EPC2015C – Enhancement Mode Power Transistor

 V_{DSS} , 40 V $R_{DS(on)}$, $4\,m\Omega$ I_D, 53 A

Gallium Nitride is grown on Silicon Wafers and processed using standard CMOS equipment leveraging the infrastructure that has been developed over the last 60 years. GaN's exceptionally high electron mobility allows very low R_{DS(on)}, while its lateral device structure and majority carrier diode provide exceptionally low Q_{G} and zero Q_{RR} . The end result is a device that can handle tasks where very high switching frequency, and low on-time are beneficial as well as those where on-state losses dominate.

Maximum Ratings				
V _{DS}	Drain-to-Source Voltage (Continuous)	40 V		
▼ DS	Drain-to-Source Voltage (up to 10,000 5 ms pulses at 150°C)	48	V	
	Continuous ($T_A = 25^{\circ}C$, $R_{\Theta JA} = 6^{\circ}C/W$)	53	А	
I _D	Pulsed (25°C, T _{PULSE} = 300 μs)	235		
V	Gate-to-Source Voltage	6	V	
V _{GS}	Gate-to-Source Voltage	-4	V	
Tı	T, Operating Temperature		°C	
T_{STG}	Storage Temperature	-40 to 150		

EPC2015C eGaN® FETs are supplied only in passivated die form with solder bars Die size: 4.1 mm x 1.6 mm

Applications

- Industrial Automation
- · Synchronous Rectification
- Class-D Audio

Benefits

- Ultra High Efficiency
- Ultra Low Switching and Conduction Losses
- Zero Q_{RR}
- Ultra Small Footprint

www.epc-co.com/epc/Products/eGaNFETs/EPC2015C.aspx

	Static Characteristics (T _J = 25°C unless otherwise stated)					
	PARAMETER	TEST CONDITIONS MIN		TYP	MAX	UNIT
BV _{DSS}	Drain-to-Source Voltage	$V_{GS} = 0 \text{ V, } I_D = 500 \mu\text{A}$	40			V
I _{DSS}	Drain-Source Leakage	$V_{DS} = 32 \text{ V}, V_{GS} = 0 \text{ V}$		200	400	μΑ
	Gate-to-Source Forward Leakage	$V_{GS} = 5 \text{ V}$		1	7	mA
I _{GSS}	Gate-to-Source Reverse Leakage	$V_{GS} = -4 V$		200	400	μΑ
$V_{GS(TH)}$	Gate Threshold Voltage	$V_{DS} = V_{GS}$, $I_D = 9 \text{ mA}$	0.8	1.4	2.5	V
R _{DS(on)}	Drain-Source On Resistance	$V_{GS} = 5 \text{ V}, I_D = 33 \text{ A}$		3.2	4	mΩ
V _{SD}	Source-Drain Forward Voltage	$I_S = 0.5 \text{ A}, V_{GS} = 0 \text{ V}$		1.7		V

All measurements were done with substrate shorted to source.

Thermal Characteristics				
		ТҮР	UNIT	
$R_{\Theta JC}$	Thermal Resistance, Junction to Case	0.8	°C/W	
$R_{\Theta JB}$	Thermal Resistance, Junction to Board	1.7	°C/W	
$R_{\Theta JA}$	Thermal Resistance, Junction to Ambient (Note 1)	54	°C/W	

Note 1: R_{OJA} is determined with the device mounted on one square inch of copper pad, single layer 2 oz copper on FR4 board. See http://epc-co.com/epc/documents/product-training/Appnote_Thermal_Performance_of_eGaN_FETs.pdf for details.

