FM/TV front end BA4425F The BA4425F is a monolithic IC designed for FM front end use. It consists of an RF amplifier circuit, mixer circuit, oscillation circuit, and IF buffer amplifier. #### Applications FM radios Radio cassette players Home stereos Headphone stereos ### Features - Uses double balance mixer to improve intermodulation characteristics. - 2) Includes a clamp diode in the mixer output. - Local oscillation buffer on-chip for improved response to strong input. - 4) The output impedance of the IF buffer is matched with the ceramic filter impedance at 330Ω . - 5) Mixer input coupling capacitor included on-chip. - Includes a feedback capacitor for the local oscillation circuit. - 7) Reception of VHF terrestrial TV channels is possible. - 8) Compact SOP 8-pin package. ## ● Absolute maximum ratings (Ta = 25°C) | Parameter | Symbol | Limits | Unit | |-----------------------|--------|------------------|------| | Power supply voltage | Vcc | 7.0 | V | | Power dissipation* | Pd | 500* | mW | | Operating temperature | Topr | −25~+ 75 | ° | | Storage temperature | Tstg | −55∼ +125 | °C | ^{*} Reduced by 5.0mW for each increase in Ta of 1°C over 25°C. ## • Recommended operating conditions (Ta = 25°C) | Parameter | Symbol | Limits | Unit | |-----------------------|--------|---------|------| | Power supply voltage* | Vcc | 1.6~6.0 | V | ^{*} For basic operation at Ta = 25° C. ## ■Block diagram ## Pin descriptions | Pin No. | Pin name | Function | | | |---------|------------------------------|---|--|--| | 1 | FM antenna input pin | Connect to BPF, etc. $Z_{IN} = 75 \Omega$ | | | | 2 | RF amplifier bypass pin | Connect to bypass capacitor | | | | 3 | RF amplifier output load pin | Connect to RF tuning circuit | | | | 4 | MIX output pin | Connect to IFT or resistor load | | | | 5 | GND pin | Ground pin of IC | | | | 6 | IF buffer output pin | Ζουτ =330 Ω | | | | 7 | OSC pin | Connect to station resonance circuit | | | | 8 | Vcc pin | Voltage supply pin of IC | | | ## ●Electrical characteristics (unless otherwise noted, Ta = 25°C and Vcc = 4.0V) | Parameter | Symbol | Min. | Тур. | Max. | Unit | Conditions | Measurement circuit | |--------------------------------|--------|------|------|------|-------------------|---------------------------------|---------------------| | Quiescent current | lα | 2.6 | 4.5 | 7.2 | mA | No input | Fig.1 | | Output saturation voltage | Vo | 30 | 50 | 72 | mV _{rms} | fd=98MHz, 80dB μV | Fig.1 | | Local oscillator voltage | Vosc | 200 | 400 | 630 | mV _{rms} | fosc=108MHz, R ₇ =0Ω | Fig.1 | | Voltage conversion gain | Gvc | 31 | 36 | 42 | dB | fd=98MHz, 55dB μV | Fig.1 | | Local oscillation stop voltage | VSTOP | _ | 0.9 | 1.2 | ٧ | R ₇ =0Ω | Fig.1 | Audio ICs BA4425F ## Measurement circuit # ●Component data | Component number | Component name | Product number / manufacturer | Remarks | |------------------|-------------------|-------------------------------|--| | Z1 | Band-pass filter | BPMB6A
Soshin | $88\sim108MH_{Z}$ Zin=75 Ω , Zout=75 Ω | | L1 | RF coil | FEM10C-2F6
Sumida | ①-③ 2½T
Wire type: | | L2 | OSC coil | FEM10C—2F6
Sumida | ①-③ 2½T
Wire type: φ 0.6UEW
No load: Q = 115 | | T1 | IFT | 2158—4095—498
Sumida | (1)—3 13T
Wire type: | | CF1 | FM ceramic filter | SFE10.7MA5—A
Murata | 3 dB bandwidth = 280 kHz ± 50 kHz | Audio ICs BA4425F #### Electrical characteristic curves Fig. 1 Quiescent current vs. power supply voltage Fig. 2 Quiescent current vs. ambient temperature Fig. 3 IF output voltage vs. power supply voltage Fig. 4 IF output voltage vs. ambient temperature Fig. 5 Voltage conversion gain vs. power supply voltage Fig. 6 Voltage conversion gain vs. ambient temperature Fig. 7 IF output voltage vs. input signal level Fig. 8 Local oscillation voltage vs. power supply voltage Fig. 9 Local oscillation voltage vs. ambient temperature Audio ICs **BA4425F** Fig. 10 Local oscillation frequency vs. power supply voltage Fig. 11 Local oscillation frequency vs. ambient temperature ## ●External dimensions (Units: mm)