

Nokia 5110/3310 Monochrome LCD

Created by lady ada

https://learn.adafruit.com/nokia-5110-3310-monochrome-lcd

Last updated on 2022-12-01 01:54:25 PM EST

©Adafruit Industries Page 1 of 31

3

4

4

10

12

13

13

14

15

22

23

24

31

Table of Contents

Overview

Power Requirements

Arduino Wiring

• Dimmable Backlight Option:

Arduino Testing

Graphics Library

Wiring (fewer pins)

CircuitPython Wiring

CircuitPython Setup

• CircuitPython Installation of PCD8544 Library

CircuitPython Usage

• Initialization

• Controlling the Backlight LED

• Contrast and Bias

• Drawing

• Text

• Invert

• Full Example Code

Python Wiring

Python Setup

• Python Installation of PCD8544 Library

• DejaVu TTF Font

• Pillow Library

Python Usage

• Initialization

• Controlling the Backlight LED

• Contrast and Bias

• Example Code

Downloads

©Adafruit Industries Page 2 of 31

Overview

This is a quick tutorial for our 84x48 pixel monochrome LCD display. These displays

are small, only about 1.5" diameter, but very readable due and comes with a backlight.

This display is made of 84x48 individual pixels, so you can use it for graphics, text or

bitmaps. These displays are inexpensive, easy to use, require only a few digital I/O

pins and are fairly low power as well.

To drive the display, you will need 3 to 5 digital output pins (depending on whether

©Adafruit Industries Page 3 of 31

you want to manually control the chip select and reset lines). Another pin can be used

to control (via on/off or PWM) the backlight. To make things easy for you, we've

written a nice graphics library that can print text, pixels, rectangles, circles and lines!

The library is written for the Arduino but can easily be ported to your favorite

microcontroller.

You can pick up one of these displays at the adafruit shop! ()

Power Requirements

The display uses the PCD8544 controller chip from Philips and were used in Nokia

3310 and 5110 cell phones. This chip is designed to run only at 3.3V and have 3v

communication levels, so for 5V microcontrollers a logic level shifter is required

(otherwise you could easily damage the display).

If you want to use the backlight, that can draw up to 80mA (4 white LEDs at 20mA

each). The backlight pin is connected to a transistor so you can PWM all 4 LEDs at

once from a microcontroller pin.

Arduino Wiring

The LCD runs at 3.3V so you'll need to use a level shifting chip to use with a 5V

microcontroller. The following will assume that is the case. If you're running a 3.3V

microcontroller system, you can skip the level shifter.

We'll assume you want to use this in a breadboard, take a piece of 0.1" header 8 pins

©Adafruit Industries Page 4 of 31

http://www.adafruit.com/index.php?main_page=product_info&cPath=37&products_id=338

long and insert it into a breadboard.

Slide either side of the LCD onto the header, the 'thicker' end is the top.

Solder all the pins.

©Adafruit Industries Page 5 of 31

Place the level shifter chip off to the side. Pin 1 is on the left here.

©Adafruit Industries Page 6 of 31

We'll start with the power lines. the system must be powered by 3.3V so red here is

connected to the 3V pin from the Arduino. Ground is black.

Connect pin 1 of the 4050, the LCD VCC pin and the LCD backlight pin to 3.3V.

Connect pin 8 of the 4050 and the GND pin of the LCD to ground.

Verify you see the backlight LEDs light up

•

•

©Adafruit Industries Page 7 of 31

Dimmable Backlight Option:

Newer versions of these boards have a sightly different backlight circuit that is

brighter than the older boards. You can add a pot to the backlight so that you can

control the brightness. (This works with the older boards too, but the range of

brightness will be lower).

The optional pot can be wired as in the photo below:

Next we'll start wiring up the data lines.

Connect the RST (reset) pin of the LCD (orange wire) to pin 2 of the 4050

Connect the CS (chip select) pin (yellow wire) to pin 4 of the 4050.