	Dynamic Characteristics (T _J = 25°C unless otherwise stated)					
	PARAMETER	TEST CONDITIONS MIN		ТҮР	MAX	UNIT
C _{ISS}	Input Capacitance			980	1180	
C_{RSS}	Reverse Transfer Capacitance	$V_{DS} = 20 \text{ V}, V_{GS} = 0 \text{ V}$		18		
C _{oss}	Output Capacitance			710	1070	_
C _{OSS(ER)}	Effective Output Capacitance, Energy Related (Note 2)	V 0+- 20VV 0V		870		pF
C _{OSS(TR)}	Effective Output Capacitance, Time Related (Note 3)	$V_{DS} = 0$ to 20 V, $V_{GS} = 0$ V		940		
R _G	Gate Resistance			0.3		Ω
Q_{G}	Total Gate Charge	$V_{DS} = 20 \text{ V}, V_{GS} = 5 \text{ V}, I_{D} = 33 \text{ A}$		8.7	11.2	
Q_{GS}	Gate-to-Source Charge			2.7]
Q_{GD}	Gate-to-Drain Charge	$V_{DS} = 20 \text{ V}, I_{D} = 33 \text{ A}$		1.2		
$Q_{G(TH)}$	Gate Charge at Threshold			1.9		nC
Qoss	Output Charge	$V_{DS} = 20 \text{ V}, V_{GS} = 0 \text{ V}$		19	29	
Q_{RR}	Source-Drain Recovery Charge			0		

Note 2: $C_{OSS(ER)}$ is a fixed capacitance that gives the same stored energy as C_{OSS} while V_{DS} is rising from 0 to 50% BV_{DSS}. Note 3: $C_{OSS(R)}$ is a fixed capacitance that gives the same charging time as C_{OSS} while V_{DS} is rising from 0 to 50% BV_{DSS}.

Figure 1: Typical Output Characteristics at 25°C

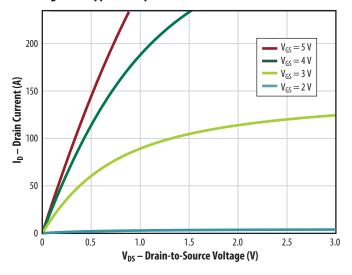


Figure 2: Transfer Characteristics

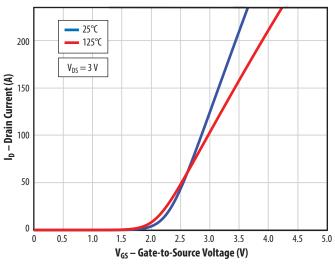


Figure 3: $R_{DS(on)}$ vs. V_{GS} for Various Drain Currents

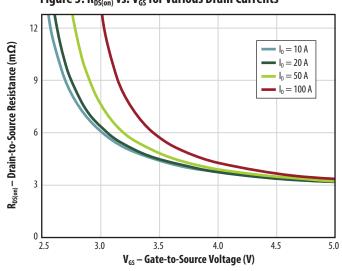


Figure 4: R_{DS(on)} vs. V_{GS} for Various Temperatures

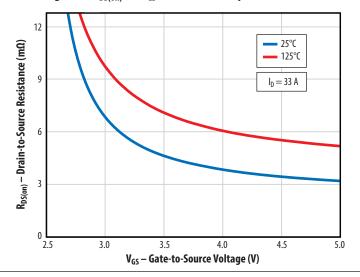


Figure 5a: Capacitance (Linear Scale)

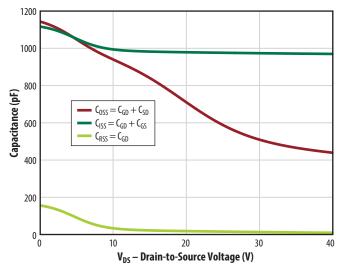


Figure 5b: Capacitance (Log Scale)

