ON Semiconductor

Is Now

Onsemi

To learn more about onsemi[™], please visit our website at <u>www.onsemi.com</u>

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product factures, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and asfety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or by customer's technical experts. onsemi products and actal performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiari

Motion SPM[®] 5 SUPERFET[®] Series

General Description

The FSB50760BSF / FSB50760BSFS is an advanced Motion SPM 5 module providing a fully-featured, high-performance inverter output stage for AC Induction, BLDC and PMSM motors such as refrigerators, fans and pumps. These modules integrate optimized gate drive of the built-in MOSFETs (SuperFET technology) to minimize EMI and losses, while also providing multiple on-module protection features including under-voltage lockouts and thermal monitoring. The built-in high-speed HVIC requires only a single supply voltage and translates the incoming logic-level gate inputs to the high-voltage, high-current drive signals required to properly drive the module's internal MOSFETs. Separate open-source MOSFET terminals are available for each phase to support the widest variety of control algorithms.

Features

- UL Certified No. E209204 (UL1557)
- 600 V $R_{DS(ON)}$ = 830 m Ω (Max) SuperFET MOSFET 3-Phase Inverter with Gate Drivers and Protection
- Built-In Bootstrap Diodes Simplify PCB Layout
- Separate Open–Source Pins from Low–Side MOSFETs for Three–Phase Current–Sensing
- Active-HIGH Interface, Works with 3.3 / 5 V Logic, Schmitt-trigger Input
- Optimized for Low Electromagnetic Interference
- HVIC Temperature–Sensing Built–In for Temperature Monitoring
- HVIC for Gate Driving and Under-Voltage Protection
- Isolation Rating: 1500 V_{rms} / min.
- Moisture Senstive Level (MSL) 3
- These Devices are Pb-Free and are RoHS Compliant

Applications

• 3-Phase Inverter Driver for Small Power AC Motor Drives

Related Source

- <u>RD-402: Reference Design for Motion SPM 5 Super- FET Series</u>
- <u>AN-9082 Motion SPM5 Series Thermal Performance by Contact</u> <u>Pressure</u>
- <u>AN-9082: User's Guide for Motion SPM 5 Series V2</u>

ON Semiconductor®

www.onsemi.com

SPM5E-023 / 23LD, PDD STD CASE MODEJ

SPM5H-023 / 23LD, PDD STD, SPM23-BD CASE MODEM

MARKING DIAGRAM

ORDERING INFORMATION

See detailed ordering and shipping information on page 2 of this data sheet.

PACKAGE MARKING AND ORDERING INFORMATION

Device Marking	Device	Package	Reel Size	Packing Type	Quantity
50760BSF	FSB50760BSF	SPM5P-023	Rail	NA	15
50760BSFS	FSB50760BSFS	SPM5Q-023	Tape & Reel	330 mm	450

ABSOLUTE MAXIMUM RATINGS (T_C = 25°C, Unless otherwise noted)

Symbol Parameter	Conditions	Rating	Unit
------------------	------------	--------	------

INVERTER PART (Each MOSFET Unless Otherwise Specified)

V _{PN}	DC Link Input Voltage, Drain-Source Voltage of Each MOSFET		600	V
BV _{DSS}	Drain-Source Voltage	V _{IN} = 0V, I _D = 250 μA	600	V
I _{PN}	Zero-Bias Static Leakage Current		40	μΑ
*I _{D 25}	Each MOSFET Drain Current, Continuous	T _C = 25°C	3.6	A
*I _{D 80}	Each MOSFET Drain Current, Continuous	T _C = 80°C	2.7	А
*I _{DP}	Each MOSFET Drain Current, Peak	T _C = 25°C, PW < 100 μs	9.4	А
*I _{DRMS}	Each FRFET Drain Current, Rms	$T_{C} = 80^{\circ}C, F_{PWM} < 20 \text{ kHz}$	1.9	A _{rms}
*P _D	Maximum Power Dissipation	$T_{C} = 25^{\circ}C$, For Each MOSFET	14.5	W

CONTROL PART (Each HVIC Unless Otherwise Specified)

V _{DD}	Control Supply Voltage	Applied Between V_{DD} and COM	20	V
V _{BS}	High-side Bias Voltage	Applied Between V_B and V_S	20	V
V _{IN}	Input Signal Voltage	Applied Between IN and COM	$-0.3 \sim V_{DD} \text{+} 0.3$	V

BOOTSTRAP DIODE PART (Each Bootstrap Diode Unless Otherwise Specified.)