•

•

©Adafruit Industries Page 8 of 31

Connect the D/C (data/command) pin (green wire) to pin 6 of the 4050.

Next, connect:

DIN (data in) pin (blue wire) to pin 15 of the 4050

CLK(clock) pin (purple wire) to pin 12 of the 4050.

Then we can connect the data lines from the arduino to the LCD. We can use any 5

pins but you may want to start with our example first.

Arduino pin 3 (orange) goes to pin 3 of the 4050.

Arduino pin 4 (yellow) goes to pin 5 of the 4050.

Arduino pin 5 (green) goes to pin 7 of the 4050.

Arduino pin 6 (blue) goes to pin 14 of the 4050.

Arduino pin 7 (violet) goes to pin 11 of the 4050.

•

•

•

•

•

•

•

•

©Adafruit Industries Page 9 of 31

Now you are ready to test!

Arduino Testing

You can find our Nokia Display Arduino library on github (). You should install it

through the Arduino Library Manager.

Open up the Arduino Library Manager:

Search for the Adafruit PCD8544 library and install it

©Adafruit Industries Page 10 of 31

https://github.com/adafruit/Adafruit-PCD8544-Nokia-5110-LCD-library

Search for the Adafruit GFX library and install it

If using an earlier version of the Arduino IDE (prior to 1.8.10), also locate and install Ad

afruit_BusIO (newer versions will install this dependency automatically).

We also have a great tutorial on Arduino library installation at:

http://learn.adafruit.com/adafruit-all-about-arduino-libraries-install-use

You should see the pcdtest example in File>Examples>Adafruit PCD8544 Nokia 5110

LCD library. Load that example and flash it to your Arduino

You can control the backlight, its much brighter when you connect the backlight pin to

5V (you don't need a level shifter if you are using a Nokia display from Adafruit). You

can control the backlight using an Arduino pin since there is a transistor on the board.

©Adafruit Industries Page 11 of 31

Graphics Library

We have a ready to go basic graphics library that has primitives for bitmaps, shapes

and text. You can probably do everything you want using it. Because of the way the

display works we need to buffer the entire display in ram which is 84x48 bits (504

bytes). However, screen updates are very fast.

For more details about the Adafruit GFX library, please visit http://learn.adafruit.com/

adafruit-gfx-graphics-library () - it supports lines, rectangles, roundrects, circles, text of

different sizes etc.

Note that since this display is MONOCHROMATIC it only supports two colors: BLACK

or WHITE. BLACK is a displayed dot and WHITE is for erasing pixels

Dont forget, after drawing anything to the screen, call display() to write it out to the

LCD!

©Adafruit Industries Page 12 of 31

http://learn.adafruit.com/adafruit-gfx-graphics-library
http://learn.adafruit.com/adafruit-gfx-graphics-library

Wiring (fewer pins)

You can save some pins by connecting the CS pin to ground (this means you cant

reuse the LCD's pins between screen updates but maybe thats OK. You can also

connect the RST pin to the Arduino reset so that it will reset the screen automatically.

CircuitPython Wiring

It's easy to use the Nokia 5110/3310 LCD with CircuitPython and the Adafruit

CircuitPython PCD8544 () module. This module allows you to easily write Python

code to control the display.

You can use this sensor with any CircuitPython microcontroller board or with a

computer that has GPIO and Python thanks to Adafruit_Blinka, our CircuitPython-for-

Python compatibility library ().

We'll cover how to wire the Nokia LCD to your CircuitPython microcontroller board.

First assemble your LCD.

We're going to show you how to wire it up to a Feather M4 Express. Because the logic

levels on a Feather M4 Express are already 3.3v, you don't need a logic level shifter.

Connect the LCD to your microcontroller board as shown below.

