Additional Resources: Product Page | 3D Model | PCB Footprint

CUI DEVICES

date 03/18/2020

page 1 of 4

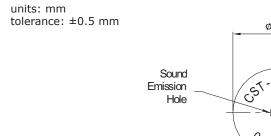
MODEL: CST-951AP | DESCRIPTION: MAGNETIC BUZZER TRANSDUCER

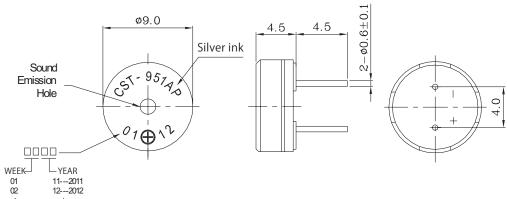
FEATURES

- through hole
- 85 dB
- externally driven

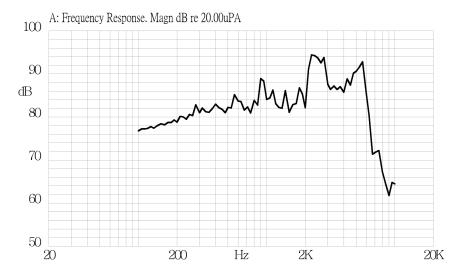
SPECIFICATIONS

parameter	conditions/description	min	typ	max	units
rated voltage	Vo-p → □		5.0		Vo-p
operating voltage		4.0		6.0	Vo-p
current consumption	at rated voltage, 2,730 Hz square wave, ½ duty			80	mA
rated frequency			2,730		Hz
sound pressure level	at 10 cm (A-weight), rated voltage, 2,730 Hz square wave, ½ duty	85	92		dBA
coil resistance		25.5	30	34.5	Ω
dimensions	Ø9.0 x 4.5				mm
weight			0.6		g
material	PPO				
terminal	pin type (Au plating)				
operating temperature		-20		70	°C
storage temperature		-30		80	°C
RoHS	yes				

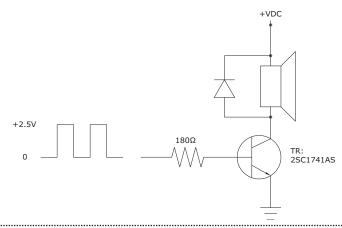

Notes: 1. All specifications measured at 5~35°C, humidity at 45~85%, under 86~106kPa pressure, unless otherwise noted.


SOLDERABILITY

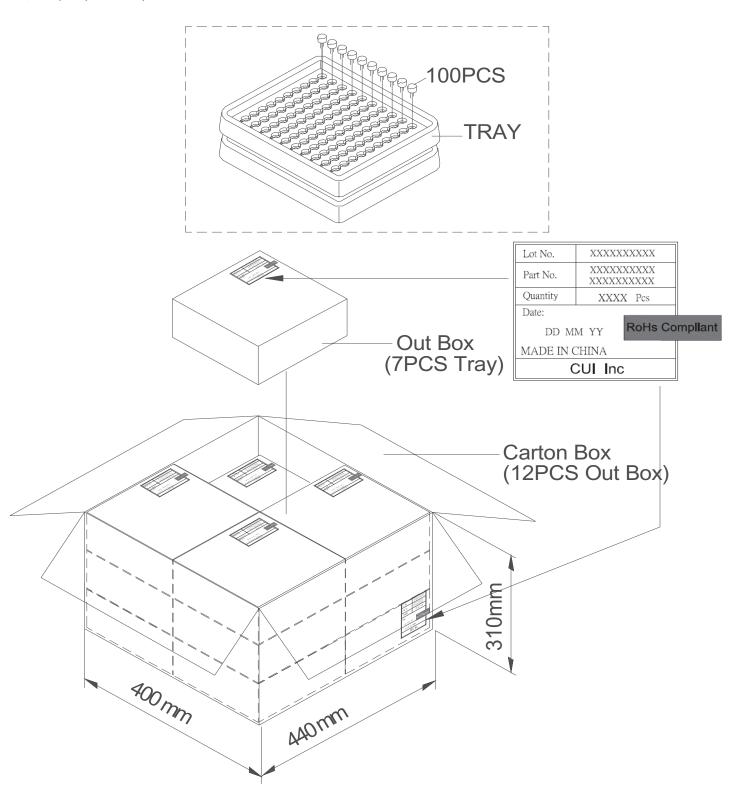
parameter	conditions/description	min	typ	max	units
hand soldering ²	for maximum 2 seconds	330		380	°C


Notes: 2. Not recommended for wave soldering

MECHANICAL DRAWING



FREQUENCY RESPONSE CURVE


MEASUREMENT METHOD

PACKAGING

Internal Tray Size: 184 x 184 x 23 mm Carton Size: 440 x 400 x 310 mm

QTY: 8,400 pcs (700 x 12)

Additional Resources: Product Page | 3D Model | PCB Footprint

CUI Devices | MODEL: CST-951AP | DESCRIPTION: MAGNETIC BUZZER TRANSDUCER date 03/18/2020 | page 4 of 4

REVISION HISTORY

rev.	description	date
1.0	initial release	01/30/2006
1.01	updated datasheet	07/31/2019
1.02	brand update	03/18/2020

The revision history provided is for informational purposes only and is believed to be accurate.

CUI DEVICES

CUI Devices offers a one (1) year limited warranty. Complete warranty information is listed on our website.

CUI Devices reserves the right to make changes to the product at any time without notice. Information provided by CUI Devices is believed to be accurate and reliable. However, no responsibility is assumed by CUI Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use.

CUI Devices products are not authorized or warranted for use as critical components in equipment that requires an extremely high level of reliability. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.