

Data Sheet Issue: 3

Dual Diode Modules MD#710-22N2-26N2

Absolute Maxii	Absolute Maximum Ratings							
V _{RRM} [V]								
	MDD	MDA	MDK					
2200	710-22N2	710-22N2	710-22N2					
2400	710-24N2	710-24N2	710-24N2					
2600	710-26N2	710-26N2	710-26N2					

	VOLTAGE RATINGS	MAXIMUM LIMITS	UNITS
V _{RRM}	Repetitive peak reverse voltage ¹⁾	2200-2600	V
V _{RSM}	Non-repetitive peak reverse voltage 1)	2300-2700	V

	OTHER RATINGS	MAXIMUM LIMITS	UNITS
I _{F(AV)M}	Maximum average on-state current, $T_C = 85^{\circ}C^{2}$	708	А
I _{F(AV)M}	Maximum average on-state current. $T_C = 100^{\circ}C^{2}$	587	А
I _{F(RMS)M}	Nominal RMS on-state current, $T_C = 55^{\circ}C^{2}$	1440	А
I _{F(d.c.)}	D.C. on-state current, $T_c = 55^{\circ}C$	1198	А
I _{FSM}	Peak non-repetitive surge $t_p = 10 \text{ ms}$, $V_{RM} = 60\% V_{RRM}^{3}$	12.7	kA
I _{FSM2}	Peak non-repetitive surge t_p = 10 ms, $V_{RM} \le 10V^{-3}$	14	kA
l²t	$I^{2}t$ capacity for fusing t_{p} = 10 ms, V_{RM} = 60% V_{RRM} ³⁾	806 x 10 ³	A ² s
l²t	I^2t capacity for fusing t_p = 10 ms, $V_{\text{RM}} \leq$ 10 V $^{3)}$	980 x 10 ³	A ² s
VISOL	Isolation Voltage 4)	3000	V
T _{vj op}	Operating temperature range	-40 to +150	°C
T _{stg}	Storage temperature range	-40 to +150	°C

Notes:

1) De-rating factor of 0.13% per °C is applicable for T_{vj} below 25°C.

2) Single phase; 50 Hz, 180° half-sinewave.

Half-sinewave, 150°C T_{vj} initial.
 AC RMS voltage, 50 Hz, 1min test

Characteristics

	PARAMETER	MIN.	TYP.	MAX.	TEST CONDITIONS ¹⁾	UNITS
V _{FM}	Maximum peak forward voltage	-	-	1.36	I _{FM} = 1570A	V
V _{T0}	Threshold voltage	-	-	0.80		V
r⊤	Slope resistance	-	-	0.35		mΩ
I _{RRM}	Peak reverse current	-	-	50	Rated V _{RRM}	mA
Q _{rr}	Recovered Charge	-	1900	2125		μC
Q _{ra}	Recovered Charge, 50% chord	-	1700	-	I _{TM} = 1000 A, t₀ =1ms, di/dt =10A/µs,	μC
Irm	Reverse recovery current	-	150	-	V _R =100 V	А
t _{rr}	Reverse recovery time, 50% chord	-	23	-		μs
5	The second seco	-	-	0.062	Single Diode	K/W
R_{thJC}	Thermal resistance, junction to case	-	-	0.031	Whole Module	K/W
5	-	-	-	0.02	Single Diode	K/W
R _{thCH}	Thermal resistance, case to heatsink	-	-	0.01	Whole Module	K/W
F1	Mounting force (to heatsink) ²⁾	5.1	-	6.9		Nm
F ₂	Mounting force (to terminals) ²⁾	10.8	-	13.2		Nm
W _t	Weight	-	1.5	-		kg

Notes:

1) Unless otherwise indicated T_{vj} =150°C. 2) Screws must be lubricated.

Notes on Ratings and Characteristics

1.0 Voltage Grade Table

Voltage Grade	V _{RRM} V	V _{RSM} V	V _R DC V
22	2200	2300	1650
24	2400	2500	1800
26	2600	2700	1950

2.0 Extension of Voltage Grades

This report is applicable to other voltage grades when supply has been agreed by Sales/Production.

3.0 De-rating Factor

A blocking voltage de-rating factor of 0.13%/°C is applicable to this device for T_{vj} below 25°C.

4.0 Snubber Components

When selecting snubber components, care must be taken not to use excessively large values of snubber capacitor or excessively small values of snubber resistor. Such excessive component values may lead to device damage due to the large resultant values of snubber discharge current. If required, please consult the factory for assistance.

5.0 Computer Modelling Parameters

5.1 Device Dissipation Calculations

Where V_{T0} = 0.8 V, r_T = 0.35 m Ω .

 R_{th} = Supplementary thermal impedance, see table below and

ff = Form factor, see table below.

Supplementary Thermal Impedance								
Conduction Angle 30° 60° 90° 120° 180° 270° d.c.								
Square wave	0.0702	0.0685	0.0679	0.0668	0.0658	0.0637	0.0620	
Sine wave	0.0677	0.0673	0.0664	0.0655	0.0650			

Form Factors							
Conduction Angle	30°	60°	90°	120°	180°	270°	d.c.
Square wave	3.464	2.449	2	1.732	1.414	1.149	1
Sine wave	3.98	2.778	2.22	1.879	1.57		

5.2 Calculating VF using ABCD Coefficients

The forward characteristic IF vs. VF, on page 6 is represented in two ways:

- (i) The well established V_{T0} and r_T tangent used for rating purposes
- (ii) A set of constants A, B, C, D, forming the coefficients of the representative equation for V_F in terms of I_F given below:

$$V_F = A + B \cdot \ln(I_F) + C \cdot I_F + D \cdot \sqrt{I_F}$$

The constants, derived by curve fitting software, are given below for both hot and cold characteristics. The resulting values for V_F agree with the true device characteristic over a current range, which is limited to that plotted.

	25°C Coefficients	150°C Coefficients		
А	0.9793297	А	0.5657172	
В	0.02691659	В	0.03677309	
С	1.928214e ⁻⁴	С	3.198422e ⁻⁴	
D	7.102171e ⁻⁴	D	3.316503e ⁻⁴	

5.3 D.C. Thermal Impedance Calculation

$$r_t = \sum_{p=1}^{p=n} r_p \cdot \left(1 - e^{\frac{-t}{\tau_p}}\right)$$

Where p = 1 to *n* and:

n = number of terms in the series

- t = Duration of heating pulse in seconds
- r_t = Thermal resistance at time t
- r_p = Amplitude of p_{th} term
- τ_p = Time Constant of r_{th} term

The coefficients for this device are shown in the table below:

D.C.								
Term	1	2	3	4	5			
r p	1.37×10⁻³	4.86×10 ⁻³	0.0114	0.0223	0.0221			
$ au_{ ho}$	7.6×10 ⁻⁴	8.6×10 ⁻³	0.101	0.56	3.12			

6.0 Reverse recovery ratings

(i) Q_{ra} is based on 50% I_{RM} chord as shown in Fig. 1

(ii) Q_{rr} is based on a 150 μ s integration time i.e.

$$Q_{rr} = \int_{0}^{150\,\mu s} i_{rr}.dt$$

(iii)

$$K Factor = \frac{t_1}{t_2}$$

<u>Curves</u>

Figure 7 – Forward current vs. Power dissipation

Outline Drawing & Ordering Information

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.