©Adafruit Industries Page 13 of 31

https://github.com/adafruit/Adafruit_CircuitPython_PCD8544
https://github.com/adafruit/Adafruit_CircuitPython_PCD8544
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux

Microcontroller GND to LCD Gnd

Microcontroller 3V to LCD Vcc

Microcontroller SCK to LCD Clk

Microcontroller MOSI to LCD Din

Microcontroller D6 to LCD D/C

Microcontroller D5 to LCD CS

Microcontroller D9 to LCD Rst

Microcontroller D10 to LCD Led

Download the Fritzing Diagram

CircuitPython Setup

CircuitPython Installation of PCD8544

Library

To use the Nokia 5110/3310 LCD with your Adafruit CircuitPython board you'll need to

install the Adafruit CircuitPython PCD8544 () module on your board.

First make sure you are running the latest version of Adafruit CircuitPython () for your

board.

Next you'll need to install the necessary libraries to use the hardware--carefully follow

the steps to find and install these libraries from Adafruit's CircuitPython library bundle

(). Our CircuitPython starter guide has a great page on how to install the library

bundle ().

If you choose, you can manually install the libraries individually on your board:

adafruit_pcd8544

adafruit_framebuf

adafruit_bus_device

Before continuing make sure your board's lib folder or root filesystem has the

adafruit_pcd8544.mpy, adafruit_framebuf.mpy and adafruit_bus_device files and

folders copied over.

•

•

•

©Adafruit Industries Page 14 of 31

https://learn.adafruit.com//assets/82980
https://learn.adafruit.com//assets/82980
https://cdn-learn.adafruit.com/assets/assets/000/083/138/original/circuitpython-wiring.fzz?1572296421
https://github.com/adafruit/Adafruit_CircuitPython_PCD8544
https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases
https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-libraries
https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-libraries

Next connect to the board's serial REPL () so you are at the CircuitPython >>> prompt.

CircuitPython Usage

It's easy to use the Nokia 5110/3310 LCD with CircuitPython and the Adafruit

CircuitPython PCD8544 () module. This module allows you to easily write Python code

to control the display.

You can use this display with any CircuitPython microcontroller board.

To demonstrate the usage, we'll initialize the library and use Python code to control

the LCD from the board's Python REPL.

Initialization

First need to initialize the SPI bus. To do that, run the following commands:

import adafruit_pcd8544
import board
import busio
import digitalio

spi = busio.SPI(board.SCK, MOSI=board.MOSI)
dc = digitalio.DigitalInOut(board.D6) # data/command
cs = digitalio.DigitalInOut(board.D5) # Chip select
reset = digitalio.DigitalInOut(board.D9) # reset

display = adafruit_pcd8544.PCD8544(spi, dc, cs, reset)

The last three parameters to the initializer are the pins connected to the display's

DC, CS, and reset lines in that order. Again make sure to use the right pin names as

you have wired up to your board!

Controlling the Backlight LED

You can control the display backlight LED as well. Just be sure the LED line is wired

up to your microcontroller. Just start by initializing it as a DigitalInOut output line.

If you wired it to a different output, be sure to change the port accordingly.

backlight = digitalio.DigitalInOut(board.D10) # backlight
backlight.switch_to_output()

To turn it on, just set it to True and to turn it off, just set it to False .

©Adafruit Industries Page 15 of 31

https://learn.adafruit.com/welcome-to-circuitpython/the-repl
https://github.com/adafruit/Adafruit_CircuitPython_PCD8544
https://github.com/adafruit/Adafruit_CircuitPython_PCD8544

Turn Backlight on
backlight.value = True

#Turn Backlight off
backlight.value = False

Contrast and Bias

Two important settings so that you can see what is on the display are the contrast and

Bias Settings. Let's start by taking a look at the Bias Setting.

Bias

The Bias setting controls the amount of voltage that goes to the display. The higher

the value, the darker the display will be. It's kind of like the brightness setting on a

monitor, but will make the pixels more intense. A value of 4-5 is usually pretty good.

