Teccor[®] brand Thyristors

Standard Bidirectional DIAC Trigger

HTxxx & HTMxxx & STxxx Series

ittelfuse

Expertise Applied | Answers Delivered

Schematic Symbol

Applications

DIACs are used to trigger Triacs and SCRs in phase control circuits for lamp dimming, universal motor speed control, and heat control. They are used also for triggering transistors in solid state ballast lighting controls.

Absolute Maximum Ratings

Symbol Parameter **Test Conditions** Min Max Unit 2 120PPS, $T_{A} \leq 40^{\circ}C$ Pulse On-State Current А I_{TRM} pulse width = $10 \mu S$ 1.5(*) T_s Storage Temperature Range -40 +125 °С T_J -40 +125 °С **Operating Junction Temperature** See Product $\mathsf{P}_{\mathsf{D}(\mathsf{AV})}$ $T_{A} = -40^{\circ}C \text{ to } +40^{\circ}C$ **Device Power Dissipation** mW Selector Table

(*)Only Applies to HT-60

Notes:

1. Service Dissipation (at T_a = -40°C to +40°C): 250mW for DO-35 and MINIMELF/SOD-80

and 300mW for DO214

2. Above +40°C, Derate: 3.6mW/°C for DO-35 and MINIMELF/SOD-80 and 3mW/°C for DO214

Description

The HTM, HT, and ST series of bilateral trigger DIACs offer a range of voltage characteristics from 27V to 70V. A DIAC semiconductor is a full-wave or bidirectional Thyristor. It is triggered from a blocking state to a conduction state for either polarity of applied voltage whenever the amplitude of applied voltage exceeds the breakover voltage of the DIAC.

Features & Benefits

- Rolls compliant
- ST Series:
- Bilateral triggering device
- Glass-passivated junctions
- Wide voltage range selections
- Long-term reliability
- Parameter stability
- Reliable barrier against junction contamination

- Epoxy SM package
- (DO-214) • High-temperature, solder
- High-temperature, solder bonded die attachment

HTM/HT Series:

• MINIMELF/DO-35 trigger package

Electrical Characteristics (T_j = 25°C, unless otherwise specified)

Symbol	Description	Test Conditions	Min	Max	Unit	
V _{BO}	Breakover/Trigger Voltage	50/60Hz Sine Wave	See Product Selector Table	See Product Selector Table	V	
ΔV _{bo}	Breakover Voltage Symmetry	+V _{BO} to -V _{BO}		2 ^(Note 1)	V	
V _{BB}	Δ Breakback Voltage ^(Note 4)	$V_{\rm BO}$ to $V_{\rm 10mA}$	5		V	
		$V^{}_{\rm BO}$ to $V^{}_{\rm 6mA}{}^{(*)}$	15		V	
V _{BB (DYN)}	Dynamic Δ Breakback Voltage ^(Notes 2 & 3)	120 PPS	10		V	
во	Breakover Current	50/60Hz Sine Wave		15	μA	

(*) Only Applies to HT-60

Electrical Characteristic Notes:

1. Breakover voltage symmetry as close as 1V is available from the factory for these products.

2. See Figure 4 and Figure 5 for test circuit and waveforms.

Product Selector

3. Typical switching time is 900 nano-seconds measured at $I_{_{PK}}$ (Figure 4) across a 20 Ω resistor (Figure 5). Switching time is defined as rise time of $I_{_{PK}}$ between the 10% to 90% points

4. See V-I Characteristics

Static Characteristics - Not Applicable

Davit Numeria au		Package Availability	V _{BO}					
Part Number	MINIMELF	DO-35	DO-214	MIN	MAX			
XX-32	—	HT-32	ST-32	27V	37V			
XX-32A/ 5761	_	HT-32A	_	28V	36V			
XX-32B/ 5761A	HTM-32B	HT-32B	ST-32B	30V	34V			
XX-34B	_	HT-34B	ST-34B	32V	36V			
XX-35	_	HT-35	ST-35	30V	40V			
XX-36A/ 5762	_	HT-36A	ST-36A	32V	40V			
XX-36B	_	HT-36B	ST-36B	34V	38V			
XX-40	_	HT-40	ST-40	35V	45V			
XX-60	—	HT-60		56V	70V			

"XX" = HTM for MINIMELF

HT for DO-35

ST for DO-214

Thermal Resistances

Symbol	Description	Test Conditions	Value	Unit			
R _{e(J-L)} Junction to Lead		Maximum Lead Temperature: 85°C	DO-35	100	°C/W		
	Junction to Lead	Maximum Lead Temperature: 90°C	DO-214	65*	°C/W		
		Maximum Lead Temperature: 87°C	MINIMELF	75	°C/W		
R _{θ(J-A)}	Junction to Ambient	Free-Air	DO-35	278	°C/W		

* Mounted on 1 cm² copper foil surface; two-ounce copper foil

Teccor[®] brand Thyristors

Standard Bidirectional DIAC Trigger

Figure 1: V-I Characteristics

Figure 3: Repetitive Peak On-state Current vs. Pulse Duration

Figure 5: Test Circuit Waveforms (Refer to Figure 5)

©2008 Littelfuse, Inc. Specifications are subject to change without notice. Please refer to http://www.littelfuse.com for current information.

