

Main Product Characteristics

V _{(BR)DSS}	-30V		
R _{DS(ON)}	55mΩ		
I _D	-4.1A		

SOT-23

Schematic Diagram

Features and Benefits

- Advanced MOSFET process technology
- Ideal for high efficiency switched mode power supplies
- Low on-resistance with low gate charge
- Fast switching and reverse body recovery

Description

The GSF3407 utilizes the latest techniques to achieve ultral high cell density and low on-resistance. These features make this device extremely efficient and reliable for use in battery protection, load switch, power management and a wide variety of other applications.

Absolute Maximum Ratings (T_A=25°C unless otherwise specified)

Parameter	Symbol	Max.	Unit
Drain-Source Voltage	V _{DS}	-30	V
Gate-to-Source Voltage	V _{GS}	± 20	V
Continuous Drain Current, @ Steady-State	I _D @ T _A = 25°C	-4.1	Α
Continuous Drain Current, @ Steady-State	I _D @ T _A = 70°C	-3.2	А
Pulsed Drain Current ¹	I _{DM}	-15	А
Power Dissipation	P _D @T _A = 25°C	1.2	W
Junction-to-Ambient (PCB Mounted, Steady-State) ²	R _{0JA}	105	°C/W
Operating Junction and Storage Temperature Range	T _J T _{STG}	-55 to + 150	°C

Electrical Characteristics (T_C=25°C unless otherwise specified)

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit		
Drain-to-Source Breakdown				-				
Voltage	$V_{(BR)DSS}$	$V_{GS} = 0V, I_{D} = 250 \mu A$	-30	-	_	V		
Drain-to-Source Leakage Current	I _{DSS}	V _{DS} = -30V, V _{GS} = 0V	DS = -30V, VGS = 0V		-1	μΑ		
		T _J = 125°C	-	-	-50	μ, ,		
Gate-to-Source Forward Leakage	I_{GSS}	V _{GS} =20V	•	-	-100	nA		
		V _{GS} = -20V	-	-	100			
Static Drain-to-Source On- Resistance		V _{GS} =-10V, I _D = -4.1A	-	40	55	0		
	R _{DS (on)}	V _{GS} =-4.5V, I _D =-3.5A 53		53	68	- mΩ		
Gate Threshold Voltage	V _{GS (th)}	V _{DS} = V _{GS} , I _D =-250μA	-1.0	-1.5	-2.4	V		
Input Capacitance	C _{iss}		-	580	-	pF		
Output Capacitance	C_{oss}	$V_{GS} = 0V V_{DS} = 15V f$ = 1MHz	-	98	-			
Reverse transfer capacitance	C_{rss}		-	74	-			
Total Gate Charge	Qg		-	6.8	-	nC		
Gate-to-Source Charge	Q_{gs}	I _D =-4.1A, V _{DS} =-15V, V _{GS} =-10 V	-	1.0	-			
Gate-to-Drain("Miller") Charge	Q_{gd}		-	1.4	-			
Turn-on Delay Time	$t_{d(on)}$		-	14	-	nS		
Rise Time	t _r	V_{GS} =-10V, V_{DS} =-15V, R_L =15 Ω ,	-	61	-			
Turn-Off Delay Time	$t_{d(off)}$	R _{GEN} = $2.5Ω$ I _D = $-1A$	-	19	-			
Fall Time	t _f		-	10	-			
Source-Drain Ratings and Characteristics								
Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit		
Continuous Source Current (Body Diode)	Is	MOSFET symbol showing the integral reverse	-	-	-4.1	А		
Pulsed Source Current (Body Diode)	I _{SM}	p-n junction diode.	ì	-	-15	Α		
Diode Forward Voltage	V_{SD}	I _S =5.6A, V _{GS} =0V	-	-0.8	-1.2	V		

Notes

- 1. Pulse test: Pulse Width $\!\!\leqslant\! 300 us,$ Duty cycle $\!\!\leqslant\! 2\%.$
- 2. Device mounted on FR-4 PCB, 1inch x 0.85inch x 0.062 inch.

Typical Electrical and Thermal Characteristic Curves

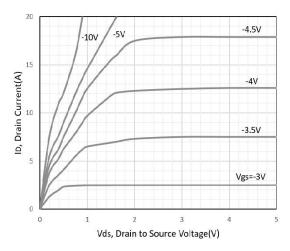


Figure 1. Typical Output Characteristics

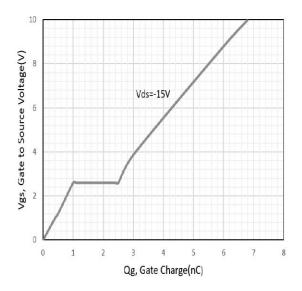


Figure 3. Gate Charge.