For example, to set it to 5, you would type:

display.bias = 5

Contrast

The contrast setting controls the difference between the dark and light pixels and can

be set to anywhere between 0-127. This is like the contrast setting on a monitor. Too

high of a value will make everything appear dark and to low of a value will make

everything appear too light. A value of around 50-60 seems to look good. For

example, to set it to 50, you would type:

display.contrast = 50

You may want to play around with different combinations of these values to see what

makes your particular display the most readable.

Drawing

The PCD8544 module currently supports a basic set of commands to draw on the

display. You can set individual pixels, fill the screen, and write lines of text.

©Adafruit Industries Page 16 of 31

To fill or clear the entire screen use the fill function. This function takes a

parameter which specifies the color to fill with, either 0 for white or 1 for black. For

example to fill the screen black:

display.fill(1)
display.show()

Notice the fill function doesn't actually change the display. You must call show aft

er making drawing commands to send the updated pixel data to the display!

To clear the screen to white just call fill again but with the color 0 :

display.fill(0)
display.show()

©Adafruit Industries Page 17 of 31

To set a pixel use the pixel function. This function takes the following parameters:

Pixel X position

Pixel Y position

Pixel color (0 = white, 1 = black)

For example to set the first pixel black:

display.pixel(0, 0, 1)
display.show()

•

•

•

©Adafruit Industries Page 18 of 31

Try setting other pixels white by changing the X and Y position. Remember you have

to call show () after setting pixels to see them appear!

Text

To write text to your display, you must download a font file and copy it to your

CIRCUITPY drive. Click the button below to download the file, and then copy font5x8.

bin to your CIRCUITPY drive.

Download the font5x8.bin file

You can write a line of text with the text function. This function takes the following

parameters:

String of text

Text X position

Text Y position

Text color (0 = white, 1 = black)

For example to clear the screen and then write two lines of text:

display.fill(0)
display.text('Hello', 0, 0, 1)
display.text('World', 0, 10, 1)
display.show()

•

•

•

•

©Adafruit Industries Page 19 of 31

https://github.com/adafruit/Adafruit_CircuitPython_SSD1306/blob/master/examples/simpletest.py
https://github.com/adafruit/Adafruit_CircuitPython_SSD1306/blob/master/examples/simpletest.py
https://github.com/adafruit/Adafruit_CircuitPython_framebuf/blob/master/examples/font5x8.bin

Notice the second line of text starts at Y position 10 , this moves it down the display

10 pixels so it's below the first line of text. The font used by the text function is 8

pixels tall so a size of 10 gives a bit of room between the lines.

Invert

Finally you can invert the display colors with the invert property:

display.invert = True

Note that the invert function doesn't need to have show called after it to see the

change.

To go back to a non-inverted display run:

display.invert = False

©Adafruit Industries Page 20 of 31

That's all there is to drawing on the Nokia 5110/3310 LCD display with CircuitPython!

 The drawing functions are basic but provide building blocks for more advanced

usage. For example you can display text with sensor readings or other state, or even

program a simple game like pong!

Full Example Code

SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries
SPDX-License-Identifier: MIT

import time
import board
import busio
import digitalio

import adafruit_pcd8544

Initialize SPI bus and control pins
spi = busio.SPI(board.SCK, MOSI=board.MOSI)
dc = digitalio.DigitalInOut(board.D6) # data/command
cs = digitalio.DigitalInOut(board.D5) # Chip select
reset = digitalio.DigitalInOut(board.D9) # reset

display = adafruit_pcd8544.PCD8544(spi, dc, cs, reset)

display.bias = 4
display.contrast = 60

Turn on the Backlight LED
backlight = digitalio.DigitalInOut(board.D10) # backlight
backlight.switch_to_output()
backlight.value = True

print("Pixel test")
Clear the display. Always call show after changing pixels to make the display
update visible!
display.fill(0)

©Adafruit Industries Page 21 of 31

display.show()

Set a pixel in the origin 0,0 position.
display.pixel(0, 0, 1)
Set a pixel in the middle position.
display.pixel(display.width // 2, display.height // 2, 1)
Set a pixel in the opposite corner position.
display.pixel(display.width - 1, display.height - 1, 1)
display.show()
time.sleep(2)

print("Lines test")
we'll draw from corner to corner, lets define all the pair coordinates here
corners = (
 (0, 0),
 (0, display.height - 1),
 (display.width - 1, 0),
 (display.width - 1, display.height - 1),
)

display.fill(0)
for corner_from in corners:
 for corner_to in corners:
 display.line(corner_from[0], corner_from[1], corner_to[0], corner_to[1], 1)
display.show()
time.sleep(2)

print("Rectangle test")
display.fill(0)
w_delta = display.width / 10
h_delta = display.height / 10
for i in range(11):
 display.rect(0, 0, int(w_delta * i), int(h_delta * i), 1)
display.show()
time.sleep(2)

print("Text test")
display.fill(0)
display.text("hello world", 0, 0, 1)
display.text("this is the", 0, 8, 1)
display.text("CircuitPython", 0, 16, 1)
display.text("adafruit lib-", 0, 24, 1)
display.text("rary for the", 0, 32, 1)
display.text("PCD8544! :) ", 0, 40, 1)

display.show()

while True:
 display.invert = True
 time.sleep(0.5)
 display.invert = False
 time.sleep(0.5)

Python Wiring

It's easy to use the Nokia 5110/3310 LCD with Python and the Adafruit CircuitPython

PCD8544 () module. This module allows you to easily write Python code to control

the display.

We'll cover how to wire the Nokia LCD to your Raspberry Pi. First assemble your LCD.

©Adafruit Industries Page 22 of 31

https://github.com/adafruit/Adafruit_CircuitPython_PCD8544
https://github.com/adafruit/Adafruit_CircuitPython_PCD8544

Since there's dozens of Linux computers/boards you can use we will show wiring for

Raspberry Pi. For other platforms, please visit the guide for CircuitPython on Linux to

see whether your platform is supported ().

Connect the LCD as shown below to your Raspberry Pi.

Raspberry Pi GND to LCD Gnd

Raspberry Pi 3.3V to LCD Vcc

Raspberry Pi SCK (GPIO 11) to LCD Clk

Raspberry Pi MOSI (GPIO 10) to LCD Din

Raspberry Pi GPIO 6 to LCD D/C

Raspberry Pi CE0 (GPIO 8) to LCD CS

Raspberry Pi GPIO 5 to LCD Rst

Raspberry Pi GPIO 13 to LCD Led

Download the Fritzing Diagram

Python Setup

You'll need to install the Adafruit_Blinka library that provides the CircuitPython

support in Python. This may also require enabling SPI on your platform and verifying

you are running Python 3. Since each platform is a little different, and Linux changes

often, please visit the CircuitPython on Linux guide to get your computer ready ()!

Python Installation of PCD8544 Library

Once that's done, from your command line run the following command:

pip3 install adafruit-circuitpython-pcd8544

If your default Python is version 3 you may need to run 'pip' instead. Just make sure

you aren't trying to use CircuitPython on Python 2.x, it isn't supported!

If that complains about pip3 not being installed, then run this first to install it:

sudo apt-get install python3-pip

•

•

©Adafruit Industries Page 23 of 31

https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com//assets/83136
https://learn.adafruit.com//assets/83136
https://cdn-learn.adafruit.com/assets/assets/000/083/137/original/python-wiring.fzz?1572296397
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux

DejaVu TTF Font

Raspberry Pi usually comes with the DejaVu font already installed, but in case it didn't,

you can run the following to install it:

sudo apt-get install fonts-dejavu

This package was previously calls ttf-dejavu, so if you are running an older version of

Raspberry Pi OS, it may be called that.

Pillow Library

We also need PIL, the Python Imaging Library, to allow using text with custom fonts.

There are several system libraries that PIL relies on, so installing via a package

manager is the easiest way to bring in everything:

sudo apt-get install python3-pil

That's it. You should be ready to go.

Python Usage

It's easy to use the Nokia 5110/3310 LCD with CircuitPython and the Adafruit

CircuitPython PCD8544 () module. This module allows you to easily write Python code

to control the display.

You can use this display with a computer that has GPIO and Python thanks to

Adafruit_Blinka, our CircuitPython-for-Python compatibility library ().

To demonstrate the usage, we'll initialize the library and use Python code to control

the LCD from the board's Python REPL.

Since we are running full CPython on our Linux/computer, we can take advantage of

the powerful Pillow image drawing library to handle text, shapes, graphics, etc. Pillow

is a gold standard in image and graphics handling, you can read about all it can do

here ().

•

•

©Adafruit Industries Page 24 of 31

https://github.com/adafruit/Adafruit_CircuitPython_PCD8544
https://github.com/adafruit/Adafruit_CircuitPython_PCD8544
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://pillow.readthedocs.io/en/stable/
https://pillow.readthedocs.io/en/stable/
https://pillow.readthedocs.io/en/stable/

Initialization

First need to initialize the SPI bus. To do that, run the following commands:

import adafruit_pcd8544
import board
import busio
import digitalio

spi = busio.SPI(board.SCK, MOSI=board.MOSI)
dc = digitalio.DigitalInOut(board.D6) # data/command
cs = digitalio.DigitalInOut(board.CE0) # Chip select
reset = digitalio.DigitalInOut(board.D5) # reset

display = adafruit_pcd8544.PCD8544(spi, dc, cs, reset)

The last three parameters to the initializer are the pins connected to the display's

DC, CS, and reset lines in that order. Again make sure to use the right pin names as

you have wired up to your board!

Controlling the Backlight LED

You can control the display backlight LED as well. Just be sure the LED line is wired

up to your microcontroller. Just start by initializing it as a DigitalInOut output line.

If you wired it to a different output, be sure to change the port accordingly.

backlight = digitalio.DigitalInOut(board.D13) # backlight
backlight.switch_to_output()

To turn it on, just set it to True and to turn it off, just set it to False .

Turn Backlight on
backlight.value = True

#Turn Backlight off
backlight.value = False

Contrast and Bias

Two important settings so that you can see what is on the display are the contrast and

Bias Settings. Let's start by taking a look at the Bias Setting.

©Adafruit Industries Page 25 of 31

Bias

The Bias setting controls the amount of voltage that goes to the display. The higher

the value, the darker the display will be. It's kind of like the brightness setting on a

monitor, but will make the pixels more intense. A value of 4-5 is usually pretty good.

For example, to set it to 5, you would type:

display.bias = 5

Contrast

The contrast setting controls the difference between the dark and light pixels and can

be set to anywhere between 0-127. This is like the contrast setting on a monitor. Too

high of a value will make everything appear dark and to low of a value will make

everything appear too light. A value of around 50-60 seems to look good. For

example, to set it to 50, you would type:

display.contrast = 50

You may want to play around with different combinations of these values to see what

makes your particular display the most readable.

Example Code

SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries
SPDX-License-Identifier: MIT

"""
This demo will fill the screen with white, draw a black box on top
and then print Hello World! in the center of the display

This example is for use on (Linux) computers that are using CPython with
Adafruit Blinka to support CircuitPython libraries. CircuitPython does
not support PIL/pillow (python imaging library)!
"""

import board
import busio
import digitalio
from PIL import Image, ImageDraw, ImageFont
import adafruit_pcd8544

Parameters to Change
BORDER = 5
FONTSIZE = 10

spi = busio.SPI(board.SCK, MOSI=board.MOSI)
dc = digitalio.DigitalInOut(board.D6) # data/command
cs = digitalio.DigitalInOut(board.CE0) # Chip select