300

250

200

150

100

50

0

.01 .02 .03 .04 .05 .06 .07 .08

Peak Output Current (I_{PK}) – mA

.09 .10

Figure 6: Circuit Used to Measure DIAC Characteristics (Refer to Figure 4)

Soldering Parameters

Reflow Co	ndition	Pb – Free assembly		
	-Temperature Min (T _{s(min)})	150°C		
Pre Heat	- Temperature Max (T _{s(max)})	200°C		
	-Time (min to max) (t _s)	60 – 190 secs		
Average ra (T _L) to pea	amp up rate (Liquidus Temp k	5°C/second max		
$T_{S(max)}$ to T_{L}	- Ramp-up Rate	5°C/second max		
Reflow	- Temperature (T _L) (Liquidus)	217°C		
	-Time (min to max) (t _s)	60 – 150 seconds		
PeakTemp	erature (T _P)	260 °C		
Time with Temperatu	in 5°C of actual peak ıre (t _p)	20 – 40 seconds		
Ramp-dow	vn Rate	5°C/second max		
Time 25°C	to peakTemperature (T _P)	8 minutes Max.		
Do not exc	ceed	280°C		

Figure 7: Peak Output Current vs. Triggering Capacitance (Per Figure 5 with R, of 20 Ω)

Wpical (35V Devi

Triggering Capacitance (C_T) – μ F

Physical Specifications

Terminal Finish	100% Matte-Tin Plated/ Pb-Free Solder Dipped
Body Material	DO-214: UL recognized epoxy meeting flammabilty classification 94V-0. DO-35/MINIMELF: Glass case body
Lead Material	DO-214: Copper Alloy DO-35/MINIMELF: Copper Clad Iron

Design Considerations

Careful selection of the correct device for the application's operating parameters and environment will go a long way toward extending the operating life of the Thyristor. Overheating and surge currents are the main killers of DIACs. Correct mounting, soldering, and forming of the leads also help protect against component damage.

Reliability/Environmental Tests

Test	Specifications and Conditions
High Temperature Voltage Blocking	MIL-STD-750, M-1040, Cond A Applied 80% of Rated Min V _{BO} (VAC-peak) @ 125°C for 1008 hours
Temperature Cycling	MIL-STD-750, M-1051, 100 cycles; -40°C to +150°C; 15-min dwell-time
Temperature/ Humidity	EIA / JEDEC, JESD22-A101 1008 hours; 80% of Rated Min V_{BO} (V_{DC}): 85°C; 85% rel humidity
High Temp Storage	MIL-STD-750, M-1031,1008 hours; 150°C
Low-Temp Storage	1008 hours; -40°C
Thermal Shock	MIL-STD-750, M-1056 10 cycles; 0°C to 100°C; 5-min dwell time at each temperature; 10 sec (max) transfer time between temperature
Autoclave	EIA / JEDEC, JESD22-A102 168 hours (121°C at 2 ATMs) and 100% R/H
Resistance to Solder Heat	MIL-STD-750 Method 2031
Solderability	ANSI/J-STD-002, category 3, Test A
Lead Bend	MIL-STD-750, M-2036 Cond E
Burn-in	1 firing per 1/2 cycle, 168 hours

Dimensions – MINIMELF / SOD-80 (MM Package)

Dimensione	Inches			Millimeters		
Dimensions	Min	Тур	Max	Min	Тур	Max
А	0.125	0.134	0.142	3.18	3.40	3.61
В	0.066	0.068	0.070	1.68	1.73	1.78
С	0.012	0.018	0.020	0.30	0.46	0.51
D	_	0.063	—	—	1.60	—

Dimensions – DO-35 (Y Package)

Dimension	Inc	hes	Millimeters		
Dimension	Min	Max	Min	Max	
A (Note 1)	0.060	0.090	1.530	2.280	
B (Note 2)		0.015		0.381	
C (Note 1)	0.135	0.165	3.430	4.190	
D	0.018	0.022	0.458	0.558	
E	1.000		25.400		

Notes:

1. Package contour optional within dimensions A and C. Slugs, if any, shall be included within this cylinger but shall not be subject to

the minimum limit of Dimention A.

Lead diameter is not controlled in this zone to allow for flash, lead finish build-up and minor irregularities other than slugs.

Dimensions – DO-214 (S Package)

Recommended Soldering Pad Outline (Reference Only)

Dimension	Inc	hes	Millimeters		
Dimension	Min	Max	Min	Max	
А	0.140	0.155	3.56	3.94	
В	B 0.205 0.220		5.21	5.59	
С	0.077	0.083	1.96	2.11	
D	0.166	0.180	4.22	4.57	
E	0.036	0.063	0.91	1.60	
F	0.066	0.083	1.67	2.11	
G	0.004	0.008	0.10	0.20	
Н	0.077	0.086	1.96	2.18	
J	0.043	0.053	1.09	1.35	
К	0.008	0.012	0.20	0.30	
L	0.039	0.049	0.99	1.24	

Packing Options

Part	r Marking Package Weight/ Packing Unit Mode	Packaga	Weight/ Packing	Base	Quantity		
Number		Quantity	Reel	Box			
HTM-xxxRP	—	MINIMELF	0.040g	Tape & Reel	5000	2500	—
HT-xxxRP	—	DO35	0.150g	Tape & Reel	5000	5000	_
HT-xxx	_	DO35	0.150g	Bulk	5000	_	5000
ST-xxxRP	STxxx	DO214	0.075g	Tape & Reel	2500	2500	_

DO-214 Embossed Carrier Reel Pack (RP) Specifications

Meets all EIA-481-1 Standards

DO-35 Reel Pack (RP) Specifications

Meets all EIA-296 Standards

DIACs

MINIMELF Reel Pack (RP) Specifications