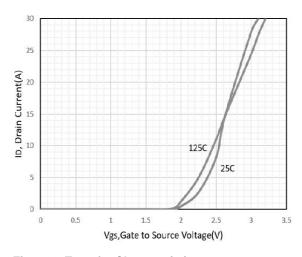


Figure 2. Transfer Characteristics

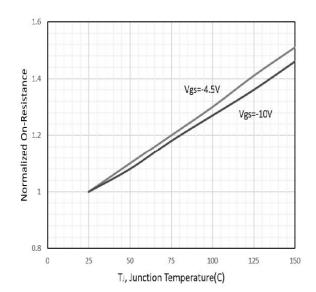


Figure 4. Normalized On-Resistance Vs. Case Temperature

Typical Electrical and Thermal Characteristic Curves

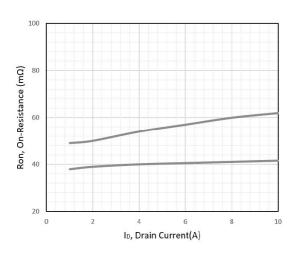


Figure 5. Drain-Source On-Resistance

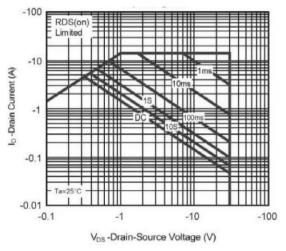


Figure 7. Safe Operation Area

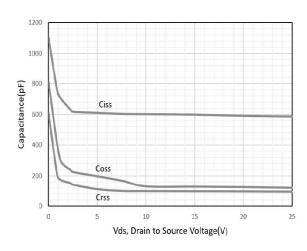


Figure 6. Typical Capacitance Vs. Drain-to-Source Voltage

Test Circuit & Waveform

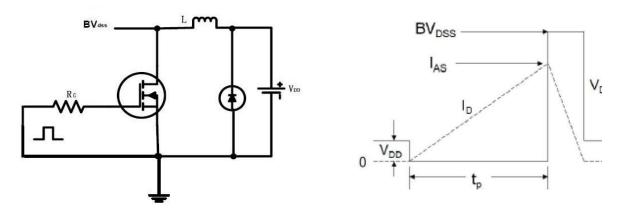


Figure 8. Unclamped Inductive Switching Test Circuit & Waveforms

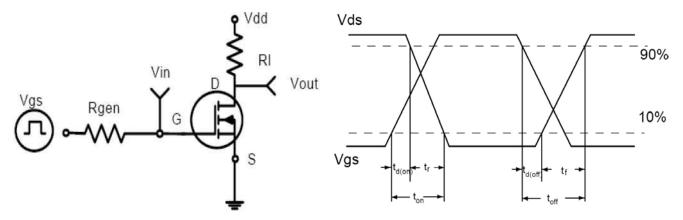
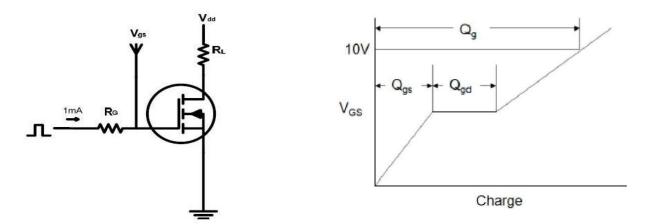
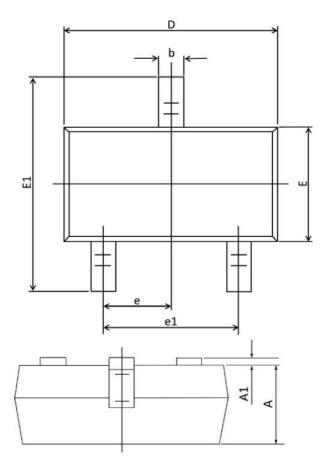
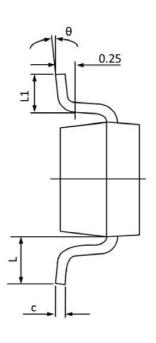


Figure 9. Resistive Switching Test Circuit & Waveforms


Figure 10. Gate Charge Test Circuit & Waveform

Package Outline Dimensions

SOT-23

Cymahal	Dimensions In Millimeters		Dimensions In Inches		
Symbol	Min	Max	Min	Max	
Α	0.900	1.000	0.035	0.039	
A1	0.000	0.100	0.000	0.004	
b	0.300	0.500	0.012	0.020	
С	0.090	0.110	0.003	0.004	
D	2.800	3.000	0.110	0.118	
Е	1.200	1.400	0.047	0.055	
E1	2.250	2.550	0.089	0.100	
е	0.950 TYP.		0.037 TYP.		
e1	1.800	2.000	0.071	0.079	
L	0.550 REF.		0.022 REF.		
L1	0.300	0.500	0.012	0.020	
θ	1°	7°	1°	7°	