V _{RRMB}	Maximum Repetitive Reverse Voltage		600	V
* I _{FB}	Forward Current	$T_{\rm C} = 25^{\circ}{\rm C}$	0.5	А
* I _{FPB}	Forward Current (Peak)	$T_C = 25^{\circ}C$, Under 1ms Pulse Width	1.5	А

THERMAL RESISTANCE

R _{th(j-c)Q}	Junction to Case Thermal Resistance (Note 1)	Inverter MOSFET part, (Per Module)	2.15	°C/W
-----------------------	--	------------------------------------	------	------

TOTAL SYSTEM

Τ _J	Operating Junction Temperature		-40 ~ 150	°C
T _{STG}	Storage Temperature		-40 ~ 125	°C
V _{ISO}	Isolation Voltage	60 Hz, Sinusoidal, 1 minute, Connection Pins to Heatsink	1500	V _{rms}

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. For the Measurement Point of Case Temperature T_C, Please refer to Figure 4.

2. Marking "*" Is Calculation Value or Design Factor.

3. Using continuously under heavy loads or excessive assembly conditions (e.g. the application of high temperature/ current/ voltage and the significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/ current/ voltage, etc.) are within the absolute maximum ratings and the operating ranges.

PIN DESCRIPTIONS

Pin No.	Pin Name	Pin Description
1	СОМ	IC Common Supply Ground
2	V _{B(U)}	Bias Voltage for U Phase High Side FRFET Driving
3	V _{DD(U)}	Bias Voltage for U Phase IC and Low Side FRFET Driving
4	IN _(UH)	Signal Input for U Phase High-side
5	IN _(UL)	Signal Input for U Phase Low-side
6	N.C	N.C
7	V _{B(V)}	Bias Voltage for V Phase High Side FRFET Driving
8	V _{DD(V)}	Bias Voltage for V Phase IC and Low Side FRFET Driving
9	IN _(VH)	Signal Input for V Phase High-side
10	IN _(VL)	Signal Input for V Phase Low-side
11	V _{TS}	Output for HVIC Temperature Sensing
12	V _{B(W)}	Bias Voltage for W Phase High Side FRFET Driving
13	V _{DD(W)}	Bias Voltage for W Phase IC and Low Side FRFET Driving
14	IN _(WH)	Signal Input for W Phase High-side
15	IN _(WL)	Signal Input for W Phase Low-side
16	N.C	N.C
17	Р	Positive DC–Link Input
18	U, V _{S(U)}	Output for U Phase & Bias Voltage Ground for High Side FRFET Driving
19	NU	Negative DC-Link Input for U Phase
20	NV	Negative DC-Link Input for V Phase
21	V, V _{S(V)}	Output for V Phase & Bias Voltage Ground for High Side FRFET Driving
22	N _W	Negative DC-Link Input for W Phase
23	W, V _{S(W)}	Output for W Phase & Bias Voltage Ground for High Side FRFET Driving

4. Source Terminal of Each Low–Side MOSFET is Not Connected to Supply Ground or Bias Voltage Ground Inside Motion SPM 5 product. External Connections Should be Made as Indicated in Figure 3.