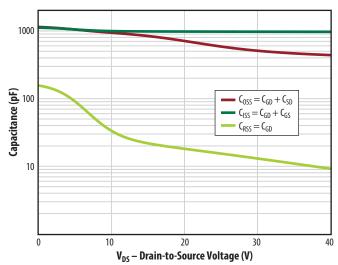


Figure 6: Gate Charge

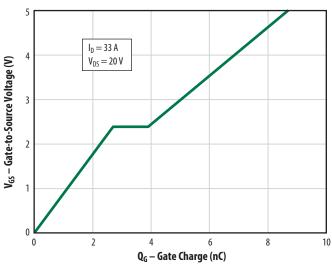


Figure 7: Reverse Drain-Source Characteristics

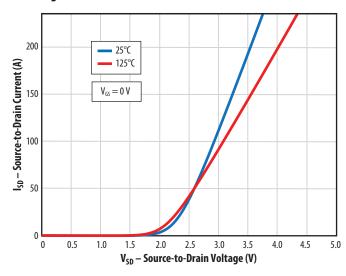


Figure 8: Normalized On-State Resistance vs. Temperature

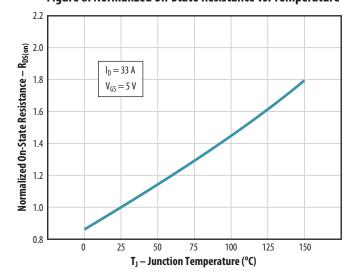
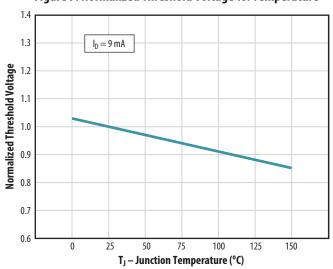



Figure 9: Normalized Threshold Voltage vs. Temperature

All measurements were done with substrate shortened to source

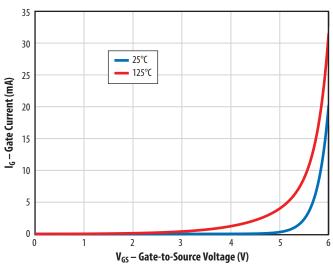
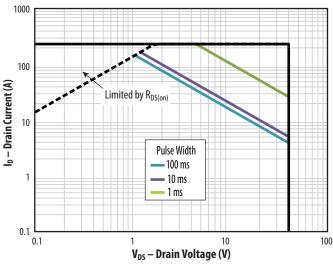
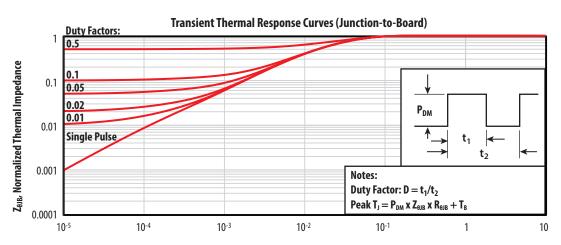
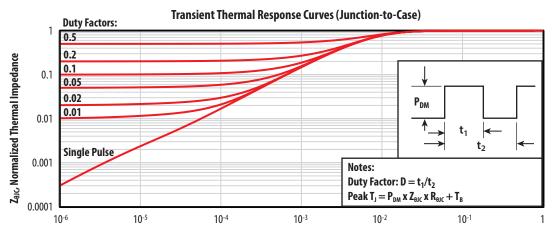
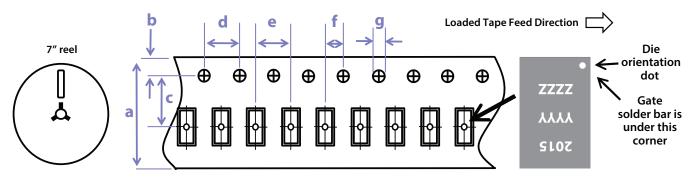




