEVENT

 ENDIF

 CloseConnections()

 ENDIF

ENDFUNC 1

'//==

'//==

function HandlerFindDesc(cHndl,hndl) as integer

 print "\nEVFINDDESC "

 print " cHndl=";cHndl

 print " dscHndl=";hndl

 IF hndl == 0 THEN

 PRINT "\nDid NOT find the descriptor"

 ELSE

 PRINT "\nFound the descriptor at handle ";hndl

 PRINT "\nSvc Idx=";sIdx;" Char Idx=";cIdx;" desc Idx=";dIdx

 ENDIF

endfunc 0

//==

// Main() equivalent

//==

ONEVENT EVBLEMSG CALL HndlrBleMsg

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

133 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

OnEvent EVFINDDESC call HandlerFindDesc

//Register base uuids with the underlying stack, otherwise the services with the

//128bit uuid's will be delivered with a uuid handle == FF000000 == UNKNOWN

uuid$ = "112233445566778899AABBCCDDEEFF00"

uuid$ = StrDehexize$(uuid$)

uHndl = BleHandleUuid128(uuid$)

uuid$ = "1122DEAD5566778899AABBCCDDBEEF00"

uuid$ = StrDehexize$(uuid$)

uHndl = BleHandleUuid128(uuid$)

IF OnStartup()==0 THEN

 PRINT "\nAdvertising, and Gatt Client is open\n"

ELSE

 PRINT "\nFailure OnStartup"

ENDIF

WAITEVENT

PRINT "\nExiting..."

Expected Output:

BLEGATTCFINDDESC is an extension function.

BleGattcRead / BleGattcReadData

FUNCTIONS

If the handle for an attribute is known then these functions are used to read the content of that attribute

from a specified offset in the array of octets in that attribute value.

Given that the success or failure of this read operation is returned in an event message, a handler must be

registered for the EVATTRREAD event.

Depending on the connection interval, the read of the attribute may take many 100s of milliseconds, and

while this is in progress it is safe to do other non Gatt related operations like for example servicing sensors

and displays or any of the onboard peripherals.

BleGattcRead is used to trigger the procedure and BleGattcReadData is used to read the data from the

underlying cache when the EVATTRREAD event message is received with a success status.

Advertising, and Gatt Client is open

- Connected, so scan remote Gatt Table for ALL services

EVFINDDESC cHndl=1106 dscHndl=37

Found the descriptor at handle 37

Svc Idx=2 Char Idx=1 desc Idx=1

EVFINDDESC cHndl=1106 dscHndl=0

Did NOT find the descriptor

- Disconnected

Exiting...

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

134 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

EVATTRREAD event message

This event message WILL be thrown if BleGattcRead() returns a success. The message contains 3 INTEGER

parameters:-

 Connection Handle

 Handle of the Attribute

 Gatt status of the read operation.

‘Gatt status of the read operation’ is one of the following values, where 0 implies the read was successfully

expedited and the data can be obtained by calling BlePubGattClientReadData().

0x0000 Success

0x0001 Unknown or not applicable status

0x0100 ATT Error: Invalid Error Code

0x0101 ATT Error: Invalid Attribute Handle

0x0102 ATT Error: Read not permitted

0x0103 ATT Error: Write not permitted

0x0104 ATT Error: Used in ATT as Invalid PDU

0x0105 ATT Error: Authenticated link required

0x0106 ATT Error: Used in ATT as Request Not Supported

0x0107 ATT Error: Offset specified was past the end of the attribute

0x0108 ATT Error: Used in ATT as Insufficient Authorisation

0x0109 ATT Error: Used in ATT as Prepare Queue Full

0x010A ATT Error: Used in ATT as Attribute not found

0x010B ATT Error: Attribute cannot be read or written using read/write blob requests

0x010C ATT Error: Encryption key size used is insufficient

0x010D ATT Error: Invalid value size

0x010E ATT Error: Very unlikely error

0x010F ATT Error: Encrypted link required

0x0110 ATT Error: Attribute type is not a supported grouping attribute

0x0111 ATT Error: Encrypted link required

0x0112 ATT Error: Reserved for Future Use range #1 begin

0x017F ATT Error: Reserved for Future Use range #1 end

0x0180 ATT Error: Application range begin

0x019F ATT Error: Application range end

0x01A0 ATT Error: Reserved for Future Use range #2 begin

0x01DF ATT Error: Reserved for Future Use range #2 end

0x01E0 ATT Error: Reserved for Future Use range #3 begin

0x01FC ATT Error: Reserved for Future Use range #3 end

0x01FD ATT Common Profile and Service Error: Client Characteristic Configuration Descriptor

 (CCCD)improperly configured

0x01FE ATT Common Profile and Service Error:Procedure Already in Progress

0x01FF ATT Common Profile and Service Error: Out Of Range

BLEGATTCREAD (connHndl, attrHndl, offset)

A typical pseudo code for reading the content of an attribute calling BleGattcRead() which in turn will result

in the EVATTRREAD event message and typically is as follows:-

Register a handler for the EVATTRREAD event message

On EVATTRREAD event message

 If Gatt_Status == 0 then

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

135 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 BleGattcReadData() //to actually get the data

 Else

 Attribute could not be read

Call BleGattcRead()

If BleGattcRead() ok then Wait for EVATTRREAD

Returns

INTEGER, a result code.

Typical value: 0x0000

Indicates a successful operation and means an EVATTRREAD event message WILL be
thrown by the smartBASIC runtime engine containing the results. A non-zero return value
implies an EVATTRREAD message will NOT be thrown.

Arguments

connHndl

byVal connHndl AS INTEGER

This is the connection handle as returned in the on-connect event for the connection on which

the remote Gatt Server can be accessed. This will have been returned in the EVBLEMSG event

message with msgId == 0 and msgCtx will have been the connection handle.

attrHndl
byVal attrHndl AS INTEGER

Set this to the handle of the attribute to read and will be a value in the range 1 to 65535

offset
byVal offset AS INTEGER

This is the offset from which the data in the attribute is to be read.

Interactive
Command

No

BLEGATTCREADDATA (connHndl, attrHndl, offset, attrData$)

This function is used to collect the data from the underlying cache when the EVATTRREAD event message has

a success gatt status code.

Returns
INTEGER, a result code.

Typical value: 0x0000 (indicates a successful operation)

Arguments

connHndl

byVal connHndl AS INTEGER

This is the connection handle as returned in the on-connect event for the connection on which

the remote Gatt Server can be accessed. This will have been returned in the EVBLEMSG event

message with msgId == 0 and msgCtx will have been the connection handle.

attrHndl
byRef attrHndl AS INTEGER

The handle for the attribute that was read is returned in this variable. Will be the same as
the one supplied in BleGattcRead, but supplied here so that the code can be stateless.

offset
byRef offset AS INTEGER

The offset into the attribute data that was read is returned in this variable. Will be the same
as the one supplied in BleGattcRead, but supplied here so that the code can be stateless.

attrData$
byRef attrData$ AS STRING
The attribute data which was read is supplied in this parameter.

Interactive
Command

No

//Example :: BleGattcRead.sb (See in BL600CodeSnippets.zip)

//

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

136 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

//Remote server has 3 prim services with 16 bit uuid. First service has one

//characteristic whose value attribute is at handle 3 and has read/write props

//

// Server created using BleGattcTblRead.sub invoked in _OpenMcp.scr

// using Nordic Usb Dongle PC10000

DIM rc,at$,conHndl,uHndl,nOff,atHndl

//==

// Initialise and instantiate service, characteristic, start adverts

//==

FUNCTION OnStartup()

 DIM rc, adRpt$, addr$, scRpt$

 rc=BleAdvRptInit(adRpt$, 2, 0, 10)

 IF rc==0 THEN : rc=BleScanRptInit(scRpt$) : ENDIF

 IF rc==0 THEN : rc=BleAdvRptsCommit(adRpt$,scRpt$) : ENDIF

 IF rc==0 THEN : rc=BleAdvertStart(0,addr$,50,0,0) : ENDIF

 //open the gatt client with default notify/indicate ring buffer size

 IF rc==0 THEN : rc = BleGattcOpen(0,0) : ENDIF

ENDFUNC rc

//==

// Close connections so that we can run another app without problems

//==

SUB CloseConnections()

 rc=BleDisconnect(conHndl)

 rc=BleAdvertStop()

ENDSUB

//==

// Ble event handler

//==

FUNCTION HndlrBleMsg(BYVAL nMsgId, BYVAL nCtx)

 DIM uHndA

 conHndl=nCtx

 IF nMsgID==1 THEN

 PRINT "\n\n- Disconnected"

 EXITFUNC 0

 ELSEIF nMsgID==0 THEN

 PRINT "\n- Connected, so read attibute handle 3"

 atHndl = 3

 nOff = 0

 rc=BleGattcRead(conHndl,atHndl,nOff)

 IF rc==0 THEN

 WAITEVENT

 ENDIF

 PRINT "\nread attibute handle 300 which does not exist"

 atHndl = 300

 nOff = 0

 rc=BleGattcRead(conHndl,atHndl,nOff)

 IF rc==0 THEN

 WAITEVENT

 ENDIF

 CloseConnections()

 ENDIF

ENDFUNC 1

'//==

'//==

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

137 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

function HandlerAttrRead(cHndl,aHndl,nSts) as integer

 dim nOfst,nAhndl,at$

 print "\nEVATTRREAD "

 print " cHndl=";cHndl

 print " attrHndl=";aHndl

 print " status=";integer.h' nSts

 if nSts == 0 then

 print "\nAttribute read OK"

 rc = BleGattcReadData(cHndl,nAhndl,nOfst,at$)

 print "\nData = ";StrHexize$(at$)

 print " Offset= ";nOfst

 print " Len=";strlen(at$)

 print "\nhandle = ";nAhndl

 else

 print "\nFailed to read attribute"

 endif

endfunc 0

//==

// Main() equivalent

//==

ONEVENT EVBLEMSG CALL HndlrBleMsg

OnEvent EVATTRREAD call HandlerAttrRead

IF OnStartup()==0 THEN

 PRINT "\nAdvertising, and Gatt Client is open\n"

ELSE

 PRINT "\nFailure OnStartup"

ENDIF

WAITEVENT

PRINT "\nExiting..."

Expected Output:

BLEGATTCREAD and BLEGATTREADDATA are extension functions.

BleGattcWrite

FUNCTION

Advertising, and Gatt Client is open

- Connected, so read attibute handle 3

EVATTRREAD cHndl=2960 attrHndl=3 status=00000000

Attribute read OK

Data = 00000000 Offset= 0 Len=4

handle = 3

read attibute handle 300 which does not exist

EVATTRREAD cHndl=2960 attrHndl=300 status=00000101

Failed to read attribute

- Disconnected

Exiting...

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

138 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

If the handle for an attribute is known then this function is used to write into an attribute starting at offset 0.

The acknowledgement will be returned via a EVATTRWRITE event message.

Given that the success or failure of this write operation is returned in an event message, a handler must be

registered for the EVATTRWRITE event.

Depending on the connection interval, the write to the attribute may take many 100s of milliseconds, and

while this is in progress it is safe to do other non Gatt related operations like for example servicing sensors

and displays or any of the onboard peripherals.

EVATTRWRITE event message

This event message WILL be thrown if BleGattcWrite() returns a success. The message contains 3 INTEGER

parameters:-

 Connection Handle

 Handle of the Attribute

 Gatt status of the write operation.

‘Gatt status of the write operation’ is one of the following values, where 0 implies the write was successfully

expedited.

0x0000 Success

0x0001 Unknown or not applicable status

0x0100 ATT Error: Invalid Error Code

0x0101 ATT Error: Invalid Attribute Handle

0x0102 ATT Error: Read not permitted

0x0103 ATT Error: Write not permitted

0x0104 ATT Error: Used in ATT as Invalid PDU

0x0105 ATT Error: Authenticated link required

0x0106 ATT Error: Used in ATT as Request Not Supported

0x0107 ATT Error: Offset specified was past the end of the attribute

0x0108 ATT Error: Used in ATT as Insufficient Authorisation

0x0109 ATT Error: Used in ATT as Prepare Queue Full

0x010A ATT Error: Used in ATT as Attribute not found

0x010B ATT Error: Attribute cannot be read or written

 using read/write blob requests

0x010C ATT Error: Encryption key size used is insufficient

0x010D ATT Error: Invalid value size

0x010E ATT Error: Very unlikely error

0x010F ATT Error: Encrypted link required

0x0110 ATT Error: Attribute type is not a supported grouping attribute

0x0111 ATT Error: Encrypted link required

0x0112 ATT Error: Reserved for Future Use range #1 begin

0x017F ATT Error: Reserved for Future Use range #1 end

0x0180 ATT Error: Application range begin

0x019F ATT Error: Application range end

0x01A0 ATT Error: Reserved for Future Use range #2 begin

0x01DF ATT Error: Reserved for Future Use range #2 end

0x01E0 ATT Error: Reserved for Future Use range #3 begin

0x01FC ATT Error: Reserved for Future Use range #3 end

0x01FD ATT Common Profile and Service Error:

 Client Characteristic Configuration Descriptor (CCCD)

 improperly configured

0x01FE ATT Common Profile and Service Error:

 Procedure Already in Progress

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

139 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

0x01FF ATT Common Profile and Service Error:

 Out Of Range

BLEGATTCWRITE (connHndl, attrHndl, attrData$)

A typical pseudo code for writing to an attribute which will result in the EVATTRWRITE event message and

typically is as follows:-

Register a handler for the EVATTRWRITE event message

On EVATTWRITE event message

 If Gatt_Status == 0 then

 Attribute was written successfully

 Else

 Attribute could not be written

Call BleGattcWrite()

If BleGattcWrite() ok then Wait for EVATTRWRITE

Returns
INTEGER, a result code.

Typical value: 0x0000 (indicates a successful operation)

Arguments

connHndl

byVal connHndl AS INTEGER

This is the connection handle as returned in the on-connect event for the connection on which

the remote Gatt Server can be accessed. This will have been returned in the EVBLEMSG event

message with msgId == 0 and msgCtx will have been the connection handle.

attrHndl
byVal attrHndl AS INTEGER
The handle for the attribute that is to be written to.

attrData$
byRef attrData$ AS STRING

The attribute data to write

Interactive
Command

No

//Example :: BleGattcWrite.sb (See in BL600CodeSnippets.zip)

//

//Remote server has 3 prim services with 16 bit uuid. First service has one

//characteristic whose value attribute is at handle 3 and has read/write props

//

// Server created using BleGattcTblWrite.sub invoked in _OpenMcp.scr

// using Nordic Usb Dongle PC10000

DIM rc,at$,conHndl,uHndl,atHndl

//==

// Initialise and instantiate service, characteristic, start adverts

//==

FUNCTION OnStartup()

 DIM rc, adRpt$, addr$, scRpt$

 rc=BleAdvRptInit(adRpt$, 2, 0, 10)

 IF rc==0 THEN : rc=BleScanRptInit(scRpt$) : ENDIF

 IF rc==0 THEN : rc=BleAdvRptsCommit(adRpt$,scRpt$) : ENDIF

 IF rc==0 THEN : rc=BleAdvertStart(0,addr$,50,0,0) : ENDIF

 //open the gatt client with default notify/indicate ring buffer size

 IF rc==0 THEN : rc = BleGattcOpen(0,0) : ENDIF

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

140 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

ENDFUNC rc

//==

// Close connections so that we can run another app without problems

//==

SUB CloseConnections()

 rc=BleDisconnect(conHndl)

 rc=BleAdvertStop()

ENDSUB

//==

// Ble event handler

//==

FUNCTION HndlrBleMsg(BYVAL nMsgId, BYVAL nCtx)

 DIM uHndA

 conHndl=nCtx

 IF nMsgID==1 THEN

 PRINT "\n\n- Disconnected"

 EXITFUNC 0

 ELSEIF nMsgID==0 THEN

 PRINT "\n- Connected, so write to attibute handle 3"

 atHndl = 3

 at$="\01\02\03\04"

 rc=BleGattcWrite(conHndl,atHndl,at$)

 IF rc==0 THEN

 WAITEVENT

 ENDIF

 PRINT "\nwrite to attibute handle 300 which does not exist"

 atHndl = 300

 rc=BleGattcWrite(conHndl,atHndl,at$)

 IF rc==0 THEN

 WAITEVENT

 ENDIF

 CloseConnections()

 ENDIF

ENDFUNC 1

'//==

'//==

function HandlerAttrWrite(cHndl,aHndl,nSts) as integer

 dim nOfst,nAhndl,at$

 print "\nEVATTRWRITE "

 print " cHndl=";cHndl

 print " attrHndl=";aHndl

 print " status=";integer.h' nSts

 if nSts == 0 then

 print "\nAttribute write OK"

 else

 print "\nFailed to write attribute"

 endif

endfunc 0

//==

// Main() equivalent

//==

ONEVENT EVBLEMSG CALL HndlrBleMsg

OnEvent EVATTRWRITE call HandlerAttrWrite

IF OnStartup()==0 THEN

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

141 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 PRINT "\nAdvertising, and Gatt Client is open\n"

ELSE

 PRINT "\nFailure OnStartup"

ENDIF

WAITEVENT

PRINT "\nExiting..."