©Adafruit Industries Page 26 of 31

reset = digitalio.DigitalInOut(board.D5) # reset

display = adafruit_pcd8544.PCD8544(spi, dc, cs, reset)

Contrast and Brightness Settings
display.bias = 4
display.contrast = 60

Turn on the Backlight LED
backlight = digitalio.DigitalInOut(board.D13) # backlight
backlight.switch_to_output()
backlight.value = True

Clear display.
display.fill(0)
display.show()

Create blank image for drawing.
Make sure to create image with mode '1' for 1-bit color.
image = Image.new("1", (display.width, display.height))

Get drawing object to draw on image.
draw = ImageDraw.Draw(image)

Draw a black background
draw.rectangle((0, 0, display.width, display.height), outline=255, fill=255)

Draw a smaller inner rectangle
draw.rectangle(
 (BORDER, BORDER, display.width - BORDER - 1, display.height - BORDER - 1),
 outline=0,
 fill=0,
)

Load a TTF font.
font = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans.ttf",
FONTSIZE)

Draw Some Text
text = "Hello World!"
(font_width, font_height) = font.getsize(text)
draw.text(
 (display.width // 2 - font_width // 2, display.height // 2 - font_height // 2),
 text,
 font=font,
 fill=255,
)

Display image
display.image(image)
display.show()

Let's take a look at the sections of code one by one. We start by importing the board

so that we can access the pin definitions, busio so we can initialize SPI,

digitalio , several PIL modules for Image Drawing, and the adafruit_pcd8544

driver.

import board
import busio
import digitalio
from PIL import Image, ImageDraw, ImageFont
import adafruit_pcd8544

©Adafruit Industries Page 27 of 31

In order to make it easy to change display sizes, we'll define a few variables in one

spot here. We have the border size and font size, which we will explain a little further

below.

BORDER = 5
FONTSIZE = 10

Next we set the SPI object to the board's SPI with busio.SPI() . We also define

some Pins that will be used for the display and initialize the display. See the

initialization section above for more details.

spi = busio.SPI(board.SCK, MOSI=board.MOSI)
dc = digitalio.DigitalInOut(board.D6) # data/command
cs = digitalio.DigitalInOut(board.CE0) # Chip select
reset = digitalio.DigitalInOut(board.D5) # reset

display = adafruit_pcd8544.PCD8544(spi, dc, cs, reset)

Next we set the Bias and Contrast. See the Contrast and Bias section for more details.

Contrast and Brightness Settings
display.bias = 4
display.contrast = 60

After that we setup the backlight. See the Backlight section above for more

information.

Turn on the Backlight LED
backlight = digitalio.DigitalInOut(board.D13) # backlight
backlight.switch_to_output()
backlight.value = True

Next we clear the display in case it was initialized with any random artifact data.

Clear display.
display.fill(0)
display.show()

Next, we need to initialize PIL to create a blank image to draw on. Think of it as a

virtual canvas. Since this is a monochrome display, we set it up for 1-bit color, meaning

a pixel is either white or black. We can make use of the LCD's width and height

properties as well.

Create blank image for drawing.
Make sure to create image with mode '1' for 1-bit color.
image = Image.new('1', (display.width, display.height))

©Adafruit Industries Page 28 of 31

Get drawing object to draw on image.
draw = ImageDraw.Draw(image)

Now we start the actual drawing. Here we are telling it we want to draw a rectangle

from (0,0) , which is the upper left, to the full width and height of the display. We

want it both filled in and having an outline of black, so we pass 255 for both numbers,

which represents the amount of fill.

Draw a black background
draw.rectangle((0, 0, display.width, display.height), outline=255, fill=255)

If we ran the code now, it would still show a blank display because we haven't told

python to use our virtual canvas yet. You can skip to the end if you would like to see

how to do that. This is what our canvas currently looks like in memory.