Figure 11: Safe Operating Area



 $T_J = Max Rated, T_C = +25^{\circ}C, Single Pulse$

Figure 12: Transient Thermal Response Curves

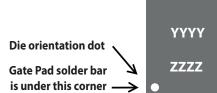

tp, Rectangular Pulse Duration, seconds

tp, Rectangular Pulse Duration, seconds

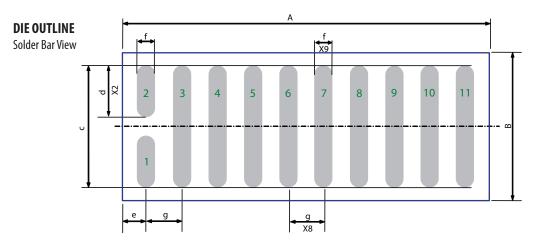
TAPE AND REEL CONFIGURATION

4mm pitch, 12mm wide tape on 7" reel

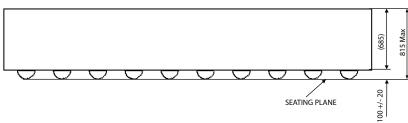
2015


	EPC2015C (note 1)		
Dimension (mm)	target	min	max
a	12.0	11.7	12.3
b	1.75	1.65	1.85
c (note 2)	5.50	5.45	5.55
d	4.00	3.90	4.10
e	4.00	3.90	4.10
f (note 2)	2.00	1.95	2.05
g	1.5	1.5	1.6

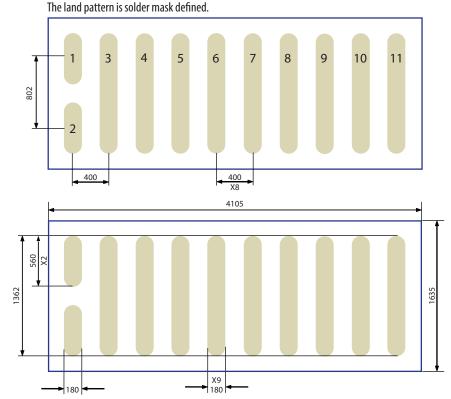
Die is placed into pocket solder bar side down (face side down)


Note 1: MSL1 (moisture sensitivity level 1) classified according to IPC/JEDEC industry standard.

Note 2: Pocket position is relative to the sprocket hole measured as true position of the pocket, not the pocket hole.



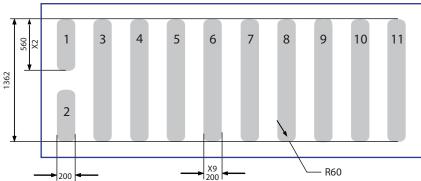
Part		Laser Markings	
Number	Part # Marking Line 1	Lot_Date Code Marking line 2	Lot_Date Code Marking Line 3
EPC2015C	2015	YYYY	ZZZZ


DIM	MICROMETERS			
	MIN	Nominal	MAX	
Α	4075	4105	4135	
В	1602	1632	1662	
С	1379	1382	1385	
d	577	580	583	
е	235	250	265	
f	195	200	205	
g	400	400	400	

Side View

RECOMMENDED LAND PATTERN

(measurements in μ m)



Pad no. 1 is Gate; Pads no. 3, 5, 7, 9, 11 are Drain; Pads no. 4, 6, 8, 10 are Source;

Pad no. 2 is Substrate.

RECOMMENDED STENCIL DRAWING

(units in µm)

Recommended stencil should be 4mil (100 μm) thick, must be laser cut, openings per drawing.

Intended for use with SAC305 Type 3 solder, reference 88.5% metals content.

Additional assembly resources available at http://epc-co.com/epc/DesignSupport/ AssemblyBasics.aspx

Efficient Power Conversion Corporation (EPC) reserves the right to make changes without further notice to any products herein to improve reliability, function or design. EPC does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others.

COPYRIGHT 2016

eGaN® is a registered trademark of Efficient Power Conversion Corporation.

U.S. Patents 8,350,294; 8,404,508; 8,431,960; 8,436,398; 8,785,974; 8,890,168; 8,969,918; 8,853,749; 8,823,012

Information subject to change without notice. Revised April, 2016

6