ELECTRICAL CHARACTERISTICS (T_J = 25°C, V_{DD} = V_{BS} = 15 V Unless Otherwise Specified)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
INVERTER P	PART (Each MOSFET Unless Otherwise	Specified)		-	-	
BV _{DSS}	Drain-Source Breakdown Voltage	V _{IN} = 0 V, I _D = 1 mA (Note 5)	600	-	-	V
I _{DSS}	Zero Gate Voltage Drain Current	$V_{IN} = 0 V, V_{DS} = 600 V$	-	-	1	mA
R _{DS(on)}	Static Drain-Source On-Resistance	$V_{DD} = V_{BS} = 15 \text{ V}, V_{IN} = 5 \text{ V}, I_D = 2 \text{ A}$	-	0.59	0.83	Ω
V_{SD}	Drain-Source Diode Forward Voltage	$V_{DD} = V_{BS} =$ 15 V, $V_{IN} =$ 0 V, $I_D = -2$ A	-	-	1.2	V
t _{ON}	Switching Times	$\label{eq:VPN} \begin{array}{l} V_{PN} = 300 \; V, \; V_{DD} = V_{BS} = 15 \; V, \; I_D = 2 \; A \\ ON \; / \; OFF \; R_G = 1.5 \; K\Omega \; / \; 200 \; \Omega \\ V_{IN} = 0 \; V \leftrightarrow 5 \; V, \; Inductive \; Load \; L= 3 \; mH \\ High- \; and \; Low-Side \; MOSFET \; Switching \\ (Note \; 6) \end{array}$	-	980	-	ns
t _{OFF}			-	1280	-	ns
t _{rr}			-	200	-	ns
E _{ON}			-	110	-	μJ
E _{OFF}			-	13	-	μJ
RBSOA	Reverse-Bias Safe Operating Area	$ \begin{array}{l} V_{PN} = 400 \text{ V}, V_{DD} = V_{BS} = 15 \text{ V}, \text{ I}_{D} = \text{ I}_{DP}, \\ V_{DS} = BV_{DSS}, \text{ T}_{J} = 150^{\circ}\text{C} \\ \text{High- and Low-Side MOSFET Switching (Note 7)} \end{array} $	Full Square			

CONTROL PART (Each HVIC Unless Otherwise Specified)

I _{QDD}	Quiescent V _{DD} Current	V _{DD} = 15 V, V _{IN} = 0 V	Applied Between V _{DD} and COM	-	-	200	μΑ
I _{QBS}	Quiescent V _{BS} Current	V_{BS} = 15 V, V_{IN} = 0 V	$\begin{array}{l} \text{Applied Between} \\ \text{V}_{B(U)}U, \ \text{V}_{B(V)}V, \\ \text{V}_{B(W)}W \end{array}$	-	-	100	μΑ
I _{PDD}	Operating V _{DD} Supply	V _{DD} – COM	$\begin{array}{l} V_{DD} = 15 \text{ V},\\ f_{PWM} = 20 \text{ kHz},\\ \text{Duty} = 50\%, \text{ Applied to}\\ \text{One PWM Signal Input}\\ \text{for Low-Side} \end{array}$	-	_	900	μΑ
I _{PBS}	Operating V _{BS} Supply Current	$\begin{array}{c} V_{B(U)-} \; V_{S(U)}, \; V_{B(V)} \\ - \; V_{S(V)}, \; V_{B(W)} - \; V_{S(W)} \end{array}$	$\begin{array}{l} V_{DD} = V_{BS} = 15 \text{ V}, \\ f_{PWM} = 20 \text{ kHz}, \\ \text{Duty} = 50\%, \text{ Applied to} \\ \text{One PWM Signal Input} \\ \text{for High-Side} \end{array}$	_	_	800	μΑ
UV _{DDD}	Low-Side Undervoltage Protection	V _{DD} Undervoltage Prote	ection Detection Level	7.4	8.0	9.4	V
UV _{DDR}	(Figure 8)	V _{DD} Undervoltage Protection Reset Level		8.0	8.9	9.8	V
UV _{BSD}	High-Side Undervoltage Protection	V _{BS} Undervoltage Prote	ection Detection Level	7.4	8.0	9.4	V
UV _{BSR}	(Figure 9)	V _{BS} Undervoltage Prote	ection Reset Level	8.0	8.9	9.8	V
V_{TS}	HVIC Temperature sensing voltage output	V _{DD} = 15 V, T _{HVIC} = 25°	V _{DD} = 15 V, T _{HVIC} = 25°C (Note 8)		790	980	mV
VIH	ON Threshold Voltage	Logic High Level	Applied between IN and	_	-	2.9	V
V _{IL}	OFF Threshold Voltage	Logic Low Level	СОМ	0.8	_	-	V

_		1	1)				
	V_{FB}	Forward Voltage	I _F = 0.1 A, T _C = 25°C (Note 9)	-	2.5	1	V
	t _{rrB}	Reverse Recovery Time	$I_{F} = 0.1 \text{ A}, T_{C} = 25^{\circ}\text{C}$	-	80	-	ns