Expected Output:

BLEGATTCWRITE is an extension function.

BleGattcWriteCmd

FUNCTION

If the handle for an attribute is known then this function is used to write into an attribute at offset 0when no

acknowledgment response is expected. The signal that the command has actually been transmitted and that

the remote link layer has acknowledged is by the EVNOTIFYBUF event.

Note that the acknowledgement received for the BleGattcWrite() command is from the higher level GATT

layer, not to be confused with the link layer ack in this case.

All packets are acknowledged at link layer level. If a packet fails to get through then that
condition will manifest as a connection drop due to the link supervision timeout.

Given that the transmission and link layer ack of this write operation is indicated in an event message, a

handler must be registered for the EVNOTIBUF event.

Depending on the connection interval, the write to the attribute may take many 100s of milliseconds, and

while this is in progress it is safe to do other non Gatt related operations like for example servicing sensors

and displays or any of the onboard peripherals.

EVNOTIFYBUF event

This event message WILL be thrown if BleGattcWriteCmd() returned a success. The message contains no

parameters.

BLEGATTCWRITECMD (connHndl, attrHndl, attrData$)

A typical pseudo code for writing to an attribute which will result in the EVNOTIFYBUF event is as follows:-

Register a handler for the EVNOTIFYBUF event message

On EVNOTIFYBUF event message

Advertising, and Gatt Client is open

- Connected, so read attibute handle 3

EVATTRWRITE cHndl=2687 attrHndl=3 status=00000000

Attribute write OK

Write to attibute handle 300 which does not exist

EVATTRWRITE cHndl=2687 attrHndl=300 status=00000101

Failed to write attribute

- Disconnected

Exiting...

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

142 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 Can now send another write command

Call BleGattcWriteCmd()

If BleGattcWrite() ok then Wait for EVNOTIFYBUF

Returns
INTEGER, a result code.

Typical value: 0x0000 (indicates a successful operation)

Arguments

connHndl

byVal connHndl AS INTEGER

This is the connection handle as returned in the on-connect event for the connection on which

the remote Gatt Server can be accessed. This will have been returned in the EVBLEMSG event

message with msgId == 0 and msgCtx will have been the connection handle.

attrHndl
byVal attrHndl AS INTEGER

The handle for the attribute that is to be written to.

attrData$
byRef attrData$ AS STRING
The attribute data to write.

Interactive
Command

No

//Example :: BleGattcWriteCmd.sb (See in BL600CodeSnippets.zip)

//

//Remote server has 3 prim services with 16 bit uuid. First service has one

//characteristic whose value attribute is at handle 3 and has read/write props

//

// Server created using BleGattcTblWriteCmd.sub invoked in _OpenMcp.scr

// using Nordic Usb Dongle PC10000

DIM rc,at$,conHndl,uHndl,atHndl

//==

// Initialise and instantiate service, characteristic, start adverts

//==

FUNCTION OnStartup()

 DIM rc, adRpt$, addr$, scRpt$

 rc=BleAdvRptInit(adRpt$, 2, 0, 10)

 IF rc==0 THEN : rc=BleScanRptInit(scRpt$) : ENDIF

 IF rc==0 THEN : rc=BleAdvRptsCommit(adRpt$,scRpt$) : ENDIF

 IF rc==0 THEN : rc=BleAdvertStart(0,addr$,50,0,0) : ENDIF

 //open the gatt client with default notify/indicate ring buffer size

 IF rc==0 THEN : rc = BleGattcOpen(0,0) : ENDIF

ENDFUNC rc

//==

// Close connections so that we can run another app without problems

//==

SUB CloseConnections()

 rc=BleDisconnect(conHndl)

 rc=BleAdvertStop()

ENDSUB

//==

// Ble event handler

//==

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

143 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

FUNCTION HndlrBleMsg(BYVAL nMsgId, BYVAL nCtx)

 DIM uHndA

 conHndl=nCtx

 IF nMsgID==1 THEN

 PRINT "\n\n- Disconnected"

 EXITFUNC 0

 ELSEIF nMsgID==0 THEN

 PRINT "\n- Connected, so write to attribute handle 3"

 atHndl = 3

 at$="\01\02\03\04"

 rc=BleGattcWriteCmd(conHndl,atHndl,at$)

 IF rc==0 THEN

 WAITEVENT

 ENDIF

 PRINT "\n- write again to attribute handle 3"

 atHndl = 3

 at$="\05\06\07\08"

 rc=BleGattcWriteCmd(conHndl,atHndl,at$)

 IF rc==0 THEN

 WAITEVENT

 ENDIF

 PRINT "\n- write again to attribute handle 3"

 atHndl = 3

 at$="\09\0A\0B\0C"

 rc=BleGattcWriteCmd(conHndl,atHndl,at$)

 IF rc==0 THEN

 WAITEVENT

 ENDIF

 PRINT "\nwrite to attribute handle 300 which does not exist"

 atHndl = 300

 rc=BleGattcWriteCmd(conHndl,atHndl,at$)

 IF rc==0 THEN

 PRINT "\nEven when the attribute does not exist an event will occur"

 WAITEVENT

 ENDIF

 CloseConnections()

 ENDIF

ENDFUNC 1

'//==

'//==

function HandlerNotifyBuf() as integer

 print "\nEVNOTIFYBUF Event"

endfunc 0 '//need to progress the WAITEVENT

//==

// Main() equivalent

//==

ONEVENT EVBLEMSG CALL HndlrBleMsg

OnEvent EVNOTIFYBUF call HandlerNotifyBuf

IF OnStartup()==0 THEN

 PRINT "\nAdvertising, and Gatt Client is open\n"

ELSE

 PRINT "\nFailure OnStartup"

ENDIF

WAITEVENT

PRINT "\nExiting..."

Expected Output:

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

144 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

BLEGATTCWRITECMD is an extension function.

BleGattcNotifyRead

FUNCTION

A Gatt Server has the ability to notify or indicate the value attribute of a characteristic when enabled via the

Client Characeristic Configuration Descriptor (CCCD). This means data will arrive from a Gatt Server at any

time and so has to be managed so that it can synchronised with the smartBASIC runtime engine.

Data arriving via a notification does not require Gatt acknowledgements, however indications require them.

This Gatt Client manager saves data arriving via a notification in the same ring buffer for later extraction

using the command BleGattcNotifyRead() and for indications an automatic gatt acknowledgement is sent

when the data is saved in the ring buffer. This acknowledgment happens even if the data was discarded

because the ring buffer was full. If however it is required that the data NOT be acknowledged when it is

discarded on a full buffer then set the flags parameter in the BleGattcOpen() function where the Gatt Client

manager is opened.

In the case when an ack is NOT sent on data discard, the Gatt Server will be throttled and so no further data

will be notified or indicated by it until BleGattNotifyRead() is called to extract data from the ring buffer to

create space and it will trigger a delayed acknowledgement.

When the Gatt Client manager is opened using BleGattcOpen() it is possible to specify the size of the ring

buffer. If a value of 0 is supplied then a default size is created. SYSINFO(2019) in a smartBASIC application or

the interactive mode command AT I 2019 will return the default size. Likewise SYSINFO(2020) or the

command AT I 2020 will return the maximum size.

Data that arrives via notifications or indications get stored in the ring buffer and at the same time a

EVATTRNOTIFY event is thrown to the smartBASIC runtime engine. This is an event, in the same way an

incoming UART receive character generates an event, that is, no data payload is attached to the event.

EVATTRTOTIFY event message

This event WILL be thrown when an notification or an indication arrives from a gatt server . The event

contains no parameters. Please note that if one notification/indication arrives or many, like in the case of

UART events, the same event mask bit is asserted. The paradigm being that the smartBASIC application is

informed that it needs to go and service the ring buffer using the function BleGattcNotifyRead.

BLEGATTCNOTIFYREAD (connHndl, attrHndl, attrData$, discardCount)

A typical pseudo code for handling and accessing notification/indication data is as follows:-

Advertising, and Gatt Client is open

- Connected, so write to attribute handle 3

EVNOTIFYBUF Event

- write again to attribute handle 3

EVNOTIFYBUF Event

- write again to attribute handle 3

EVNOTIFYBUF Event

write to attribute handle 300 which does not exist

Even when the attribute does not exist an event will occur

EVNOTIFYBUF Event

- Disconnected

Exiting...

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

145 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Register a handler for the EVATTRNOTIFY event message

On EVATTRNOTIRY event

 BleGattcNotifyRead() //to actually get the data

 Process the data

Enable notifications and/or indications via CCCD descriptors

Returns
INTEGER, a result code.

Typical value: 0x0000 (indicates a successful operation)

Arguments

connHndl
byRef connHndl AS INTEGER

On exit this will be the connection handle of the gatt server that sent the notification or

indication.

attrHndl
byRef attrHndl AS INTEGER

On exit this will be the handle of the characteristic value attribute in the notification or
indication.

attrData$
byRef attrData$ AS STRING

On exit this will be the data of the characteristic value attribute in the notification or
indication. It is always from offset 0 of the source attribute.

discardedCount

byRef discardedCount AS INTEGER

On exit this should contain 0 and it signifies the total number of notifications or

indications that got discared because the ring buffer in the gatt client manager was full.

If non-zero values are encountered, it is recommended that the ring buffer size be

increased by using BleGattcClose() when the gatt client was opened using
BleGattcOpen().

Interactive
Command

No

//Example :: BleGattcNotifyRead.sb (See in BL600CodeSnippets.zip)

//

// Server created using BleGattcTblNotifyRead.sub invoked in _OpenMcp.scr

// using Nordic Usb Dongle PC10000

//

// Charactersitic at handle 15 has notify (16==cccd)

// Charactersitic at handle 18 has indicate (19==cccd)

DIM rc,at$,conHndl,uHndl,atHndl

//==

// Initialise and instantiate service, characteristic, start adverts

//==

FUNCTION OnStartup()

 DIM rc, adRpt$, addr$, scRpt$

 rc=BleAdvRptInit(adRpt$, 2, 0, 10)

 IF rc==0 THEN : rc=BleScanRptInit(scRpt$) : ENDIF

 IF rc==0 THEN : rc=BleAdvRptsCommit(adRpt$,scRpt$) : ENDIF

 IF rc==0 THEN : rc=BleAdvertStart(0,addr$,50,0,0) : ENDIF

 //open the gatt client with default notify/indicate ring buffer size

 IF rc==0 THEN : rc = BleGattcOpen(0,0) : ENDIF

ENDFUNC rc

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

146 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

//==

// Close connections so that we can run another app without problems

//==

SUB CloseConnections()

 rc=BleDisconnect(conHndl)

 rc=BleAdvertStop()

ENDSUB

//==

// Ble event handler

//==

FUNCTION HndlrBleMsg(BYVAL nMsgId, BYVAL nCtx)

 conHndl=nCtx

 IF nMsgID==1 THEN

 PRINT "\n\n- Disconnected"

 EXITFUNC 0

 ELSEIF nMsgID==0 THEN

 PRINT "\n- Connected, so enable notification for char with cccd at 16"

 atHndl = 16

 at$="\01\00"

 rc=BleGattcWrite(conHndl,atHndl,at$)

 IF rc==0 THEN

 WAITEVENT

 ENDIF

 PRINT "\n- enable indication for char with cccd at 19"

 atHndl = 19

 at$="\02\00"

 rc=BleGattcWrite(conHndl,atHndl,at$)

 IF rc==0 THEN

 WAITEVENT

 ENDIF

 ENDIF

ENDFUNC 1

'//==

'//==

function HandlerAttrWrite(cHndl,aHndl,nSts) as integer

 dim nOfst,nAhndl,at$

 print "\nEVATTRWRITE "

 print " cHndl=";cHndl

 print " attrHndl=";aHndl

 print " status=";integer.h' nSts

 if nSts == 0 then

 print "\nAttribute write OK"

 else

 print "\nFailed to write attribute"

 endif

endfunc 0

'//==

'//==

function HandlerAttrNotify() as integer

 dim chndl,aHndl,att$,dscd

 print "\nEVATTRNOTIFY Event"

 rc=BleGattcNotifyRead(cHndl,aHndl,att$,dscd)

 print "\n BleGattcNotifyRead()"

 if rc==0 then

 print " cHndl=";cHndl

 print " attrHndl=";aHndl

 print " data=";StrHexize$(att$)

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

147 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 print " discarded=";dscd

 else

 print " failed with ";integer.h' rc

 endif

endfunc 1

//==

// Main() equivalent

//==

ONEVENT EVBLEMSG CALL HndlrBleMsg

OnEvent EVATTRWRITE call HandlerAttrWrite

OnEvent EVATTRNOTIFY call HandlerAttrNotify

IF OnStartup()==0 THEN

 PRINT "\nAdvertising, and Gatt Client is open\n"

ELSE

 PRINT "\nFailure OnStartup"

ENDIF

WAITEVENT

PRINT "\nExiting..."

Expected Output:

BLEGATTCNOTIFYREAD is an extension function.

Attribute Encoding Functions

Data for Characteristics are stored in Value attributes, arrays of bytes. Multibyte Characteristic Descriptors

content is stored similarly. Those bytes are manipulated in smart BASIC applications using STRING variables.

The Bluetooth specification stipulates that multibyte data entities are stored communicated in little endian

format and so all data manipulation is done similarly. Little endian means that a multibyte data entity will be

Advertising, and Gatt Client is open

- Connected, so enable notification for char with cccd at 16

EVATTRWRITE cHndl=877 attrHndl=16 status=00000000

Attribute write OK

- enable indication for char with cccd at 19

EVATTRWRITE cHndl=877 attrHndl=19 status=00000000

Attribute write OK

EVATTRNOTIFY Event

 BleGattcNotifyRead() cHndl=877 attrHndl=15 data=BAADC0DE discarded=0

EVATTRNOTIFY Event

 BleGattcNotifyRead() cHndl=877 attrHndl=18 data=DEADBEEF discarded=0

EVATTRNOTIFY Event

 BleGattcNotifyRead() cHndl=877 attrHndl=15 data=BAADC0DE discarded=0

EVATTRNOTIFY Event

 BleGattcNotifyRead() cHndl=877 attrHndl=18 data=DEADBEEF discarded=0

BleGattcNotifyRead() cHndl=877 attrHndl=18 data=DEADBEEF discarded=0

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

148 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

stored so that lowest significant byte is position at the lowest memory address and likewise when

transported, the lowest byte will get on the wire first.

This section describes all the encoding functions which allow those strings to be written to in smaller

bytewise subfields in a more efficient manner compared to the generic STRXXXX functions that are made

available in smart BASIC.

Note: CCCD and SCCD Descriptors are special cases; they have two bytes which are treated as 16 bit

integers. This is reflected in smartBASIC applications so that INTEGER variables are used to

manipulate those values instead of STRINGS.

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

149 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

BleEncode8

FUNCTION

This function overwrites a single byte in a string at a specified offset. If the string is not long enough, then it

will be extended with the new extended block uninitialized and then the byte specified is overwritten.

If the nIndex is such that the new string length exceeds the maximum attribute length, this function fails. The

maximum attribute length can be obtained using the function SYSINFO(n) where n is 2013. The Bluetooth

specification allows a length between 1 and 512.

BLEENCODE8 (attr$,nData, nIndex)

Returns
INTEGER, a result code.

Typical value: 0x0000 (indicates a successful operation)

Arguments

attr$
byRef attr$ AS STRING

This argument is the string that will be written to an attribute

nData
byVal nData AS INTEGER

The least significant byte of this integer is saved. The rest is ignored.

nIndex

byVal nIndex AS INTEGER

This is the zero-based index into the string attr$ where the new fragment of data is written

to. If the string attr$ is not long enough to accommodate the index plus the length of the

fragment, it is extended. If the extended length exceeds the maximum allowable length of
an attribute (see SYSINFO(2013)), this function fails.

Interactive
Command

No

 //Example :: BleEncode8.sb (See in BL600CodeSnippets.zip)

 DIM rc

 DIM attr$

 attr$="Laird"

 PRINT "\nattr$=";attr$

 //Remember: - 4 bytes are used to store an integer on the BL600

 //write 'C' to index 2 -- '111' will be ignored

 rc=BleEncode8(attr$,0x11143,2)

 //write 'A' to index 0

 rc=BleEncode8(attr$,0x41,0)

 //write 'B' to index 1

 rc=BleEncode8(attr$,0x42,1)

 //write 'D' to index 3

 rc=BleEncode8(attr$,0x44,3)

 //write 'y' to index 7 -- attr$ will be extended

 rc=BleEncode8(attr$,0x67, 7)

 PRINT "\nattr$ now = ";attr$

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

150 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Expected Output:

BLEENCODE8 is an extension function.

BleEncode16

FUNCTION

This function overwrites two bytes in a string at a specified offset. If the string is not long enough, then it is

extended with the new extended block uninitialized and then the bytes specified are overwritten.

If the nIndex is such that the new string length exceeds the maximum attribute length, this function fails. The

maximum attribute length can be obtained using the function SYSINFO(n) where n is 2013. The Bluetooth

specification allows a length between 1 and 512.

BLEENCODE16 (attr$,nData, nIndex)

Returns
INTEGER, a result code.

Typical value: 0x0000 (indicates a successful operation)

Arguments

attr$
byRef attr$ AS STRING

This argument is the string that will be written to an attribute.

nData
byVal nData AS INTEGER

The two least significant bytes of this integer is saved. The rest is ignored.

nIndex

byVal nIndex AS INTEGER

This is the zero based index into the string attr$ where the new fragment of data is written.

If the string attr$ is not long enough to accommodate the index plus the length of the

fragment, it is extended. If the extended length exceeds the maximum allowable length of
an attribute (see SYSINFO(2013)), this function fails.

Interactive
Command

No

 //Example :: BleEncode16.sb (See in BL600CodeSnippets.zip)

 DIM rc, attr$

 attr$="Laird"

 PRINT "\nattr$=";attr$

 //write 'CD' to index 2

 rc=BleEncode16(attr$,0x4443,2)

 //write 'AB' to index 0 - '2222' will be ignored

 rc=BleEncode16(attr$,0x22224241,0)

 //write 'EF' to index 3

 rc=BleEncode16(attr$,0x4645,4)

 PRINT "\nattr$ now = ";attr$

attr$=Laird

attr$ now = ABCDd\00\00g

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

151 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Expected Output:

BLEENCODE16 is an extension function.

BleEncode24

FUNCTION

This function overwrites three bytes in a string at a specified offset. If the string is not long enough, then it

will be extended with the new extended block uninitialized and then the bytes specified are overwritten.

If the nIndex is such that the new string length exceeds the maximum attribute length, this function fails. The

maximum attribute length can be obtained using the function SYSINFO(n) where n is 2013. The Bluetooth

specification allows a length between 1 and 512.

BLEENCODE24 (attr$,nData, nIndex)

Returns
INTEGER, a result code.

Typical value: 0x0000 (indicates a successful operation)

Arguments

attr$
byRef attr$ AS STRING

This argument is the string that will be written to an attribute.

nData
byVal nData AS INTEGER

The three least significant bytes of this integer is saved. The rest is ignored.

nIndex

byVal nIndex AS INTEGER

This is the zero based index into the string attr$ where the new fragment of data is written.

If the string attr$ is not long enough to accommodate the index plus the length of the

fragment, it is extended. If the extended length exceeds the maximum allowable length of
an attribute (see SYSINFO(2013)), this function will fail.

Interactive
Command

No

 //Example :: BleEncode24.sb (See in BL600CodeSnippets.zip)

 DIM rc

 DIM attr$: attr$="Laird"

 //write 'BCD' to index 1

 rc=BleEncode24(attr$,0x444342,1)

 //write 'A' to index 0

 rc=BleEncode8(attr$,0x41,0)

 //write 'EF'to index 4

 rc=BleEncode16(attr$,0x4645,4)

 PRINT "attr$=";attr$

attr$=Laird

attr$ now = ABCDEF

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

152 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Expected Output:

BLEENCODE24 is an extension function.

BleEncode32

FUNCTION

This function overwrites four bytes in a string at a specified offset. If the string is not long enough, then it is

extended with the new extended block uninitialized and then the bytes specified are overwritten.

If the nIndex is such that the new string length exceeds the maximum attribute length, this function fails. The

maximum attribute length can be obtained using the function SYSINFO(n) where n is 2013. The Bluetooth

specification allows a length between 1 and 512.

BLEENCODE32(attr$,nData, nIndex)

Returns
INTEGER, a result code.

Typical value: 0x0000 (indicates a successful operation)

Arguments

attr$
byRef attr$ AS STRING

This argument is the string that will be written to an attribute.

nData
byVal nData AS INTEGER

The four bytes of this integer is saved. The rest is ignored.

nIndex

byVal nIndex AS INTEGER

This is the zero based index into the string attr$ where the new fragment of data is

written. If the string attr$ is not long enough to accommodate the index plus the

length of the fragment, it is extended. If the extended length exceeds the maximum
allowable length of an attribute (see SYSINFO(2013)), this function fails.

Interactive
Command

No

 //Example :: BleEncode32.sb (See in BL600CodeSnippets.zip)

 DIM rc

 DIM attr$: attr$="Laird"

 //write 'BCDE' to index 1

 rc=BleEncode32(attr$,0x45444342,1)

 //write 'A' to index 0

 rc=BleEncode8(attr$,0x41,0)

 PRINT "attr$=";attr$

Expected Output:

BLEENCODE32 is an extension function.

BleEncodeFLOAT

attr$=ABCDE

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

153 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

FUNCTION

This function overwrites four bytes in a string at a specified offset. If the string is not long enough, it is

extended with the new extended block uninitialized and then the byte specified is overwritten.

If the nIndex is such that the new string length exceeds the maximum attribute length, this function fails. The

maximum attribute length can be obtained using the function SYSINFO(n) where n is 2013. The Bluetooth

specification allows a length between 1 and 512.

BLEENCODEFLOAT (attr$, nMatissa, nExponent, nIndex)

Returns
INTEGER, a result code.

Typical value: 0x0000 (indicates a successful operation)

Arguments

attr$
byRef attr$ AS STRING

This argument is the string that is written to an attribute.

nMatissa

byVal nMantissa AS INTEGER

This value must be in the range -8388600 to +8388600 or the function fails. The data is written

in little endian so that the least significant byte is at the lower memory address.

Note: The range is not +/- 2048 because after encoding the following two byte values have

special meaning:

0x07FFFFFF NaN (Not a Number)

0x08000000 NRes (Not at this resolution)

0x07FFFFFE + INFINITY

0x08000002 - INFINITY

0x08000001 Reserved for future use

nExponent
byVal nExponent AS INTEGER
This value must be in the range -128 to 127 or the function fails.

nIndex

byVal nIndex AS INTEGER

This is the zero based index into the string attr$ where the new fragment of data is written. If

the string attr$ is not long enough to accommodate the index plus the length of the

fragment, it is extended. If the extended length exceeds the maximum allowable length of an
attribute (see SYSINFO(2013)), this function fails.

Interactive
Command

No

 //Example :: BleEncodeFloat.sb (See in BL600CodeSnippets.zip)

 DIM rc

 DIM attr$: attr$=""

 //write 1234567 x 10^-54 as FLOAT to index 2

 PRINT BleEncodeFLOAT(attr$,123456,-54,0)

 //write 1234567 x 10^1000 as FLOAT to index 2 and it will fail

 //because the exponent is too large, it has to be < 127

 IF BleEncodeFLOAT(attr$,1234567,1000,2)!=0 THEN

 PRINT "\nFailed to encode to FLOAT"

 ENDIF

 //write 10000000 x 10^0 as FLOAT to index 2 and it will fail

 //because the mantissa is too large, it has to be < 8388600

 IF BleEncodeFLOAT(attr$,10000000,0,2)!=0 THEN

 PRINT "\nFailed to encode to FLOAT"

 ENDIF

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

154 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Expected Output:

BLEENCODEFLOAT is an extension function.

BleEncodeSFLOATEX

FUNCTION

This function overwrites two bytes in a string at a specified offset as short 16 bit float value. If the string is

not long enough, it is extended with the extended block uninitialized. Then the bytes are overwritten.

If the nIndex is such that the new string length exceeds the maximum attribute length, this function fails. The

maximum attribute length can be obtained using the function SYSINFO(n) where n is 2013. The Bluetooth

specification allows a length between 1 and 512.

BLEENCODESFLOATEX(attr$,nData, nIndex)

Returns
INTEGER, a result code.

Typical value: 0x0000 (indicates a successful operation)

Arguments

attr$
byRef attr$ AS STRING

This argument is the string that will be written to an attribute.

nData

byVal nData AS INTEGER

The 32 bit value is converted into a 2 byte IEEE-11073 16 bit SFLOAT consisting of a 12 bit

signed mantissa and a 4 bit signed exponent. This means a signed 32 bit value always fits in
such a FLOAT enitity, but there will be a loss in significance to 12 from 32.

nIndex

byVal nIndex AS INTEGER

This is the zero based index into the string attr$ where the new fragment of data is written.

If the string attr$ is not long enough to accommodate the index plus the length of the

fragment, it is extended. If the new length exceeds the maximum allowable length of an
attribute (see SYSINFO(2013)), this function fails.

Interactive
Command

No

 //Example :: BleEncodeSFloatEx.sb (See in BL600CodeSnippets.zip)

 DIM rc, mantissa, exp

 DIM attr$: attr$=""

 //write 2,147,483,647 as SFLOAT to index 0

 rc=BleEncodeSFloatEX(attr$,2147483647,0)

 rc=BleDecodeSFloat(attr$,mantissa,exp,0)

 PRINT "\nThe number stored is ";mantissa;" x 10^";exp

Expected Output:

BLEENCODESFLOAT is an extension function.

0

Failed to encode to FLOAT

Failed to encode to FLOAT

The number stored is 214 x 10^7

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

155 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

BleEncodeSFLOAT

FUNCTION

This function overwrites two bytes in a string at a specified offset as short 16 bit float value. If the string is

not long enough, it is extended with the new block uninitialized. Then the byte specified is overwritten.

If the nIndex is such that the new string length exceeds the maximum attribute length, this function fails. The

maximum attribute length can be obtained using the function SYSINFO(n) where n is 2013. The Bluetooth

specification allows a length between 1 and 512.

BLEENCODESFLOAT(attr$, nMatissa, nExponent, nIndex)

Returns
INTEGER, a result code.

Typical value: 0x0000 (indicates a successful operation)

Arguments

attr$
byRef attr$ AS STRING

This argument is the string that will be written to an attribute

nMatissa

byVal n AS INTEGER

This must be in the range -2046 to +2046 or the function fails. The data is written in little

endian so the least significant byte is at the lower memory address.

Note: The range is not +/- 2048 because after encoding the following two byte values have

special meaning:

0x07FF NaN (Not a Number)

0x0800 NRes (Not at this resolution)

0x07FE + INFINITY

0x0802 - INFINITY

0x0801 Reserved for future use

nExponent
byVal n AS INTEGER

This value must be in the range -8 to 7 or the function fails.

nIndex

byVal nIndex AS INTEGER

This is the zero based index into the string attr$ where the new fragment of data is written.

If the string attr$ is not long enough to accommodate the index plus the length of the

fragment, it is extended. If the new length exceeds the maximum allowable length of an
attribute (see SYSINFO(2013)), this function fails.

Interactive
Command

No

 //Example :: BleEncodeSFloat.sb (See in BL600CodeSnippets.zip)

 DIM rc

 DIM attr$: attr$=""

 SUB Encode(BYVAL mantissa, BYVAL exp)

 IF BleEncodeSFloat(attr$,mantissa,exp,2)!=0 THEN

 PRINT "\nFailed to encode to SFLOAT"

 ELSE

 PRINT "\nSuccess"

 ENDIF

 ENDSUB

 Encode(1234,-4) //1234 x 10^-4

 Encode(1234,10) //1234 x 10^10 will fail because exponent too large

 Encode(10000,0) //10000 x 10^0 will fail because mantissa too large

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

156 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Expected Output:

BLEENCODESFLOAT is an extension function.

BleEncodeTIMESTAMP

FUNCTION

This function overwrites a seven byte string into the string at a specified offset. If the string is not long

enough, it is extended with the new extended block uninitialized and then the byte specified is overwritten.

The seven byte string consists of a byte each for century, year, month, day, hour, minute, and second. If (year

* month) is zero, it is taken as “not noted” year and all the other fields are set zero (not noted).

For example, 5 May 2013 10:31:24 will be represented as “\14\0D\05\05\0A\1F\18”

If the nIndex is such that the new string length exceeds the maximum attribute length, this function fails. The

maximum length of an attribute as implemented can be obtained using the function SYSINFO(n) where n is

2013. The Bluetooth specification allows a length between 1 and 512.

Note: When the attr$ string variable is updated, the two byte year field is converted into a 16 bit

integer. Hence \14\0D gets converted to \DD\07

BLEENCODETIMESTAMP (attr$, timestamp$, nIndex)

Returns
INTEGER, a result code.

Typical value: 0x0000 (indicates a successful operation)

Arguments

attr$
byRef attr$ AS STRING

This argument is the string that is written to an attribute.

timestamp$
byRef timestamp$ AS STRING

This is an exactly 7 byte string as described above. For example 5 May 2013 10:31:24 is
entered “\14\0D\05\05\0A\1F\18”

nIndex

byVal nIndex AS INTEGER

This is the zero based index into the string attr$ where the new fragment of data is

written. If the string attr$ is not long enough to accommodate the index plus the length

of the fragment it is extended. If the new length exceeds the maximum allowable length
of an attribute (see SYSINFO(2013)), this function fails.

Interactive
Command

No

 //Example :: BleEncodeTimestamp.sb (See in BL600CodeSnippets.zip)

 DIM rc, ts$

 DIM attr$: attr$=""

 //write the timestamp <5 May 2013 10:31:24>

 ts$="\14\0D\05\05\0A\1F\18"

 PRINT BleEncodeTimestamp(attr$,ts$,0)

Success

Failed to encode to SFLOAT

Failed to encode to SFLOAT

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

157 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Expected Output:

BLEENCODETIMESTAMP is an extension function.

BleEncodeSTRING

FUNCTION

This function overwrites a substring at a specified offset with data from another substring of a string. If the

destination string is not long enough, it is extended with the new block uninitialized. Then the byte is

overwritten.

If the nIndex is such that the new string length exceeds the maximum attribute length, this function fails. The

maximum length of an attribute as implemented can be obtained using the function SYSINFO(n) where n is

2013. The Bluetooth specification allows a length between 1 and 512.

BleEncodeSTRING (attr$,nIndex1 str$, nIndex2,nLen)

Returns
INTEGER, a result code.

Typical value: 0x0000 (indicates a successful operation)

Arguments

attr$
byRef attr$ AS STRING

This argument is the string that will be written to an attribute

nIndex1

byVal nIndex1 AS INTEGER

This is the zero based index into the string attr$ where the new fragment of data is

written If the string attr$ is not long enough to accommodate the index plus the length

of the fragment it is extended. If the new length exceeds the maximum allowable
length of an attribute (see SYSINFO(2013)), this function fails.

str$
byRef str$ AS STRING

This contains the source data which is qualified by the nIndex2 and nLen arguments
that follow.

nIndex2
byVal nIndex2 AS INTEGER

This is the zero based index into the string str$ from which data is copied. No data is
copied if this is negative or greater than the string.

nLen
byVal nLen AS INTEGER

This species the number of bytes from offset nIndex2 to be copied into the destination
string. It is clipped to the number of bytes left to copy after the index.

Interactive
Command

No

 //Example :: BleEncodeString.sb (See in BL600CodeSnippets.zip)
 DIM rc, attr$, ts$: ts$="Hello World"

 //write "Wor" from "Hello World" to the attribute at index 2

 rc=BleEncodeString(attr$,2,ts$,6,3)

 PRINT attr$

Expected Output:

BLEENCODESTRING is an extension function.

0

\00\00Wor

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

158 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

BleEncodeBITS

FUNCTION

This function overwrites some bits of a string at a specified bit offset with data from an integer which is

treated as a bit array of length 32. If the destination string is not long enough, it is extended with the new

extended block uninitialized. Then the bits specified are overwritten.

If the nIndex is such that the new string length exceeds the maximum attribute length, this function fails. The

maximum length of an attribute as implemented can be obtained using the function SYSINFO(n) where n is

2013. The Bluetooth specification allows a length between 1 and 512; hence the (nDstIdx + nBitLen) cannot

be greater than the max attribute length times 8.

BleEncodeBITS (attr$,nDstIdx, srcBitArr , nSrcIdx, nBitLen)

Returns
INTEGER, a result code.

Typical value: 0x0000 (indicates a successful operation)

Arguments

attr$
byRef attr$ AS STRING

This is the string written to an attribute. It is treated as a bit array.

nDstIdx

byVal nDstIdx AS INTEGER

This is the zero based bit index into the string attr$, treated as a bit array, where the new

fragment of data bits is written. If the string attr$ is not long enough to accommodate the

index plus the length of the fragment it is extended. If the new length exceeds the

maximum allowable length of an attribute (see SYSINFO(2013)), this function fails.

srcBitArr
byVal srcBitArr AS INTEGER

This contains the source data bits which is qualified by the nSrcIdx and nBitLen arguments

that follow.

nSrcIdx
byVal nSrcIdx AS INTEGER

This is the zero based bit index into the bit array contained in srcBitArr from where the data

bits will be copied. No data is copied if this index is negative or greater than 32.

nBitLen

byVal nBitLen AS INTEGER

This species the number of bits from offset nSrcIdx to be copied into the destination bit

array represented by the string attr$. It will be clipped to the number of bits left to copy

after the index nSrcIdx.

Interactive
Command

No

 //Example :: BleEncodeBits.sb (See in BL600CodeSnippets.zip)

 DIM attr$, rc, bA: bA=b'1110100001111

 rc=BleEncodeBits(attr$,20,bA,7,5) : PRINT attr$ //copy 5 bits from index 7 to attr$

Expected Output:

BLEENCODEBITS is an extension function.

Attribute Decoding Functions

Data in a Characteristic is stored in a Value attribute, a byte array. Multibyte Characteristic Descriptors

content are stored similarly. Those bytes are manipulated in smartBASIC applications using STRING variables.

Attibute data is stored in little endian format.

\00\00\A0\01

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

159 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

This section describes decoding functions that allow attribute strings to be read from smaller bytewise

subfields more efficiently than the generic STRXXXX functions that are made available in smart BASIC.

Please note that CCCD and SCCD Descriptors are special cases as they are defined as having just 2 bytes

which are treated as 16 bit integers mapped to INTEGER variables in smartBASIC.

BleDecodeS8

FUNCTION

This function reads a single byte in a string at a specified offset into a 32bit integer variable with sign

extension. If the offset points beyond the end of the string then this function fails and returns zero.

BLEDECODES8 (attr$,nData, nIndex)

Returns
INTEGER, a result code.

Typical value: 0x0000 (indicates a successful operation)

Arguments

attr$
byRef attr$ AS STRING

This references the attribute string from which the function reads.

nData
byRef nData AS INTEGER

This references an integer to be updated with the 8 bit data from attr$, after sign extension.

nIndex

byVal nIndex AS INTEGER

This is the zero based index into the string attr$ from which the data is read. If the string

attr$ is not long enough to accommodate the index plus the number of bytes to read, this
function fails.

Interactive
Command

No

 //Example :: BleDecodeS8.sb (See in BL600CodeSnippets.zip)

 DIM chrHandle,v1,svcHandle,rc

 DIM mdVal : mdVal = BleAttrMetadata(1,1,50,0,rc)

 DIM attr$: attr$="\00\01\02\03\04\85\86\87\88\89"

 DIM uuid : uuid = 0x1853

 //create random service just for this example

 rc=BleServiceNew(1, BleHandleUuid16(uuid), svcHandle)

 //create char and commit as part of service commited above

 rc=BleCharNew(0x07,BleHandleUuid16(0x2A1C),mdVal,0,0)

 rc=BleCharCommit(svcHandle,attr$,chrHandle)

 rc=BleServiceCommit(svcHandle)

 rc=BleCharValueRead(chrHandle,attr$)

 //read signed byte from index 2

 rc=BleDecodeS8(attr$,v1,2)

 PRINT "\ndata in Hex = 0x"; INTEGER.H'v1

 PRINT "\ndata in Decimal = "; v1;"\n"

 //read signed byte from index 6 - two's complement of -122

 rc=BleDecodeS8(attr$,v1,6)

 PRINT "\ndata in Hex = 0x"; INTEGER.H'v1

 PRINT "\ndata in Decimal = "; v1;"\n"

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

160 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Expected Output:

BLEDECODES8 is an extension function.

BleDecodeU8

FUNCTION

This function reads a single byte in a string at a specified offset into a 32bit integer variable without sign

extension. If the offset points beyond the end of the string, this function fails.

BLEDECODEU8 (attr$,nData, nIndex)

Returns
INTEGER, the number of bytes extracted from the attribute string. Can be less than the
size expected if the nIndex parameter is positioned towards the end of the string.

Arguments

attr$
byRef attr$ AS STRING

This references the attribute string from which the function reads.

nData
byRef nData AS INTEGER

This references an integer to be updated with the 8 bit data from attr$, without sign
extension.

nIndex

byVal nIndex AS INTEGER

This is the zero based index into the string attr$ from which data is read. If the string attr$

is not long enough to accommodate the index plus the number of bytes to read, this
function fails.

Interactive
Command

No

//Example :: BleDecodeU8.sb (See in BL600CodeSnippets.zip)

 DIM chrHandle,v1,svcHandle,rc

 DIM mdVal : mdVal = BleAttrMetadata(1,1,50,0,rc)

 DIM attr$: attr$="\00\01\02\03\04\85\86\87\88\89"

 DIM uuid : uuid = 0x1853

 rc=BleServiceNew(1, BleHandleUuid16(uuid), svcHandle)

 rc=BleCharNew(0x07,BleHandleUuid16(0x2A1C),mdVal,0,0)

 rc=BleCharCommit(svcHandle,attr$,chrHandle)

 rc=BleServiceCommit(svcHandle)

 rc=BleCharValueRead(chrHandle,attr$)

 //read unsigned byte from index 2

 rc=BleDecodeU8(attr$,v1,2)

 PRINT "\ndata in Hex = 0x"; INTEGER.H'v1

 PRINT "\ndata in Decimal = "; v1;"\n"

 //read unsigned byte from index 6

 rc=BleDecodeU8(attr$,v1,6)

data in Hex = 0x00000002

data in Decimal = 2

data in Hex = 0xFFFFFF86

data in Decimal = -122

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

161 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 PRINT "\ndata in Hex = 0x"; INTEGER.H'v1

 PRINT "\ndata in Decimal = "; v1;"\n"

Expected Output:

BLEDECODEU8 is an extension function.

BleDecodeS16

FUNCTION

This function reads two bytes in a string at a specified offset into a 32bit integer variable with sign extension.

If the offset points beyond the end of the string then this function fails.

BLEDECODES16 (attr$,nData, nIndex)

Returns
INTEGER, the number of bytes extracted from the attribute string. Can be less than the size
expected if the nIndex parameter is positioned towards the end of the string.

Arguments

attr$
byRef attr$ AS STRING

This references the attribute string from which the function reads.

nData
byRef nData AS INTEGER

This references an integer to be updated with the 2 byte data from attr$, after sign
extension.

nIndex

byVal nIndex AS INTEGER

This is the zero based index into the string attr$ from which data is read. If the string attr$ is

not long enough to accommodate the index plus the number of bytes to read, this function
fails.

Interactive
Command

No

 //Example :: BleDecodeS16.sb (See in BL600CodeSnippets.zip)

 DIM chrHandle,v1,svcHandle,rc

 DIM mdVal : mdVal = BleAttrMetadata(1,1,50,0,rc)

 DIM attr$: attr$="\00\01\02\03\04\85\86\87\88\89"

 DIM uuid : uuid = 0x1853

 rc=BleServiceNew(1, BleHandleUuid16(uuid), svcHandle)

 rc=BleCharNew(0x07,BleHandleUuid16(0x2A1C),mdVal,0,0)

 rc=BleCharCommit(svcHandle,attr$,chrHandle)

 rc=BleServiceCommit(svcHandle)

 rc=BleCharValueRead(chrHandle,attr$)

 //read 2 signed bytes from index 2

 rc=BleDecodeS16(attr$,v1,2)

 PRINT "\ndata in Hex = 0x"; INTEGER.H'v1

 PRINT "\ndata in Decimal = "; v1;"\n"

data in Hex = 0x00000002

data in Decimal = 2

data in Hex = 0x00000086

data in Decimal = 134

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

162 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 //read 2 signed bytes from index 6

 rc=BleDecodeS16(attr$,v1,6)

 PRINT "\ndata in Hex = 0x"; INTEGER.H'v1

 PRINT "\ndata in Decimal = "; v1;"\n"

Expected Output:

BLEDECODES16 is an extension function.

BleDecodeU16

This function reads two bytes from a string at a specified offset into a 32bit integer variable without sign

extension. If the offset points beyond the end of the string then this function fails.

BLEDECODEU16 (attr$,nData, nIndex)

Returns
INTEGER, the number of bytes extracted from the attribute string. Can be less than the size
expected if the nIndex parameter is positioned towards the end of the string.

Arguments

attr$
byRef attr$ AS STRING

This references the attribute string from which the function reads.

nData
byRef nData AS INTEGER

This references an integer to be updated with the 2 byte data from attr$, without sign
extension.

nIndex

byVal nIndex AS INTEGER

This is the zero based index into the string attr$ from which data is read. If the string attr$ is

not long enough to accommodate the index plus the number of bytes to read, this function
fails.

Interactive
Command

No

 //Example :: BleDecodeU16.sb (See in BL600CodeSnippets.zip)

 DIM chrHandle,v1,svcHandle,rc

 DIM mdVal : mdVal = BleAttrMetadata(1,1,50,0,rc)

 DIM attr$: attr$="\00\01\02\03\04\85\86\87\88\89"

 DIM uuid : uuid = 0x1853

 rc=BleServiceNew(1, BleHandleUuid16(uuid), svcHandle)

 rc=BleCharNew(0x07,BleHandleUuid16(0x2A1C),mdVal,0,0)

 rc=BleCharCommit(svcHandle,attr$,chrHandle)

 rc=BleServiceCommit(svcHandle)

 rc=BleCharValueRead(chrHandle,attr$)

 //read 2 unsigned bytes from index 2

 rc=BleDecodeU16(attr$,v1,2)

 PRINT "\ndata in Hex = 0x"; INTEGER.H'v1

data in Hex = 0x00000302

data in Decimal = 770

data in Hex = 0xFFFF8786

data in Decimal = -30842

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

163 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 PRINT "\ndata in Decimal = "; v1;"\n"

 //read 2 unsigned bytes from index 6

 rc=BleDecodeU16(attr$,v1,6)

 PRINT "\ndata in Hex = 0x"; INTEGER.H'v1

 PRINT "\ndata in Decimal = "; v1;"\n"

Expected Output:

BLEDECODEU16 is an extension function.

BleDecodeS24

FUNCTION

This function reads three bytes in a string at a specified offset into a 32bit integer variable with sign

extension. If the offset points beyond the end of the string, this function fails.

BLEDECODES24 (attr$,nData, nIndex)

Returns
INTEGER, the number of bytes extracted from the attribute string. Can be less than the size
expected if the nIndex parameter is positioned towards the end of the string.

Arguments

attr$
byRef attr$ AS STRING

This references the attribute string from which the function reads.

nData
byRef nData AS INTEGER

This references an integer to be updated with the 3 byte data from attr$, with sign
extension.

nIndex

byVal nIndex AS INTEGER

This is the zero based index into the string attr$ from which data is read. If the string attr$ is

not long enough to accommodate the index plus the number of bytes to read, this function
fails.

Interactive
Command

No

 //Example :: BleDecodeS24.sb (See in BL600CodeSnippets.zip)

 DIM chrHandle,v1,svcHandle,rc

 DIM mdVal : mdVal = BleAttrMetadata(1,1,50,0,rc)

 DIM attr$: attr$="\00\01\02\03\04\85\86\87\88\89"

 DIM uuid : uuid = 0x1853

 rc=BleServiceNew(1, BleHandleUuid16(uuid), svcHandle)

 rc=BleCharNew(0x07,BleHandleUuid16(0x2A1C),mdVal,0,0)

 rc=BleCharCommit(svcHandle,attr$,chrHandle)

data in Hex = 0x00000302

data in Decimal = 770

data in Hex = 0x00008786

data in Decimal = 34694

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

164 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 rc=BleServiceCommit(svcHandle)

 rc=BleCharValueRead(chrHandle,attr$)

 //read 3 signed bytes from index 2

 rc=BleDecodeS24(attr$,v1,2)

 PRINT "\ndata in Hex = 0x"; INTEGER.H'v1

 PRINT "\ndata in Decimal = "; v1;"\n"

 //read 3 signed bytes from index 6

 rc=BleDecodeS24(attr$,v1,6)

 PRINT "\ndata in Hex = 0x"; INTEGER.H'v1

 PRINT "\ndata in Decimal = "; v1;"\n"

Expected Output:

BLEDECODES24 is an extension function.

BleDecodeU24

FUNCTION

This function reads three bytes from a string at a specified offset into a 32 bit integer variable without sign

extension. If the offset points beyond the end of the string then this function fails.

BLEDECODEU24 (attr$,nData, nIndex)

Returns
INTEGER, the number of bytes extracted from the attribute string. Can be less than the size
expected if the nIndex parameter is positioned towards the end of the string.

Arguments

attr$
byRef attr$ AS STRING

This references the attribute string from which the function reads.

nData
byRef nData AS INTEGER

This references an integer to be updated with the 3 byte data from attr$, without sign
extension.

nIndex

byVal nIndex AS INTEGER

This is the zero based index into the string attr$ from which data is read. If the string attr$ is

not long enough to accommodate the index plus the number of bytes to read, this function
fails.

Interactive
Command

No

 //Example :: BleDecodeU24.sb (See in BL600CodeSnippets.zip)

 DIM chrHandle,v1,svcHandle,rc

 DIM mdVal : mdVal = BleAttrMetadata(1,1,50,0,rc)

 DIM attr$: attr$="\00\01\02\03\04\85\86\87\88\89"

 DIM uuid : uuid = 0x1853

data in Hex = 0x00040302

data in Decimal = 262914

data in Hex = 0xFF888786

data in Decimal = -7829626

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

165 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 rc=BleServiceNew(1, BleHandleUuid16(uuid), svcHandle)

 rc=BleCharNew(0x07,BleHandleUuid16(0x2A1C),mdVal,0,0)

 rc=BleCharCommit(svcHandle,attr$,chrHandle)

 rc=BleServiceCommit(svcHandle)

 rc=BleCharValueRead(chrHandle,attr$)

 //read 3 unsigned bytes from index 2

 rc=BleDecodeU24(attr$,v1,2)

 PRINT "\ndata in Hex = 0x"; INTEGER.H'v1

 PRINT "\ndata in Decimal = "; v1;"\n"

 //read 3 unsigned bytes from index 6

 rc=BleDecodeU24(attr$,v1,6)

 PRINT "\ndata in Hex = 0x"; INTEGER.H'v1

 PRINT "\ndata in Decimal = "; v1;"\n"

Expected Output:

BLEDECODEU24 is an extension function.

BleDecode32

FUNCTION

This function reads four bytes in a string at a specified offset into a 32bit integer variable. If the offset points

beyond the end of the string, this function fails.

BLEDECODE32 (attr$,nData, nIndex)

Returns
INTEGER, the number of bytes extracted from the attribute string. Can be less than the size
expected if the nIndex parameter is positioned towards the end of the string.

Arguments

attr$
byRef attr$ AS STRING

This references the attribute string from which the function reads.

nData
byRef nData AS INTEGER

This references an integer to be updated with the 3 byte data from attr$, after sign
extension.

nIndex

byVal nIndex AS INTEGER

This is the zero based index into the string attr$ from which data is read. If the string attr$ is

not long enough to accommodate the index plus the number of bytes to read, this function

fails.

Interactive
Command

No

 //Example :: BleDecode32.sb (See in BL600CodeSnippets.zip)

data in Hex = 0x00040302

data in Decimal = 262914

data in Hex = 0x00888786

data in Decimal = 8947590

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

166 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 DIM chrHandle,v1,svcHandle,rc

 DIM mdVal : mdVal = BleAttrMetadata(1,1,50,0,rc)

 DIM attr$: attr$="\00\01\02\03\04\85\86\87\88\89"

 DIM uuid : uuid = 0x1853

 rc=BleServiceNew(1, BleHandleUuid16(uuid), svcHandle)

 rc=BleCharNew(0x07,BleHandleUuid16(0x2A1C),mdVal,0,0)

 rc=BleCharCommit(svcHandle,attr$,chrHandle)

 rc=BleServiceCommit(svcHandle)

 rc=BleCharValueRead(chrHandle,attr$)

 //read 4 signed bytes from index 2

 rc=BleDecode32(attr$,v1,2)

 PRINT "\ndata in Hex = 0x"; INTEGER.H'v1

 PRINT "\ndata in Decimal = "; v1;"\n"

 //read 4 signed bytes from index 6

 rc=BleDecode32(attr$,v1,6)

 PRINT "\ndata in Hex = 0x"; INTEGER.H'v1

 PRINT "\ndata in Decimal = "; v1;"\n"

Expected Output:

BLEDECODE32 is an extension function.

BleDecodeFLOAT

FUNCTION

This function reads four bytes in a string at a specified offset into a couple of 32 bit integer variables. The

decoding results in two variables, the 24 bit signed mantissa and the 8 bit signed exponent. If the offset

points beyond the end of the string, this function fails.

BLEDECODEFLOAT (attr$, nMatissa, nExponent, nIndex)

Returns
INTEGER, the number of bytes extracted from the attribute string. Can be less than the size
expected if the nIndex parameter is positioned towards the end of the string.

Arguments

attr$
byRef attr$ AS STRING

This references the attribute string from which the function reads.

nMantissa

byRef nMantissa AS INTEGER

This is updated with the 24 bit mantissa from the 4 byte object.

If nExponent is 0, you MUST check for the following special values:

0x007FFFFF NaN (Not a Number)

0x00800000 NRes (Not at this resolution)

data in Hex = 0x85040302

data in Decimal = -2063334654

data in Hex = 0x89888786

data in Decimal = -1987541114

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

167 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

0x007FFFFE + INFINITY

0x00800002 - INFINITY

0x00800001 Reserved for future use

nExponent
byRef nExponent AS INTEGER

This is updated with the 8 bit mantissa. If it is zero, check nMantissa for special cases as
stated above.

nIndex

byVal nIndex AS INTEGER

This is the zero based index into the string attr$ from which data is read. If the string attr$

is not long enough to accommodate the index plus the number of bytes to read, this
function fails.

Interactive
Command

No

 //Example :: BleDecodeFloat.sb (See in BL600CodeSnippets.zip)

 DIM chrHandle,v1,svcHandle,rc, mantissa, exp

 DIM mdVal : mdVal = BleAttrMetadata(1,1,50,0,rc)

 DIM attr$: attr$="\00\01\02\03\04\85\86\87\88\89"

 DIM uuid : uuid = 0x1853

 rc=BleServiceNew(1, BleHandleUuid16(uuid), svcHandle)

 rc=BleCharNew(0x07,BleHandleUuid16(0x2A1C),mdVal,0,0)

 rc=BleCharCommit(svcHandle,attr$,chrHandle)

 rc=BleServiceCommit(svcHandle)

 rc=BleCharValueRead(chrHandle,attr$)

 //read 4 bytes FLOAT from index 2 in the string

 rc=BleDecodeFloat(attr$,mantissa,exp,2)

 PRINT "\nThe number read is ";mantissa;" x 10^";exp

 //read 4 bytes FLOAT from index 6 in the string

 rc=BleDecodeFloat(attr$,mantissa,exp,6)

 PRINT "\nThe number read is ";mantissa;"x 10^";exp

Expected Output:

BLEDECODEFLOAT is an extension function.

BleDecodeSFLOAT

FUNCTION

This function reads two bytes in a string at a specified offset into a couple of 32bit integer variables. The

decoding results in two variables, the 12 bit signed maintissa and the 4 bit signed exponent. If the offset

points beyond the end of the string then this function fails.

BLEDECODESFLOAT (attr$, nMatissa, nExponent, nIndex)

Returns
INTEGER, the number of bytes extracted from the attribute string. Can be less than the size
expected if the nIndex parameter is positioned towards the end of the string.

Arguments

The number read is 262914*10^-123

The number read is -7829626*10^-119

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

168 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

attr$
byRef attr$ AS STRING

This references the attribute string from which the function reads.

nMantissa

byRef nMantissa AS INTEGER

This is updated with the 12 bit mantissa from the two byte object.

If the nExponent is 0, you MUST check for the following special values:

0x007FFFFF NaN (Not a Number)

0x00800000 NRes (Not at this resolution)

0x007FFFFE + INFINITY

0x00800002 - INFINITY

0x00800001 Reserved for future use

nExponent
byRef nExponent AS INTEGER

This is updated with the four bit mantissa. If it is zero, check the nMantissa for special cases
as stated above.

nIndex

byVal nIndex AS INTEGER

This is the zero based index into the string attr$ from which data is read. If the string attr$ is

not long enough to accommodate the index plus the number of bytes to read, this function
fails.

Interactive
Command

No

 //Example :: BleDecodeSFloat.sb (See in BL600CodeSnippets.zip)

 DIM chrHandle,v1,svcHandle,rc, mantissa, exp

 DIM mdVal : mdVal = BleAttrMetadata(1,1,50,0,rc)

 DIM attr$: attr$="\00\01\02\03\04\85\86\87\88\89"

 DIM uuid : uuid = 0x1853

 rc=BleServiceNew(1, BleHandleUuid16(uuid), svcHandle)

 rc=BleCharNew(0x07,BleHandleUuid16(0x2A1C),mdVal,0,0)

 rc=BleCharCommit(svcHandle,attr$,chrHandle)

 rc=BleServiceCommit(svcHandle)

 rc=BleCharValueRead(chrHandle,attr$)

 //read 2 bytes FLOAT from index 2 in the string

 rc=BleDecodeSFloat(attr$,mantissa,exp,2)

 PRINT "\nThe number read is ";mantissa;" x 10^";exp

 //read 2 bytes FLOAT from index 6 in the string

 rc=BleDecodeSFloat(attr$,mantissa,exp,6)

 PRINT "\nThe number read is ";mantissa;"x 10^";exp

Expected Output:

BLEDECODESFLOAT is an extension function.

The number read is 770 x 10^0

The number read is 1926x 10^-8

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

169 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

BleDecodeTIMESTAMP

FUNCTION

This function reads seven bytes from string an offset into an attribute string. If the offset plus seven bytes

points beyond the end of the string then this function fails.

The seven byte string consists of a byte each for century, year, month, day, hour, minute, and second. If (year

* month) is zero, it is taken as “not noted” year and all the other fields are set zero (not noted).

For example 5 May 2013 10:31:24 will be represented in the source as “\DD\07\05\05\0A\1F\18” and the

year will be translated into a century and year so that the destination string will be “\14\0D\05\05\0A\1F\18”

BLEDECODETIMESTAMP (attr$, timestamp$, nIndex)

Returns
INTEGER, the number of bytes extracted from the attribute string. Can be less than the size
expected if the nIndex parameter is positioned towards the end of the string.

Arguments

attr$
byRef attr$ AS STRING

This references the attribute string from which the function reads.

timestamp$
byRef timestamp$ AS STRING

On exit this is an exact 7 byte string as described above. For example 5 May 2013 10:31:24 is
stored as “\14\0D\05\05\0A\1F\18”

nIndex

byVal nIndex AS INTEGER

This is the zero based index into the string attr$ from which data is read. If the string attr$ is

not long enough to accommodate the index plus the number of bytes to read, this function
fails.

Interactive
Command

No

 //Example :: BleDecodeTimestamp.sb (See in BL600CodeSnippets.zip)

 DIM chrHandle,v1,svcHandle,rc, ts$

 DIM mdVal : mdVal = BleAttrMetadata(1,1,50,0,rc)

 //5th May 2013, 10:31:24

 DIM attr$: attr$="\00\01\02\DD\07\05\05\0A\1F\18"

 DIM uuid : uuid = 0x1853

 rc=BleServiceNew(1, BleHandleUuid16(uuid), svcHandle)

 rc=BleCharNew(0x07,BleHandleUuid16(0x2A1C),mdVal,0,0)

 rc=BleCharCommit(svcHandle,attr$,chrHandle)

 rc=BleServiceCommit(svcHandle)

 rc=BleCharValueRead(chrHandle,attr$)

 //read 7 byte timestamp from the index 3 in the string

 rc=BleDecodeTimestamp(attr$,ts$,3)

 PRINT "\nTimestamp = "; StrHexize$(ts$)

Expected Output:

Timestamp = 140D05050A1F18

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

170 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

BLEENCODETIMESTAMP is an extension function.

BleDecodeSTRING

FUNCTION

This function reads a maximum number of bytes from an attribute string at a specified offset into a

destination string. This function will not fail as the output string can take truncated strings.

BLEDECODESTRING (attr$, nIndex, dst$, nMaxBytes)

Returns
INTEGER, the number of bytes extracted from the attribute string. Can be less than the size

expected if the nIndex parameter is positioned towards the end of the string.

Arguments

attr$
byRef attr$ AS STRING

This references the attribute string from which the function reads.

nIndex
byVal nIndex AS INTEGER

This is the zero based index into string attr$ from which data is read.

dst$

byRef dst$ AS STRING

This argument is a reference to a string that will be updated with up to nMaxBytes of data

from the index specified. A shorter string will be returned if there are not enough bytes
beyond the index.

nMaxBytes
byVal nMaxBytes AS INTEGER

This specifies the maximum number of bytes to read from attr$.

Interactive
Command

No

 //Example :: BleDecodeString.sb (See in BL600CodeSnippets.zip)

 DIM chrHandle,v1,svcHandle,rc, ts$,decStr$

 DIM mdVal : mdVal = BleAttrMetadata(1,1,50,0,rc)

 //"ABCDEFGHIJ"

 DIM attr$: attr$="41\42\43\44\45\46\47\48\49\4A"

 DIM uuid : uuid = 0x1853

 rc=BleServiceNew(1, BleHandleUuid16(uuid), svcHandle)

 rc=BleCharNew(0x07,BleHandleUuid16(0x2A1C),mdVal,0,0)

 rc=BleCharCommit(svcHandle,attr$,chrHandle)

 rc=BleServiceCommit(svcHandle)

 rc=BleCharValueRead(chrHandle,attr$)

 //read max 4 bytes from index 3 in the string

 rc=BleDecodeSTRING(attr$,3,decStr$,4)

 PRINT "\nd$=";decStr$

 //read max 20 bytes from index 3 in the string - will be truncated

 rc=BleDecodeSTRING(attr$,3,decStr$,20)

 PRINT "\nd$=";decStr$

 //read max 4 bytes from index 14 in the string - nothing at index 14

 rc=BleDecodeSTRING(attr$,14,decStr$,4)

 PRINT "\nd$=";decStr$

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

171 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Expected Output:

BLEDECODESTRING is an extension function.

BleDecodeBITS

FUNCTION

This function reads bits from an attribute string at a specified offset (treated as a bit array) into a destination

integer object (treated as a bit array of fixed size of 32). This implies a maximum of 32 bits can be read. This

function will not fail as the output bit array can take truncated bit blocks.

BLEDECODEBITS (attr$, nSrcIdx, dstBitArr, nDstIdx,nMaxBits)

Returns
INTEGER, the number of bits extracted from the attribute string. Can be less than the size
expected if the nSrcIdx parameter is positioned towards the end of the source string or if
nDstIdx will not allow more to be copied.

Arguments

attr$
byRef attr$ AS STRING

This references the attribute string from which to read, treated as a bit array. Hence a string of

10 bytes will be an array of 80 bits.

nSrcIdx
byVal nSrcIdx AS INTEGER

This is the zero based bit index into the string attr$ from which data is read. E.g. the third
bit in the second byte is index number 10.

dstBitArr
byRef dstBitArr AS INTEGER

This argument references an integer treated as an array of 32 bits into which data is
copied. Only the written bits are modified.

nDstIdx
byVal nDstIdx AS INTEGER
This is the zero based bit index into the bit array dstBitArr where the data is written to.

nMaxBits

byVal nMaxBits AS INTEGER

This argument specifies the maximum number of bits to read from attr$. Due to the

destination being an integer variable, it cannot be greater than 32. Negative values are
treated as zero.

Interactive
Command

No

 //Example :: BleDecodeBits.sb (See in BL600CodeSnippets.zip)

 DIM chrHandle,v1,svcHandle,rc, ts$,decStr$

 DIM ba : ba=0

 DIM mdVal : mdVal = BleAttrMetadata(1,1,50,0,rc)

 //"ABCDEFGHIJ"

 DIM attr$: attr$="41\42\43\44\45\46\47\48\49\4A"

 DIM uuid : uuid = 0x1853

 rc=BleServiceNew(1, BleHandleUuid16(uuid), svcHandle)

 rc=BleCharNew(0x07,BleHandleUuid16(0x2A1C),mdVal,0,0)

 rc=BleCharCommit(svcHandle,attr$,chrHandle)

d$=CDEF

d$=CDEFGHIJ

d$=

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

172 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 rc=BleServiceCommit(svcHandle)

 rc=BleCharValueRead(chrHandle,attr$)

 //read max 14 bits from index 20 in the string to index 10

 rc=BleDecodeBITS(attr$,20,ba,10,14)

 PRINT "\nbit array = ", INTEGER.B' ba

 //read max 14 bits from index 20 in the string to index 10

 ba=0x12345678

 PRINT "\n\nbit array = ",INTEGER.B' ba

 rc=BleDecodeBITS(attr$,14000,ba,0,14)

 PRINT "\nbit array now = ", INTEGER.B' ba

 //ba will not have been modified because index 14000

 //doesn't exist in attr$

Expected Output:

BLEDECODEBITS is an extension function.

Pairing/Bonding Functions

This section describes all functions related to the pairing and bonding manager which manages trusted

devices. The database stores information like the address of the trusted device along with the security keys.

At the time of writing this manual a maximum of 4 devices can be stored in the database.

The command AT I 2012 or at runtime SYSINFO(2012) returns the maximum number of devices that can be

saved in the database

The type of information that can be stored for a trusted device is:

 The MAC address of the trusted device.

 The eDIV and eRAND for the long term key.

 A 16 byte Long Term Key (LTK).

 The size of the long term key.

 A flag to indictate if the LTK is authenticated – Man-In-The-Middle (MITM) protection.

 A 16 byte Indentity Resolving Key (IRK).

 A 16 byte Connection Signature Resolving Key (CSRK)

Whisper Mode Pairing

BLE provides for simple secure pairing with or without man-in-the-middle attack protection. To enhance

security while a pairing is in progress the specification has provided for Out-of-Band pairing where the shared

secret information is exchanged by means other than the Bluetooth connection. That mode of pairing is

currently not exposed.

Laird have provided an additional mechanism for bonding using the standard inbuilt simple secure pairing

which is called Whisper Mode pairing. In this mode, when a pairing is detected to be in progress, the transmit

bit array = 00000000000100001101000000000000

bit array = 00010010001101000101011001111000

bit array now = 00010010001101000101011001111000

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

173 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

power is automatically reduced so that the ‘bubble’ of influence is reduced and thus a proximity based

enhanced security is achieved.

To take advantage of this pairing mechanism, use the function BleTxPwrWhilePairing() to reduce the transmit

power for the short duration that the pairing is in progress.

Tests have shown that setting a power of -55 using BleTxPwrWhilePairing() will create a ‘bubble’ of about

30cm radius, outside which pairing will not succeed. This will be reduced even further if the BL600 module is

in a case which affects radio transmissions.

BleBondMngrErase

Note: For firmware versions prior to 1.4.X.Y, this subroutine has a bug. It occurs when the subroutine

is called during radio activity.

Workaround when advertising:

 1. Stop adverts by calling BleAdvertStop()

 2. Call BleBondMngrErase()

 3. Restart adverts using BleAdvertStart()

SUBROUTINE

This subroutine deletes the entire trusted device database if the supplied parameter is 0. Other values of the

parameter are reserved for future use.

Note: In Interactive Mode, the command AT+BTD* can also be used to delete the database.

BLEBONDMNGRERASE (nFutureUse)

Arguments

nFutureUse
byVal nFutureUse AS INTEGER

This shall be set to 0

Interactive
Command

No

Workaround for FW 1.3.57.0 and earlier when there is radio activity:

 //Example :: BleBondMngrErase.sb (See in BL600CodeSnippets.zip)

 DIM rc

 rc=BleAdvertStop()

 BleBondMngrErase(0)

For FW 1.4.X.Y and newer:

 //Example :: BleBondMngrErase.sb (See in BL600CodeSnippets.zip)

 DIM rc

 BleBondMngrErase(0)

BLEBONDMNGRERASE is an extension function.

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

174 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

BleBondMngrGetInfo

FUNCTION

This function retrieves the MAC address and other information from the trusted device database via an index.

Note: Do not rely on a device in the database mapping to a static index. New bondings will change the

position in the database.

BLEBONDMNGRGETINFO (nIndex, addr$, nExtraInfo)

Returns
INTEGER, a result code.

Typical value: 0x0000 (indicates a successful operation)

Arguments

nIndex
byVal nIndex AS INTEGER

This is an index in the range 0 to 1, less than the value returned by SYSINFO(2012).

addr$

byRef addr$ AS STRING

On exit ,if nIndex points to a valid entry in the database, this variable contains a MAC address

exactly seven bytes long. The first byte identifies public or private random address. The next six

bytes are the address.

nExtraInfo

byRef nExtraInfo AS INTEGER

On exit if nIndex points to a valid entry in the database, this variable contains a composite

integer value where the lower 16 bits are the eDIV. Bit 16 is set if the IRK (Identity Resolving

Key) exists for the trusted device and bit 17 is set if the CSRK (Connection Signing Resolving
Key) exists for the trusted device.

Interactive
Command

No

 //Example :: BleBondMngrGetInfo.sb (See in BL600CodeSnippets.zip)

 #define BLE_INV_INDEX 24619

 DIM rc, addr$, exInfo

 rc = BleBondMngrGetInfo(0,addr$,exInfo) //Extract info of device at index 1

 IF rc==0 THEN

 PRINT "\nMAC address: ";addr$

 PRINT "\nInfo: ";exInfo

 ELSEIF rc==BLE_INV_INDEX THEN

 PRINT "\nInvalid index"

 ENDIF

Expected Output when valid entry present in database:

Expected Output with invalid index:

BLEBONDMNGRGETINFO is an extension function.

Virtual Serial Port Service – Managed Test When Dongle and Application are

Available

MAC address: \00\BC\B1\F3x3\AB

Info: 97457

Invalid index

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

175 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

This section describes all the events and routines used to interact with a managed virtual serial port service.

“Managed” means there is a driver consisting of transmit and receive ring buffers that isolate the BLE service

from the smartBASIC application. This in turn provides easy to use API functions.

Note: The driver makes the same assumption that the driver in a PC makes: If the on-air connection

equates to the serial cable, there is no assumption that the cable is from the same source as prior to

the disconnection. This is analogous to the way that a PC cannot detect such in similar cases.

The module can present a serial port service in the local GATT Table consisting of two mandatory

characteristics and two optional characteristics. One mandatory characteristic is the TX FIFO and the other is

the RX FIFO, both consisting of an attribute taking up to 20 bytes. Of the optional characteristics, one is the

ModemIn which consists of a single byte and only bit 0 is used as a CTS type function. The other is

ModemOut, also a single byte, which is notifiable only and is used to convey an RTS flag to the client.

By default, (configurable via AT+CFG 112), Laird’s serial port service is exposed with UUID’s as follows:-

The UUID of the service is: 569a1101-b87f-490c-92cb-11ba5ea5167c

The UUID of the rx fifo characteristic is: 569a2001-b87f-490c-92cb-11ba5ea5167c

The UUID of the tx fifo characteristic is: 569a2000-b87f-490c-92cb-11ba5ea5167c

The UUID of the ModemIn characteristic is: 569a2003-b87f-490c-92cb-11ba5ea5167c

The UUID of the ModemOut characteristic is: 569a2002-b87f-490c-92cb-11ba5ea5167c

Note: Laird’s Base 128bit UUID is 569aXXXX-b87f-490c-92cb-11ba5ea5167c where XXXX is a

16 bit offset. We recommend, to save RAM, that you create a 128 bit UUID of your own and

manage the 16 bit space accordingly, akin to what the Bluetooth SIG does with their 16 bit UUIDs.

If command AT+CFG 112 1 is used to change the value of the config key 112 to 1 then Nordic’s serial port

service is exposed with UUID’s as follows:-

The UUID of the service is: 6e400001-b5a3-f393-e0a9-e50e24dcca9e

The UUID of the rx fifo characteristic is: 6e400002-b5a3-f393-e0a9-e50e24dcca9e

The UUID of the tx fifo characteristic is: 6e400003-b5a3-f393-e0a9-e50e24dcca9e

Note: The first byte in the UUID’s above is the most significant byte of the UUID.

The ‘rx fifo characteristic’ is for data that comes to the module and the ‘tx fifo characteristic’ is for data that

goes out from the module. This means a GATT Client using this service will send data by writing into the ‘rx

fifo characteristic’ and will get data from the module via a value notification.

The ‘rx fifo characteristic’ is defined with no authentication or encryption requirements, a maximum of 20

bytes value attribute. The following properties are enabled:

 WRITE

 WRITE_NO_RESPONSE

The ‘tx fifo characteristic’ value attribute is with no authentication or encryption requirements, a maximum of

20 bytes value attribute. The following properties are enabled:

 NOTIFY (The CCCD descriptor also requires no authentication/encryption)

The ‘ModemIn characteristic’ is defined with no authentication or encryption requirements, a single byte

attribute. The following properties are enabled:

 WRITE

 WRITE_NO_RESPONSE

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

176 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

The ‘ModemOut characteristic’ value attribute is with no authentication or encryption requirements, a single

byte attribute. The following properties are enabled:

 NOTIFY (The CCCD descriptor also requires no authentication/encryption)

For ModemIn, only bit zero is used, which is set by 1 when the client can accept data and 0 when it cannot

(inverse logic of CTS in UART functionality). Bits 1 to 7 are for future use and should be set to 0.

For ModemOut, only bit zero is used which is set by 1 when the client can send data and 0 when it cannot

(inverse logic of RTS in UART functionality). Bits 1 to 7 are for future use and should be set to 0.

Note: Both flags in ModemIn and ModemOut are suggestions to the peer, just as in a UART scenario. If

the peer decides to ignore the suggestion and data is kept flowing, the only coping mechanism is

to drop new data as soon as internal ring buffers are full.

Given that the outgoing data is notified to the client, the ‘tx fifo characteristic’ has a Client Configuration

Characteristic (CCCD) which must be set to 0x0001 to allow the module to send any data waiting to be sent

in the transmit ring buffer. While the CCCD value is not set for notifications, writes by the smart BASIC

application result in data being buffered. If the buffer is full the appropriate write routine indicates how many

bytes actually got absorbed by the driver. In the background, the transmit ring buffer is emptied with one or

more indicate or notify messages to the client. When the last bytes from the ring buffer are sent,

EVVSPTXEMPTY is thrown to the smart BASIC application so that it can write more data if it chooses.

When GATT Client sends data to the module by writing into the ‘rx fifo characteristic’ the managing driver

will immediately save the data in the receive ring buffer if there is any space. If there is no space in the ring

buffer, data is discarded. After the ring buffer is updated, event EVVSPRX is thrown to the smart BASIC

runtime engine so that an application can read and process the data.

Similarly, given that ModemOut is notified to the client, the ModemOut characteristic has a Client

Configuration Characteristic (CCCD) which must be set to 0x0001. By default, in a connection the RTS bit in

ModemOut is set to 1 so that the VSP driver assumes there is buffer space in the peer to send data. The RTS

flag is affected by the thresholds of 80 and 120 which means the when opening the VSP port the rxbuffer

cannot be less than 128 bytes.

It is intended that in a future release it will be possible to register a ‘custom’ service and bind that with the

virtual service manager to allow that service to function in the managed environment. This allows the

application developer to interact with any GATT client implementing a serial port service, whether one

currently deployed or one that the Bluetooth SIG adopts.

VSP Configuration

Given that VSP operation can happen in command mode the ability to configure it and save the new

configuration in non-volatile memory is available. For example, in bridge mode, the baudrate of the uart can

be specified to something other than the default 9600. Configuration is done using the AT+CFG command

and refer to the section describing that command for further details. The configuration id pertinent to VSP

are 100 to 116 inclusive

Command and Bridge Mode Operation

Just as the physical UART is used to interact with the module when it is not running a smart BASIC

application, it is also possible to have limited interaction with the module in interactive mode. The limitation

applies to NOT being able to launch smart BASIC applications using the AT+RUN command. If bridge mode is

enabled then any incoming VSP data is retransmitted out via the UART. Conversely, any data arriving via the

UART is transmitted out the VSP service. This latter functionality provides a cable replacement function.

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

177 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Selection of Command or Bridge Mode is done using the nAutorun input signal. When nAutorun is low,

interactive mode is enabled. When it is high, and bit 8 in the config register 100 accessed by AT+CFG 100 is

set, bridge mode is selected the defaule value of config register 100 is 0x8107 which means by default,

bridge mode is enabled if SIO7 is held high and nAutorun is high too.

Note: If $autorun$ file exists in the file system, the bridge mode is always suppressed regardless of the

state of the nAutorun input signal.

The operation of VSP command and bridge mode is illustrated as per the diagrams on the following page

(aknowledgments to Nicolas Mejia) .

The main purpose of interactive mode operation is to facilitate the download of an autorun smart BASIC

application. This allows the module to be soldered into an end product without preconfiguration and then

the application can be downloaded over the air once the product has been pre-tested. It is the smart BASIC

application that is downloaded over the air, NOT the firmware. Due to this principle reason for use in

production, to facilitate multiple programming stations in a locality the transmit power is limited to -12dBm.

It can be changed by changing the 109 config key using the command AT+CFG.

The default operation of this virtual serial port service is dependent on one of the digital input lines being

pulled high externally. Consult the hardware manual for more information on the input pin number. By

default it is SIO7 on the module, but it can be changed by setting the config key 100 via AT+CFG.

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

178 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

You can interact with the BL600 over the air via the Virtual Serial Port Service using the Laird iOS or Android

“BL600 Serial” app, available free on the Apple App Store and Google Play Store respectively

You may download smart BASIC applications using a Windows application, which will be available for free

from Laird. The PC must be BLE enabled using a Laird supplied adapter. Contact your local FAE for details.

As most of the AT commands are functional, you may obtain information such as version numbers by

sending the command AT I 3 to the module over the air.

Note that the module enters interactive mode only if there is no autorun application or if the autorun

application exits to interactive mode by design. Hence in normal operation where a module is expected to

have an autorun application the virtual serial port service will not be registered in the GATT table.

If the application requires the virtual serial port functionality then it shall have to be registered

programmatically using the functions that follow in subsequent subsections. These are easy to use high level

functions such as OPEN/READ/WRITE/CLOSE.

VSP (Virtual Serial Port) Events

In addition to the routines for manipulating the Virtual Serial Port (VSP) service, when data arrives via the

receive characteristic it is stored locally in an underlying ring buffer and then an event is generated.

Similarly when the transmit buffer is emptied, events are thrown from the underlying drivers so that user

smart BASIC code in handlers can perform user defined actions.

The following is a list of events generated by VSP service managed code which can be handled by user code.

EVVSPRX This event is generated when data has arrived and has been stored in the local ring

buffer to be read using BleVSpRead().

EVVSPTXEMPTY This event is generated when the last byte is transmitted using the outgoing data

characteristic via a notification or indication.

Use the iOS BL600 Serial app and connect to your BL600 to test this sample app.

 //Example :: VSpEvents.sb (See in BL600CodeSnippets.zip)

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

179 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 DIM tx$,rc,x,scRpt$,adRpt$,addr$,hndl

 //handler for data arrival

 FUNCTION HandlerBleVSpRx() AS INTEGER

 //print the data that arrived

 DIM n,rx$

 n = BleVSpRead(rx$,20)

 PRINT "\nrx=";rx$

 ENDFUNC 1

 //handler when VSP tx buffer is empty

 FUNCTION HandlerVSpTxEmpty() AS INTEGER

 IF x==0 THEN

 rc = BleVSpWrite(tx$)

 x=1

 ENDIF

 ENDFUNC 1

 PRINT "\nDevice name is "; BleGetDeviceName$()

 //Open the VSP

 rc = BleVSpOpen(128,128,0,hndl)

 //Initialise a scan report

 rc = BleScanRptInit(scRpt$)

 //Advertise the VSP service in the scan report so

 //that it can be seen by the client

 rc = BleAdvRptAddUuid128(scRpt$,hndl)

 adRpt$=""

 rc = BleAdvRptsCommit(adRpt$,scRpt$)

 addr$="" //because we are not doing a DIRECT advert

 rc = BleAdvertStart(0,addr$,20,300000,0)

 //Now advertising so can be connectable

 ONEVENT EVVSPRX CALL HandlerBleVSpRx

 ONEVENT EVVSPTXEMPTY CALL HandlerVSpTxEmpty

 tx$="tx buffer empty"

 PRINT "\nUse the iOS 'BL600 Serial' app to test this"

 //wait for events and messages

 WAITEVENT

BleVSpOpen

FUNCTION

This function opens the default VSP service using the parameters specified. The service’s UUID is:

569a1101-b87f-490c-92cb-11ba5ea5167c

By default, ModemIn and ModemOut characteristics are registered in the GATT table with the Rx and Tx FIFO

characteristics. To suppress Modem characteristics in the GATT table, set bit 1 in the nFlags parameter (value

2). If the virtual serial port is already open, this function fails.

BLEVSPOPEN (txbuflen,rxbuflen,nFlags,svcUuid)

Returns

INTEGER, indicating the success of command:

0 Opened successfully

0x604D Already open

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

180 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

0x604E Invalid Buffer Size

0x604C Cannot register Service in Gatt Table while BLE connected

Exceptions
 Local Stack Frame Underflow

 Local Stack Frame Overflow

Arguments

txbuflen
byVal txbuflen AS INTEGER
Set the transmit ring buffer size to this value. If set to 0, a default value is used by the

underlying driver and use BleVspInfo(2) to determine the size.

rxbuflen
byVal rxbuflen AS INTEGER
Set the receive ring buffer size to this value. If set to 0, a default value is used by the
underlying driver and use BleVspInfo(1) to determine the size.

nFlags

byVal nFlags AS INTEGER
This is a bit mask to customise the driver as follows:

Bit 0

Set to 1 to try for reliable data transfer. This uses INDICATE

messages if allowed and if there is a choice. Some services only

allow NOTIFY and in that case, if set to 1, it is ignored.

Bit 1..31 Reserved for future use. Set to 0.

svcUuid

byRef svcUuid AS INTEGER
On exit, this variable is updated with a handle to the service UUID which can then be

subsequently used to advertise the service in an advert report. Given that there is no BT SIG

adopted Serial Port Service the UUID for the service is 128 bit, so an appropriate Advert

Data element can be added to the advert or scan report using the function
BleAdvRptAddUuid128() which takes a handle of that type.

Related
Commands

BLEVSPINFO, BLEVSPCLOSE, BLEVSPWRITE, BLEVSPREAD, BLEVSPFLUSH

 //Example :: BleVspOpen.sb (See in BL600CodeSnippets.zip)

 DIM scRpt$,adRpt$,addr$,vspSvcHndl

 //Close VSP if already open

 IF BleVSpInfo(0)!=0 THEN

 BleVSpClose()

 ENDIF

 //Open VSP

 IF BleVSpOpen(128,128,0,vspSvcHndl)==0 THEN

 PRINT "\nVSP service opened"

 ELSE

 PRINT "\nFailed"

 ENDIF

Expected Output:

BLEVSPOPEN is an extension function.

BleVSpClose

SUBROUTINE

VSP service opened

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

181 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

This subroutine closes the managed virtual serial port which had been opened with BLEVSPOPEN. This routine

is safe to call if it is already closed. When this subroutine is invoked both receive and transmit buffers are

flushed. If there is data in either buffer when the port is closed, it will be lost.

BLEVSPCLOSE()

Exceptions
 Local Stack Frame Underflow

 Local Stack Frame Overflow

Arguments None

Interactive
Command

No

Related Commands BLEVSPINFO, BLEVSPOPEN, BLEVSPWRITE, BLEVSPREAD, BLEVSPFLUSH

Use the iOS “BL600 Serial” app and connect to your BL600 to test this sample app.

 //Example :: BleVspClose.sb (See in BL600CodeSnippets.zip)

 DIM tx$,rc,scRpt$,adRpt$,addr$,hndl

 //handler when VSP tx buffer is empty

 FUNCTION HandlerVSpTxEmpty() AS INTEGER

 PRINT "\n\nVSP tx buffer empty"

 BleVspClose()

 ENDFUNC 0

 PRINT "\nDevice name is "; BleGetDeviceName$()

 //Open the VSP, advertise

 rc = BleVSpOpen(128,128,0,hndl)

 rc = BleScanRptInit(scRpt$)

 rc = BleAdvRptAddUuid128(scRpt$,hndl)

 adRpt$=""

 rc = BleAdvRptsCommit(adRpt$,scRpt$)

 addr$=""

 rc = BleAdvertStart(0,addr$,20,300000,0)

 //This message will send when connected to client

 tx$="send this data and will close when sent"

 rc = BleVSpWrite(tx$)

 ONEVENT EVVSPTXEMPTY CALL HandlerVSpTxEmpty

 WAITEVENT

 PRINT "\nExiting..."

Expected Output:

BLEVSPCLOSE is an extension subroutine.

Device name is LAIRD BL600

VSP tx buffer empty

Exiting...

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

182 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

BleVSpInfo

FUNCTION

This function is used to query information about the virtual serial port, such as buffer lengths, whether the

port is already open or how many bytes are waiting in the receive buffer to be read.

BLEVSPINFO (infoId)

Returns INTEGER The value associated with the type of UART information requested

Exceptions
 Local Stack Frame Underflow

 Local Stack Frame Overflow

Arguments

infoId

byVal infoId AS INTEGER

This specifies the information type requested as follows if the port is open:

0 0 if closed, 1 if open, 3 if open and there is a BLE connection and 7 if the

transmit fifo characteristic CCCD has been updated by the client to enable
notifies or indications.

1 Receive ring buffer capacity

2 Transmit ring buffer capacity

3 Number of bytes waiting to be read from receive ring buffer

4 Free space available in transmit ring buffer

Related
Commands

BLEVSPOPEN, BLEVSPCLOSE, BLEVSPWRITE, BLEVSPREAD, BLEVSPFLUSH

Interactive
Command

No

 //Example :: BleVspInfo.sb (See in BL600CodeSnippets.zip)

 DIM hndl, rc

 //Close VSP if it is open

 BleVSpClose()

 rc = BleVSpOpen(128,128,0,hndl)

 PRINT "\nVsp State: "; BleVSpInfo(0)

 PRINT "\nRx buffer capacity: "; BleVSpInfo(1)

 PRINT "\nTx buffer capacity: "; BleVSpInfo(2)

 PRINT "\nBytes waiting to be read from rx buffer: "; BleVSpInfo(3)

 PRINT "\nFree space in tx buffer: "; BleVSpInfo(4)

 BleVspClose()

 PRINT "\nVsp State: "; BleVSpInfo(0)

Expected Output:

Vsp State: 1

Rx buffer capacity: 128

Tx buffer capacity: 128

Bytes waiting to be read from rx buffer: 0

Free space in tx buffer: 128

Vsp State: 0

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

183 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

BLEVSPINFO is an extension subroutine.

BleVSpWrite

FUNCTION

This function is used to transmit a string of characters from the virtual serial port.

BLEVSPWRITE (strMsg)

Returns INTEGER 0 to N : Actual number of bytes successfully written to local transmit ring buffer.

Exceptions
 Local Stack Frame Underflow

 Local Stack Frame Overflow

Arguments

strMsg

byRef strMsg AS STRING
The array of bytes to be sent. STRLEN(strMsg) bytes are written to the local transmit ring buffer.

If STRLEN(strMsg) and the return value are not the same, it implies that the transmit buffer did

not have enough space to accommodate the data.

If the return value does not match the length of the original string, use STRSHIFTLEFT function to

drop the data from the string, so subsequent calls to this function only retry with data not

placed in the output ring buffer.

Another strategy is to wait for EVVSPTXEMPTY events, then resubmit data.

Interactive
Command

No

Related
Commands

BLEVSPOPEN, BLEVSPCLOSE, BLEVSPINFO, BLEVSPREAD, BLEVSPFLUSH

Note: strMsg cannot be a string constant, e.g. “the cat”, but must be a string variable. If you must use

a const string, first save it to a temp string variable and then pass it to the function

Use the iOS BL600 Serial app and connect to your BL600 to test this sample app.

 //Example :: BleVSpWrite.sb (See in BL600CodeSnippets.zip)

 DIM tx$,rc,scRpt$,adRpt$,addr$,hndl,cnt

 //handler when VSP tx buffer is empty

 FUNCTION HandlerVSpTxEmpty() AS INTEGER

 cnt=cnt+1

 IF cnt<= 2 THEN

 tx$="then this is sent"

 rc = BleVSpWrite(tx$)

 ENDIF

 ENDFUNC 0

 rc = BleVSpOpen(128,128,0,hndl)

 rc = BleScanRptInit(scRpt$)

 rc = BleAdvRptAddUuid128(scRpt$,hndl)

 adRpt$=""

 rc = BleAdvRptsCommit(adRpt$,scRpt$)

 addr$=""

 rc = BleAdvertStart(0,addr$,20,300000,0)

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

184 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 PRINT "\nDevice name is "; BleGetDeviceName$()

 cnt=1

 tx$="send this data and "

 rc = BleVSpWrite(tx$)

 ONEVENT EVVSPTXEMPTY CALL HandlerVSpTxEmpty

 WAITEVENT

PRINT "\nExiting..."

Expected Output:

BLEVSPWRITE is a extension subroutine.

BleVSpRead

FUNCTION

This function is used to read the content of the receive buffer and copy it to the string variable supplied.

BLEVSPREAD(strMsg,nMaxRead)

Returns
INTEGER 0 to N : The total length of the string variable. This means the caller does not
need to call strlen() function to determine how many bytes in the string must be
processed.

Exceptions
 Local Stack Frame Underflow

 Local Stack Frame Overflow

Arguments

strMsg
byRef strMsg AS STRING
The content of the receive buffer is copied to this string.

nMaxRead
byVal nMaxRead AS INTEGER
The maximum number of bytes to read.

Interactive
Command

No

Related
Commands

BLEVSPOPEN, BLEVSPCLOSE, BLEVSPINFO, BLEVSPWRITE, BLEVSPFLUSH

Note: strMsg cannot be a string constant, e.g. “the cat”, but must be a string variable and. If you must

use a const string, first save it to a temp string variable and then pass it to the function

Use the iOS BL600 Serial app and connect to your BL600 to test this sample app.

 //Example :: BleVSpRead.sb (See in BL600CodeSnippets.zip)

 DIM conHndl

 //Only 1 global variable because its value is used in more than 1 routine

 //All other variables declared locally, inside routine that they are used in.

 //More efficient because these local variables only exist in memory

Device name is LAIRD BL600

Exiting...

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

185 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 //when they are being used inside their respective routines

 //==

 // Open VSp and start advertising

 //==

 SUB OnStartup()

 DIM rc, hndl, tx$, scRpt$, addr$, adRpt$: adRpt$="" : addr$=""

 rc=BleVSpOpen(128,128,0,hndl)

 rc=BleScanRptInit(scRpt$)

 rc=BleAdvRptAddUuid128(scRpt$,hndl)

 rc=BleAdvRptsCommit(adRpt$,scRpt$)

 rc=BleAdvertStart(0,addr$,20,300000,0)

 PRINT "\nDevice name is "; BleGetDeviceName$()

 tx$="\nSend me some text \nTo exit the app, just tell me\n"

 rc = BleVSpWrite(tx$)

 ENDSUB

 //==

 // Close connections so that we can run another app without problems

 //==

 SUB CloseConnections()

 DIM rc

 rc=BleDisconnect(conHndl)

 rc=BleAdvertStop()

 BleVspClose()

 ENDSUB

 //==

 // VSP Rx buffer event handler

 //==

 FUNCTION HandlerVSpRx() AS INTEGER

 DIM rc, rx$, e$: e$="exit"

 rc=BleVSpRead(rx$,20)

 PRINT "\nMessage from client: ";rx$

 //If user has typed exit

 IF StrPos(rx$,e$,0) > -1 THEN

 EXITFUNC 0

 ENDIF

 ENDFUNC 1

 //==

 // BLE event handler

 //==

 FUNCTION HndlrBleMsg(BYVAL nMsgId, BYVAL nCtx)

 conHndl=nCtx

 IF nMsgID==1 THEN

 PRINT "\nDisconnected from client"

 EXITFUNC 0

 ENDIF

 ENDFUNC 1

 ONEVENT EVVSPRX CALL HandlerVSpRx

 ONEVENT EVBLEMSG CALL HndlrBleMsg

 OnStartup() //Calls first subroutine declared above

 WAITEVENT

 CloseConnections() //Calls second subroutine declared above

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

186 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 PRINT "\nExiting..."

Expected Output:

BLEVSPREAD is an extension subroutine.

BleVSpUartBridge

SUBROUTINE

This function creates a bridge between the managed Virtual Serial Port Service and the UART when both are

open. Any data arriving from the VSP is automatically transferred to the UART for forward transmission. Any

data arriving at the UART is sent over the air.

It should be called either when data arrives at either end or when either end indicates their transmit buffer is

empty. The following events are examples: EVVSPRX, EVUARTRX, EVVSPTXEMPTY and EVUARTTXEMPTY.

Given that data can arrive over the UART a byte at a time, a latency timer specified by AT+CFG 116

command may be used to optimise the data transfer over the air. This tries to ensure that full packets are

transmitted over the air. Therefore, if a single character arrives over UART, a latency timer is started. If it

expires, that single character (or any more that arrive but less than 20) will be forced onwards when that

timer expires.

BLEVSPUARTBRIDGE()

Exceptions
 Local Stack Frame Underflow

 Local Stack Frame Overflow

Arguments None

Interactive
Command

No

Related
Commands

BLEVSPOPEN, BLEVSPCLOSE, BLEVSPINFO, BLEVSPWRITE, BLEVSPFLUSH

Related Commands:

 //Example :: BleVSpUartBridge.sb (See in BL600CodeSnippets.zip)

 DIM conHndl

 //==

 // Open VSp and start advertising

 //==

 SUB OnStartup()

 DIM rc, hndl, tx$, scRpt$, addr$, adRpt$

 rc=BleVSpOpen(128,128,0,hndl)

 rc=BleScanRptInit(scRpt$)

 rc=BleAdvRptAddUuid128(scRpt$,hndl)

 rc=BleAdvRptsCommit(adRpt$,scRpt$)

 rc=BleAdvertStart(0,addr$,20,300000,0)

Device name is LAIRD BL600

Messgae from client: (Whatever data you send from your device)

Message from client: exit

Exiting...

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

187 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 rc=GpioBindEvent(1,16,1) //Channel 1, bind to low transition on GPIO pin 16

 PRINT "\nDevice name is "; BleGetDeviceName$();"\n"

 tx$="\nSend me some text. \nPress button 0 to exit\n"

 rc = BleVSpWrite(tx$)

 ENDSUB

 //==

 // Close connections so that we can run another app without problems

 //==

 SUB CloseConnections()

 DIM rc

 rc=BleDisconnect(conHndl)

 rc=BleAdvertStop()

 BleVspClose()

 ENDSUB

 //==

 // BLE event handler - connection handle is obtained here

 //==

 FUNCTION HndlrBleMsg(BYVAL nMsgId, BYVAL nCtx)

 conHndl=nCtx

 IF nMsgID==1 THEN

 PRINT "\nDisconnected from client"

 EXITFUNC 0

 ENDIF

 ENDFUNC 1

 //==

 //handler to service button 0 pressed

 //==

 FUNCTION HndlrBtn0Pr() AS INTEGER

 //just exit and stop waiting for events

 ENDFUNC 0

 //==

 //handler to service an rx/tx event

 //==

 FUNCTION HandlerBridge() AS INTEGER

 // transfer data between VSP and UART ring buffers

 BleVspUartBridge()

 ENDFUNC 1

 ONEVENT EVVSPRX CALL HandlerBridge

 ONEVENT EVUARTRX CALL HandlerBridge

 ONEVENT EVVSPTXEMPTY CALL HandlerBridge

 ONEVENT EVUARTTXEMPTY CALL HandlerBridge

 ONEVENT EVBLEMSG CALL HndlrBleMsg

 ONEVENT EVGPIOCHAN1 CALL HndlrBtn0Pr

 OnStartup()

 WAITEVENT

 CloseConnections() //Calls second subroutine declared above

 PRINT "\nExiting..."

BLEVSPUARTBRIDGE is an extension subroutine.

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

188 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

BleVSpFlush

SUBROUTINE

This subroutine flushes either or both receive and transmit ring buffers.

This is useful when, for example, you have a character terminated messaging system and the peer sends a

very long message, filling the input buffer. In that case, there is no more space for an incoming termination

character. A flush of the receive buffer is the best approach to recover from that situation.

BLEVSPFLUSH(bitMask)

Returns
 Local Stack Frame Underflow

 Local Stack Frame Overflow

Arguments

bitMask
byVal bitMask AS INTEGER
Bit 0 is set to flush the Rx buffer. Bit 1 is set to flush the Tx buffer. Set both bits to flush

both buffers.

Interactive
Command

No

Related Commands BLEVSPOPEN, BLEVSPCLOSE, BLEVSPINFO, BLEVSPWRITE, BLEVSPREAD

 //Example :: BleVSpFlush.sb (See in BL600CodeSnippets.zip)

 DIM conHndl

 //==

 // Open VSp and start advertising

 //==

 SUB OnStartup()

 DIM rc, hndl, tx$, scRpt$, addr$, adRpt$: adRpt$="" : addr$=""

 rc=BleVSpOpen(128,128,0,hndl)

 rc=BleScanRptInit(scRpt$)

 rc=BleAdvRptAddUuid128(scRpt$,hndl)

 rc=BleAdvRptsCommit(adRpt$,scRpt$)

 rc=BleAdvertStart(0,addr$,20,300000,0)

 rc=GpioBindEvent(1,16,1) //Channel 1, bind to low transition on GPIO pin 16

 PRINT "\nDevice name is "; BleGetDeviceName$()

 tx$="\nSend me some text, I won't get it. \nTo exit the app press Button 0\n"

 rc = BleVSpWrite(tx$)

 ENDSUB

 //==

 // Close connections so that we can run another app without problems

 //==

 SUB CloseConnections()

 DIM rc

 rc=BleDisconnect(conHndl)

 rc=BleAdvertStop()

 BleVspClose()

 BleVspFlush(2) //Flush both buffers

 ENDSUB

 //==

 // VSP Rx buffer event handler

 //==

 FUNCTION HandlerVSpRx() AS INTEGER

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

189 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 BleVspFlush(0)

 PRINT "\nRx buffer flushed"

 ENDFUNC 1

 //==

 //handler to service button 0 pressed

 //==

 FUNCTION HndlrBtn0Pr() AS INTEGER

 //stop waiting for events and exit app

 ENDFUNC 0

 //==

 // BLE event handler

 //==

 FUNCTION HndlrBleMsg(BYVAL nMsgId, BYVAL nCtx)

 conHndl=nCtx

 IF nMsgID==1 THEN

 PRINT "\nDisconnected from client"

 EXITFUNC 0

 ENDIF

 ENDFUNC 1

 ONEVENT EVVSPRX CALL HandlerVSpRx

 ONEVENT EVBLEMSG CALL HndlrBleMsg

 ONEVENT EVGPIOCHAN1 CALL HndlrBtn0Pr

 OnStartup() //Calls first subroutine declared above

 WAITEVENT

 CloseConnections() //Calls second subroutine declared above

 PRINT "\nExiting..."

Expected Output:

BLEVSPFLUSH is an extension subroutine.

6. OTHER EXTENSION BUILT-IN ROUTINES

This chapter describes non BLE-related extension routines that are not part of the core smart BASIC language.

System Configuration Routines

SystemStateSet

FUNCTION

This function is used to alter the power state of the module as per the input parameter.

SYSTEMSTATESET (nNewState)

Device name is LAIRD BL600

Rx buffer flushed

Rx buffer flushed

Exiting...

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

190 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Returns
INTEGER, a result code.

The typical value is 0x0000, indicating a successful operation.

Arguments

nNewState
byVal nNewState AS INTEGER

New state of the module as follows:

0 System OFF (Deep Sleep Mode)

Interactive
Command

NO

Note: You may also enter this state when UART is open and a BREAK condition is asserted. Deasserting

BREAK makes the module resume through reset i.e. power cycle.

 //Example :: SystemStateSet.sb (See in Firmware Zip file)

 //Put the module into deep sleep

 PRINT "\n"; SystemStateSet(0)

SYSTEMSTATESET is an extension function.

Miscellaneous Routines

ReadPwrSupplyMv

FUNCTION

This function is used to read the power supply voltage and the value will be returned in millivolts.

READPWRSUPPLYMV ()

Returns INTEGER, the power supply voltage in millivolts.

Arguments None

Interactive
Command

NO

 //Example :: ReadPwrSupplyMv.sb (See in Firmware Zip file)

 //read and print the supply voltage

 PRINT "\nSupply voltage is "; ReadPwrSupplyMv();"mV"

Expected Output:

READPWRSUPPLYMV is an extension function.

SetPwrSupplyThreshMv

FUNCTION

This function sets a supply voltage threshold. If the supply voltage drops below this then the BLE_EVMSG

event is thrown into the run time engine with a MSG ID of BLE_EVBLEMSGID_POWER_FAILURE_WARNING

(19) and the context data will be the current voltage in millivolts.

Supply voltage is 3343mV

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

191 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Events & Messages

MsgId Description

19 The supply voltage has dropped below the value specified as the argument to this function in
the most recent call. The context data is the current reading of the supply voltage in millivolts

SETPWRSUPPLYTHRESHMV(nThresh)

Returns
INTEGER, 0 if the threshold is successfully set, 0x6605 if the value cannot be

implemented.

Arguments

nThreshMv
byVal nThresMv AS INTEGER

The BLE_EVMSG event is thrown to the engine if the supply voltage drops below this

value. Valid values are 2100, 2300, 2500 and 2700.

Interactive
Command

NO

 //Example :: SetPwrSupplyThreshMv.sb (See in Firmware Zip file)

 DIM rc

 DIM mv

 //==

 // Handler for generic BLE messages

 //==

 FUNCTION HandlerBleMsg(BYVAL nMsgId, BYVAL nCtx) AS INTEGER

 SELECT nMsgId

 CASE 19

 PRINT "\n --- Power Fail Warning ",nCtx

 //mv=ReadPwrSupplyMv()

 PRINT "\n --- Supply voltage is "; ReadPwrSupplyMv();"mV"

 CASE ELSE

 //ignore this message

 ENDSELECT

 ENDFUNC 1

 //==

 // Handler to service button 0 pressed

 //==

 FUNCTION HndlrBtn0Pr() AS INTEGER

 //just exit and stop waiting for events

 ENDFUNC 0

 ONEVENT EVBLEMSG CALL HandlerBleMsg

 ONEVENT EVGPIOCHAN1 CALL HndlrBtn0Pr

 rc=GpioBindEvent(1,16,1) //Channel 1, bind to low transition on GPIO pin 16

 PRINT "\nSupply voltage is "; ReadPwrSupplyMv();"mV\n"

 mv=2700

 rc=SetPwrSupplyThreshMv(mv)

 PRINT "\nWaiting for power supply to fall below ";mv;"mV"

 //wait for events and messages

 WAITEVENT

 PRINT "\nExiting..."

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

192 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Expected Output:

SETPWRSUPPLYTHRESHMV is an extension function.

7. EVENTS & MESSAGES

smart BASIC is designed to be event driven, which makes it suitable for embedded platforms where it is

normal to wait for something to happen and then respond.

To ensure that access to variables and resources doen’t end up in race conditions, the event handling is done

synchronously, meaning the smart BASIC runtime engine has to process a WAITEVENT statement for any

events or messages to be processed. This guarantees that smart BASIC will never need the complexity of

locking variables and objects.

The subsystems which generate events and messages relevant to the routines described in this manual are as

follows:-

 BLE events and messages as described here.

 Generic Characteristics events and messages as described here.

Supply voltage is 3343mV

Waiting for power supply to fall below 2700mV

Exiting...

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

193 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

8. MODULE CONFIGURATION

There are many features of the module that cannot be modified programmatically which relate to interactive

mode operation or alter the behaviour of the smartBASIC runtime engine. These configuration objects are

stored in non-volatile flash and are retained until the flash file system is erased via AT&F* or AT&F 1.

To write to these objects, which are identified by a positive integer number, the module must be in

interactive mode and the command AT+CFG must be used which is described in detail here.

To read current values of these objects use the command AT+CFG, described here.

Predefined configuration objects are as listed under details of the AT+CFG command.

9. MISCELLANEOUS

Bluetooth Result Codes

There are some operations and events that provide a single byte Bluetooth HCI result code, e.g. the

EVDISCON message. The meaning of the result code is as per the list reproduced from the Bluetooth

Specifications below. No guarantee is supplied as to its accuracy. Consult the specification for more.

Result codes in grey are not relevant to Bluetooth Low Energy operation and are unlikely to appear.

BT_HCI_STATUS_CODE_SUCCESS 0x00

BT_HCI_STATUS_CODE_UNKNOWN_BTLE_COMMAND 0x01

BT_HCI_STATUS_CODE_UNKNOWN_CONNECTION_IDENTIFIER 0x02

BT_HCI_HARDWARE_FAILURE 0x03

BT_HCI_PAGE_TIMEOUT 0x04

BT_HCI_AUTHENTICATION_FAILURE 0x05

BT_HCI_STATUS_CODE_PIN_OR_KEY_MISSING 0x06

BT_HCI_MEMORY_CAPACITY_EXCEEDED 0x07

BT_HCI_CONNECTION_TIMEOUT 0x08

BT_HCI_CONNECTION_LIMIT_EXCEEDED 0x09

BT_HCI_SYNC_CONN_LIMI_TO_A_DEVICE_EXCEEDED 0x0A

BT_HCI_ACL_COONECTION_ALREADY_EXISTS 0x0B

BT_HCI_STATUS_CODE_COMMAND_DISALLOWED 0x0C

BT_HCI_CONN_REJECTED_DUE_TO_LIMITED_RESOURCES 0x0D

BT_HCI_CONN_REJECTED_DUE_TO_SECURITY_REASONS 0x0E

BT_HCI_BT_HCI_CONN_REJECTED_DUE_TO_BD_ADDR 0x0F

BT_HCI_CONN_ACCEPT_TIMEOUT_EXCEEDED 0x10

BT_HCI_UNSUPPORTED_FEATURE_ONPARM_VALUE 0x11

BT_HCI_STATUS_CODE_INVALID_BTLE_COMMAND_PARAMETERS 0x12

BT_HCI_REMOTE_USER_TERMINATED_CONNECTION 0x13

BT_HCI_REMOTE_DEV_TERMINATION_DUE_TO_LOW_RESOURCES 0x14

BT_HCI_REMOTE_DEV_TERMINATION_DUE_TO_POWER_OFF 0x15

BT_HCI_LOCAL_HOST_TERMINATED_CONNECTION 0x16

BT_HCI_REPEATED_ATTEMPTS 0x17

BT_HCI_PAIRING_NOTALLOWED 0x18

BT_HCI_LMP_PDU 0x19

BT_HCI_UNSUPPORTED_REMOTE_FEATURE 0x1A

BT_HCI_SCO_OFFSET_REJECTED 0x1B

BT_HCI_SCO_INTERVAL_REJECTED 0x1C

BT_HCI_SCO_AIR_MODE_REJECTED 0x1D

BT_HCI_STATUS_CODE_INVALID_LMP_PARAMETERS 0x1E

BT_HCI_STATUS_CODE_UNSPECIFIED_ERROR 0x1F

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

194 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

BT_HCI_UNSUPPORTED_LMP_PARM_VALUE 0x20

BT_HCI_ROLE_CHANGE_NOT_ALLOWED 0x21

BT_HCI_STATUS_CODE_LMP_RESPONSE_TIMEOUT 0x22

BT_HCI_LMP_ERROR_TRANSACTION_COLLISION 0x23

BT_HCI_STATUS_CODE_LMP_PDU_NOT_ALLOWED 0x24

BT_HCI_ENCRYPTION_MODE_NOT_ALLOWED 0x25

BT_HCI_LINK_KEY_CAN_NOT_BE_CHANGED 0x26

BT_HCI_REQUESTED_QOS_NOT_SUPPORTED 0x27

BT_HCI_INSTANT_PASSED 0x28

BT_HCI_PAIRING_WITH_UNIT_KEY_UNSUPPORTED 0x29

BT_HCI_DIFFERENT_TRANSACTION_COLLISION 0x2A

BT_HCI_QOS_UNACCEPTABLE_PARAMETER 0x2C

BT_HCI_QOS_REJECTED 0x2D

BT_HCI_CHANNEL_CLASSIFICATION_UNSUPPORTED 0x2E

BT_HCI_INSUFFICIENT_SECURITY 0x2F

BT_HCI_PARAMETER_OUT_OF_MANDATORY_RANGE 0x30

BT_HCI_ROLE_SWITCH_PENDING 0x32

BT_HCI_RESERVED_SLOT_VIOLATION 0x34

BT_HCI_ROLE_SWITCH_FAILED 0x35

BT_HCI_EXTENDED_INQUIRY_RESP_TOO_LARGE 0x36

BT_HCI_SSP_NOT_SUPPORTED_BY_HOST 0x37

BT_HCI_HOST_BUSY_PAIRING 0x38

BT_HCI_CONN_REJ_DUETO_NO_SUITABLE_CHN_FOUND 0x39

BT_HCI_CONTROLLER_BUSY 0x3A

BT_HCI_CONN_INTERVAL_UNACCEPTABLE 0x3B

BT_HCI_DIRECTED_ADVERTISER_TIMEOUT 0x3C

BT_HCI_CONN_TERMINATED_DUE_TO_MIC_FAILURE 0x3D

BT_HCI_CONN_FAILED_TO_BE_ESTABLISHED 0x3E

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

195 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

10. ACKNOWLEDGEMENTS

The following are required acknowledgements to address our use of open source code on the BL600 to

implement AES encryption.

 Laird’s implementation includes the following files: aes.c and aes.h.

Copyright (c) 1998-2008, Brian Gladman, Worcester, UK. All rights reserved.

LICENSE TERMS

The redistribution and use of this software (with or without changes) is allowed without the payment of

fees or royalties providing the following:

 Source code distributions include the above copyright notice, this list of conditions and the

following disclaimer;

 Binary distributions include the above copyright notice, this list of conditions and the following

disclaimer in their documentation;

 The name of the copyright holder is not used to endorse products built using this software without

specific written permission.

DISCLAIMER

This software is provided 'as is' with no explicit or implied warranties in respect of its properties,

including, but not limited to, correctness and/or fitness for purpose.

Issue 09/09/2006

This is an AES implementation that uses only 8-bit byte operations on the cipher state (there are options

to use 32-bit types if available).

The combination of mix columns and byte substitution used here is based on that developed by Karl

Malbrain. His contribution is acknowledged.

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

196 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

INDEX
AT + BTD * .. 10, 11
AT + MAC ... 11
AT+RUN .. 7
BleDecode32 ... 174
BleDecodeBITS ... 180
BleDecodeFLOAT ... 175
BleDecodeS16 ... 170
BleDecodeS24 ... 172
BleDecodeSFLOAT ... 177
BleDecodeSTRING .. 179
BleDecodeTIMESTAMP 178
BLEDECODEU16 .. 171
BleDecodeU24 ... 173
BleDecodeU8 ... 167, 168
BleEncode16 ... 158
BleEncode24 ... 159
BleEncode32 ... 160
BleEncode8.. 157
BleEncodeBITS ... 166
BleEncodeFLOAT ... 161
BleEncodeSFLOAT .. 163
BleEncodeSFLOATEX .. 162
BleEncodeSTRING .. 165
BleEncodeTIMESTAMP 164
BLESECMNGRKEYSIZES63, 68, 79, 113
BLESVCCOMMIT ... 86
BLESVCREGDEVINFO ... 82
BleVSpClose .. 191
BleVSpFlush ... 198

BleVSpInfo .. 192
BleVSpOpen .. 189
BleVSpRead ... 194
BleVSpUartBridge .. 196
Bluetooth Result Codes 204
Decoding Functions ... 167
Encoding Functions ... 156
EVBLE_ADV_TIMEOUT....................................... 31
EVBLEMSG .. 31
EVBLEMSG .. 31
EVCHARCCCD .. 37
EVCHARDESC ... 42
EVCHARHVC ... 37
EVCHARSCCD ... 39
EVCHARVAL .. 35
EVDISCON ... 34
EVNOTIFYBUF .. 44
EVVSPRX ... 44
EVVSPTXEMPTY .. 44
GPIO Events .. 19
GPIOUNBINDEVENT ... 26
GPIOWRITE ... 24
I2CREADREG8 ... 17
RESET .. 18
SYSINFO .. 12
SYSINFO$.. 14
SYSTEMSTATESET ... 200
UARTOPEN .. 15
VSP (Virtual Serial Port) Events 186, 188

http://ews-support.lairdtech.com/