Next we will create a smaller white rectangle. The easiest way to do this is to draw

another rectangle a little smaller than the full screen with no fill or outline and place it

in a specific location. In this case, we will create a rectangle that is 5 pixels smaller on

each side. This is where the BORDER variable comes into use. It makes calculating

the size of the second rectangle much easier. We want the starting coordinate, which

consists of the first two parameters, to be our BORDER value. Then for the next two

parameters, which are our ending coordinates, we want to subtract our border value

from the width and height. Also, because this is a zero-based coordinate system, we

also need to subtract 1 from each number.

Draw a smaller inner rectangle
draw.rectangle((BORDER, BORDER, display.width - BORDER - 1, display.height - BORDER

©Adafruit Industries Page 29 of 31

- 1),
 outline=0, fill=0)

Here's what our virtual canvas looks like in memory.

Now drawing text with PIL is pretty straightforward. First we start by setting the font to

the default system text. After that we define our text and get the size of the text.

We're grabbing the size that it would render at so that we can calculate the center

position. Finally, we take the font size and screen size to calculate the position we

want to draw the text at and it appears in the center of the screen.

Load a TTF font.
font = ImageFont.truetype('/usr/share/fonts/truetype/dejavu/DejaVuSans.ttf',
FONTSIZE)

Draw Some Text
text = "Hello World!"
(font_width, font_height) = font.getsize(text)
draw.text((display.width//2 - font_width//2, display.height//2 - font_height//2),
 text, font=font, fill=255)

Finally, we need to display our virtual canvas to the LCD and we do that with 2

commands. First we set the image to the screen, then we tell it to show the image.

Display image
display.image(image)
display.show()

©Adafruit Industries Page 30 of 31

Here's what the final output should look like.

Downloads

Our PCD8544 (Nokia 5110) LCD display Arduino library is on github () which comes

with example code. This library uses 1/2 Kbytes of RAM since it needs to buffer the

entire display but its very fast! The code is simple to adapt to any other

microcontroller.

You'll also need to get the Adafruit GFX Graphics core library which can print text,

bitmaps, pixels, rectangles, circles and lines, also available on github ().

The PCD8544 datasheet tells you all about what the display can do ().

Don't forget you MUST call display.image(image) and display.show() to actually

display the graphics. The LCD takes a while to draw so cluster all your drawing

functions into the buffer (fast) and then display them once to the LCD (slow)

©Adafruit Industries Page 31 of 31

https://github.com/adafruit/Adafruit-PCD8544-Nokia-5110-LCD-library
https://github.com/adafruit/Adafruit-GFX-Library
https://github.com/adafruit/Adafruit-GFX-Library
http://www.adafruit.com/datasheets/pcd8544.pdf

	Nokia 5110/3310 Monochrome LCD
	Table of Contents
	Overview
	Power Requirements
	Arduino Wiring
	Arduino Testing
	Graphics Library
	Wiring (fewer pins)
	CircuitPython Wiring
	CircuitPython Setup
	CircuitPython Usage
	Python Wiring
	Python Setup
	Python Usage
	Downloads

	Overview
	Power Requirements
	Arduino Wiring
	Dimmable Backlight Option:

	Arduino Testing
	Graphics Library
	Wiring (fewer pins)
	CircuitPython Wiring
	CircuitPython Setup
	CircuitPython Installation of PCD8544 Library
	CircuitPython Usage
	Initialization
	Controlling the Backlight LED
	Contrast and Bias
	Bias
	Contrast

	Drawing
	Text
	Invert

	Full Example Code
	Python Wiring
	Python Setup
	Python Installation of PCD8544 Library
	DejaVu TTF Font
	Pillow Library

	Python Usage
	Initialization
	Controlling the Backlight LED
	Contrast and Bias
	Bias
	Contrast

	Example Code
	Downloads