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

RECOMMENDED OPERATING CONDITION

			Value			
Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
V _{PN}	Supply Voltage	Applied between P and N	-	300	400	V
V_{DD}	Control Supply Voltage	Applied between V _{DD} and COM	13.5	15.0	16.5	V
V _{BS}	High-Side Bias Voltage	Applied between V_{B} and V_{S}	13.5	15.0	16.5	V
V _{IN(ON)}	Input ON Threshold Voltage	Applied between VIN and COM	3.0	-	V _{DD}	V
V _{IN(OFF)}	Input OFF Threshold Voltage		0	-	0.6	V
t _{dead}	Blanking Time for Preventing Arm-Short	$V_{DD} = V_{BS} = 13.5 \sim 16.5 \text{ V}, \text{ T}_J \le 150^{\circ}\text{C}$	1.0	-	-	μs
f _{PWM}	PWM Switching Frequency	$T_J \le 150^{\circ}C$	-	20	-	kHz

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

Built in Bootstrap Diode V_F-I_F Characteristic

Figure 2. Built in Bootstrap Diode Characteristics (Typical)

NOTES:

- BV_{DSS} is the Absolute Maximum Voltage Rating Between Drain and Source Terminal of Each MOSFET Inside Motion SPM 5 product. V_{PN} Should be Sufficiently Less Than This Value Considering the Effect of the Stray Inductance so that V_{DS} Should Not Exceed BV_{DSS} in Any Case.
- t_{ON} and t_{OFF} Include the Propagation Delay Time of the Internal Drive IC. Listed Values are Measured at the Laboratory Test Condition, and They Can be Different According to the Field Applications Due to the Effect of Different Printed Circuit Boards and Wirings. Please see Figure 6 for the Switching Time Definition with the Switching Test Circuit of Figure 7.
- 7. The peak current and voltage of each MOSFET during the switching operation should be included in the Safe Operating Area (SOA). Please see Figure 6 for the RBSOA test circuit that is same as the switching test circuit.
- 8. V_{TS} is only for sensing temperature of module and cannot shutdown MOSFETs automatically.
- 9. Built in bootstrap diode includes around 15 Ω resistance characteristic. Please refer to Figure 2.

- 10. Parameters for bootstrap circuit elements are dependent on PWM algorithm. For 15 kHz of switching frequency, typical example of parameters is shown above.
- 11. RC coupling (R₅ and C₅) and C₄ at each input of Motion SPM and Micom (Indicated as Dotted Lines) may be used to prevent improper signal due to surge noise.
- 12. Bold lines should be short and thick in PCB pattern to have small stray inductance of circuit, which results in the reduction of surge voltage. Bypass capacitors such as C₁, C₂ and C₃ should have good high frequency characteristics to absorb high–frequency ripple current.

Figure 3. Recommended MCU Interface and Bootstrap Circuit with Parameters

13. Attach the thermocouple on top of the heatsink-side of SPM (between SPM 5 package and heatsink if applied) to get the correct temperature measurement.

Figure 4. Case Temperature Measurement

Figure 5. Temperature Profile of V_{TS} (Typical)

Figure 6. Switching Time Definitions

Figure 7. Switching and RBSOA (Single-Pulse) Test Circuit (Low-side)

Figure 9. Under-Voltage Protection (High-Side)

14. About pin position, refer to Figure 1.

15. RC coupling (R₅ and C₅, R₄ and C₆) and C₄ at each input of Motion SPM 5 product and Micom are useful to prevent improper input signal caused by surge noise.

16. The voltage drop across R₃ affects the low side switching performance and the bootstrap characteristics since it is placed between COM and the source terminal of the low side MOSFET. For this reason, the voltage drop across R₃ should be less than 1 V in the steady-state.

17 Ground wires and output terminals, should be thick and short in order to avoid surge voltage and malfunction of HVIC.

18. All the filter capacitors should be connected close to Motion SPM 5 product, and they should have good characteristics for rejecting high-frequency ripple current.

Figure 10. Example of Application Circuit

PACKAGE DIMENSIONS

NOTES: UNLESS OTHERWISE SPECIFIED A) THIS PACKAGE DOES NOT COMPLY TO ANY CURRENT PACKAGING STANDARD B) ALL DIMENSIONS ARE IN MILLIMETERS C) DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS D) () IS REFERENCE

SPM5H-023 / 23LD, PDD STD, SPM23-BD (Ver1.5) SMD TYPE CASE MODEM ISSUE O

LAND PATTERN RECOMMENDATIONS

SPM and SUPERFET are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor dates sheets and/or application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights or others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application. Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and dis

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative