

Click here to ask an associate for production status of specific part numbers.

0.3% Accuracy Dual-Channel Supervisory Circuit

General Description

The MAX16193 is an ultra-high accuracy, dual-channel window-detector supervisor circuit that monitors a system's supply rails for undervoltage and overvoltage faults. Input channel 1 (IN1) monitors low core voltage rails from a 0.6V to 0.9V threshold range with $\pm 0.3\%$ accuracy while input-channel 2 (IN2) monitors higher system rails from a 0.9V to 3.3V threshold range with $\pm 0.3\%$ accuracy. A variety of factory trimmed undervoltage/overvoltage thresholds from $\pm 2\%$ to $\pm 5\%$ are available to accommodate different supply voltages and tolerances.

The MAX16193 features two independent, active-low reset outputs. Both reset output are available in either an open-drain or push-pull version. Each reset output asserts low when the corresponding monitored rail falls outside of the undervoltage/overvoltage threshold window. The reset outputs deassert after a factory-set reset timeout period when the corresponding rail voltage returns to its nominal voltage level.

The MAX16193 is available in a small, $2mm \times 3mm$, 8-pin TDFN chip-on-lead, side-wettable package and operates over the automotive temperature range of -40° C to $+125^{\circ}$ C.

Applications

- Advanced Driver-Assistance Systems (ADAS)
- Multivoltage ASICs
- Servers
- Storage Equipment

Benefits and Features

- ±0.3% IN1 Threshold Accuracy
- ±0.3% IN2 Threshold Accuracy
- 0.6V to 0.9V IN1 Threshold Range
- 0.9V to 3.3V IN2 Threshold Range
- ±2% to ±5% UV/OV Monitoring Range
- Open-Drain/Push-Pull Reset Output Options
- 8-Pin TDFN, 2mm x 3mm Side-Wettable Flanks
- -40°C to +125°C Temperature Range
- AEC-Q100 Qualified

Ordering Information appears at end of data sheet.

© 2022 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners.

0.3% Accuracy Dual-Channel Supervisory Circuit

Typical Application Circuit

0.3% Accuracy Dual-Channel Supervisory Circuit

TABLE OF CONTENTS

General Description	1
Applications	1
Benefits and Features	1
Typical Application Circuit	2
Absolute Maximum Ratings	6
Package Information	6
8 TDFN (T823Y+3C)	6
Electrical Characteristics	7
Typical Operating Characteristics	8
Pin Configuration	9
8-Pin TDFN	9
Pin Description	. 10
Functional Diagrams	. 10
Functional Block Diagram	. 10
Detailed Description	. 11
Reset Timeout Period.	. 11
Applications Information	. 12
Setting Input Thresholds and Hysteresis	
Power-Supply Bypassing/Noise Immunity	
Selector Guide Table	. 13
Typical Application Circuits	. 14
Typical Application Circuit	. 14
Ordering Information	. 14
Revision History	. 15

0.3% Accuracy Dual-Channel Supervisory Circuit

LIST OF FIGURES

Figure 1. Reset Output Timing Diagram	11
Figure 2. Undervoltage/Overvoltage Threshold Accuracy.	12
Figure 3. Undervoltage/Overvoltage Threshold Hysteresis.	13

0.3% Accuracy Dual-Channel Supervisory Circuit

Analog Devices | 5

0.3% Accuracy Dual-Channel Supervisory Circuit

Absolute Maximum Ratings

V _{DD} to GND
RST1, RST2 (Open Drain Outputs) to GND0.3V to +6V
RST1, RST2 (Push-Pull Outputs) to GND0.3V to VDD + 0.3V
Input/Output Continuous Current±20mA
Continuous Power Dissipation (Multilayer Board) (TDFN
(T823Y+3C) T _A = +70°C, derate 16.7mW/°C above +70°C)
T823Y+3C, 8-Pin TDFN (Multilayer derate 1333.3mW/°C
above 70°C) 1333.3mW

Operating Temperature Range	40°C to +125°C
Junction Temperature	+150°C
Soldering Temperature (Reflow)	+260°C
Storage Temperature Range	65°C to +150°C
Lead Temperature (Soldering, 10s)	+300°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Package Information

8 TDFN (T823Y+3C)

Package Code	T823Y+3C
Outline Number	<u>21-100417</u>
Land Pattern Number	<u>90-0091</u>
Thermal Resistance, Single Layer Board:	
Junction-to-Ambient (θ _{JA})	
Junction-to-Case Thermal Resistance (θ_{JC})	
Thermal Resistance, Four Layer Board:	
Junction-to-Ambient (θ _{JA})	60(C/W)
Junction-to-Case Thermal Resistance (θ_{JC})	11(C/W)

For the latest package outline information and land patterns (footprints), go to <u>www.maximintegrated.com/packages</u>. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to <u>www.maximintegrated.com/</u> <u>thermal-tutorial</u>.

Electrical Characteristics

 $(V_{DD}$ = 1.7V to 5.5V, T_A = T_J = -40°C to +125°C, unless otherwise noted. Typical values are at V_{DD} = 3.3V, V_{IN1} = 0.9V, V_{IN2} = 3.280V, and T_A = +25°C under normal conditions, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	
POWER SUPPLY							
Operating Voltage Range	V _{DD}	Output guaranteed to be at known state	1.7		5.5	V	
Minimum Supply Voltage	V _{DD}	$\overline{\text{RST1}}$ and $\overline{\text{RST2}}$ are guaranteed to be at a known logic	1.1			V	
Supply Current	I _{DD}	RST1 and RST2 not asserted		50	100	μA	
Undervoltage Lockout Threshold	V _{UVLO}	V _{DD} rising	1.30	1.50	1.68	V	
Undervoltage Lockout Hysteresis	V _{UVLO_HYS}	V _{DD} falling		47		mV	
INPUT VOLTAGE (IN1 A	ND IN2)						
IN1 Input Voltage Range (Note 1)	V _{IN1_NOM}		0.6		0.9	V	
IN2 Input Voltage Range (Note 1)	V _{IN2_NOM}		0.9		3.3	V	
Undervoltage/ Overvoltage Threshold Programming Range	TOL	Reset occurs when V _{IN} falls outside of V_ IN_NOM X (1±TOL)	±2		±5	% of V _{IN_NOM}	
INPUT THRESHOLD ACC	CURACY						
IN1/IN2 Overvoltage Threshold Accuracy	V _{OVTH_} A	V _{IN1} /V _{IN2} rising, V _{OVTH} = V _{IN} x (1+TOL%)	-0.3		+0.3	%	
IN1/IN2 Undervoltage Threshold Accuracy	V _{UVTH_} A	V_{IN1}/V_{IN2} falling, $V_{UVTH} = V_{IN} \times (1 - TOL\%)$	-0.3		+0.3	%	
Undervoltage/ Overvoltage Hysteresis	V _{HYS}			0.15		%V _{TH}	
Input Current	I _{IN1}	V _{IN1} = V _{IN1_NOM}		3	6	μA	
Input Current	I _{IN2}	V _{IN2} = V _{IN2_NOM}		6	12	μA	
RESET OUTPUT (RST1 A	AND RST2)						
Reset Timeout Period Accuracy	t _{RP}	t _{RP} From time V _{IN} enters overvoltage/ undervoltage threshold-window to time -20 +20 RST_ goes high		%			
IN1-to-RST1 Propagation Delay	t _D	(V _{UVTH} + 1%) to (V _{UVTH} - 1%) or (V _{OVTH} - 1%) to (V _{OVTH} + 1%)		5		μs	
IN2-to-RST2 Propagation Delay	t _D	(V _{UVTH} + 1%) to (V _{UVTH} - 1%) or (V _{OVTH} - 1%) to (V _{OVTH} + 1%)		5		μs	
OUTPUT VOLTAGE							
		V _{DD} ≥ 4.25V, I _{SINK} = 1mA,			0.1		
Output Voltage Low	age Low V _{OL}	V _{DD} = 2.5V, I _{SINK} = 250µA			0.1	V	
		V _{DD} = 1.2V, I _{SINK} = 25µA			0.1	7	

Note 1: Input voltage for IN1 and IN2 is factory programmable to a midpoint between the undervoltage threshold and overvoltage threshold levels.

Note 2: Limits are 100% tested at TA = +25°C. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization.

0.3% Accuracy Dual-Channel Supervisory Circuit

Typical Operating Characteristics

(V_{DD} = 1.70V to 5.5V, T_A = T_{MIN} to T_{MAX} unless otherwise noted.)

Typical Operating Characteristics (continued)

(V_{DD} = 1.70V to 5.5V, $T_A = T_{MIN}$ to T_{MAX} unless otherwise noted.)

Pin Configuration

8-Pin TDFN

Pin Description

PIN	NAME	FUNCTION
1	V _{DD}	Supply Input. Bypass V_{DD} to ground with a 0.1µF capacitor.
2	IN1	Monitoring Input 1. IN1 monitors supply rails for undervoltage/overvoltage faults with respect to a nominal input threshold. IN1 monitors supply range from 0.6V to 0.9V. When V_{IN1} falls outside the undervoltage/overvoltage thresholds window, $\overline{RST1}$ asserts and stays asserted for the reset timeout period after V_{IN1} falls within undervoltage/overvoltage thresholds window.
3	GND	Ground
4	IN2	Monitoring Input 2. IN2 monitors supply rails for undervoltage/overvoltage faults with respect to nominal input threshold. IN2 monitors supply range from 0.9V to 3.3V. When V_{IN2} falls outside the window between the undervoltage and overvoltage thresholds, RST2 asserts and stays asserted for the reset timeout period after V_{IN2} falls within this window.
5, 6	N.C.	No Connect
7	RST2	Active-Low, Open-Drain or Push-Pull Reset Output 2. For the open-drain version, connect $\overline{\text{RST2}}$ with a 10k Ω pullup resistor.
8	RST1	Active-Low, Open-Drain or Push-Pull Reset Output 1. For the open-drain version, connect $\overline{RST1}$ with a 10k Ω pullup resistor.

Functional Diagrams

Functional Block Diagram

Detailed Description

The MAX16193 is a dual-channel, 0.3% accurate window-detector supervisor circuit that monitors two supply voltages in a system. The MAX16193 offers factory-trimmed nominal input voltage levels and a factory-trimmed window between the undervoltage and overvoltage thresholds, from $\pm 2\%$ to $\pm 5\%$. Contact Analog Devices for a threshold not listed in the <u>Ordering Information</u> table.

Reset Timeout Period

The active-low, open-drain reset outputs $\overline{RST1}$ and $\overline{RST2}$ assert low when the respective input voltage falls outside the factory-trimmed undervoltage and overvoltage threshold window. The corresponding reset output deasserts after the reset timeout period when the input voltage falls within the set window threshold. At power-up, resets stay asserted for the reset timeout period once V_{DD} is above the UVLO. The reset output is available in a factory-programmable opendrain or push-pull option. The reset output with open-drain configuration requires a pullup resistor. See Figure 1 for more details.

Figure 1. Reset Output Timing Diagram

Applications Information

Setting Input Thresholds and Hysteresis

The MAX16193 monitors a system supply voltage for undervoltage/overvoltage window threshold. Depending on the system supply tolerance requirement, the undervoltage/overvoltage thresholds can be factory-trimmed from $\pm 2\%$ to $\pm 5\%$ with respect to the selected nominal input threshold voltage. The following is a detailed calculation of how to determine the undervoltage/overvoltage threshold levels with $\pm 0.3\%$ threshold accuracy.

 $TOE = \pm 3\%$

 $V_{UVTH} = V_{IN}NOM (1 - 3\%) = 0.9V \times (1 - 0.03) = 0.873V$

 $V_{OVTH} = V_{IN}NOM (1 + 3\%) = 0.9V x (1 + 0.03) = 0.927V$

Where V_{IN_NOM} is the selected nominal input threshold voltage, TOL is the input tolerance, V_{UVTH} is undervoltage threshold voltage, and V_{OVTH} is the overvoltage threshold voltage.

The MAX16193 monitors the supply voltage with ±0.3% accuracy over the operating temperature and supply range. The accuracy range is shown as follows:

 $V_{UVTH_A} = V_{IN_NOM} (1 - 3\% \pm 0.3\%)$

 $V_{OVTH}A = V_{IN}NOM (1 + 3\% \pm 0.3\%)$

Where V_{UVTH_A} is the undervoltage threshold accuracy range and V_{OVTH_A} is the overvoltage threshold accuracy range. See Figure 2 for details.

Figure 2. Undervoltage/Overvoltage Threshold Accuracy

Hysteresis adds noise immunity to the voltage monitors and prevents oscillation due to repeated triggering when the monitored voltage is near the threshold trip voltage.

Use the following equation to calculate the threshold hysteresis:

 $V_{IN}NOM = 0.9V$

Hysteresis = 0.15%

V_{HYST} = 0.9V x 0.15% = 0.00135V

Figure 3. Undervoltage/Overvoltage Threshold Hysteresis

Power-Supply Bypassing/Noise Immunity

The MAX16193 operates from a 1.7V to 5.5V supply. Bypass V_{DD} to ground with a 0.1µF capacitor as close to the device as possible. An additional capacitor improves transient immunity.

Selector Guide Table

PART NUMBER	IN1/IN2 THRESHOLD	IN1/IN2	IN1/IN2	IN1/IN2	RESET
	VOLTAGE	TOLERANCE	ACCURACY	HYSTERESIS	TIMEOUT
MAX16193ATA00/ VY+T	0.9V/3.280V	4%/3%	0.3%/0.3%	0.15%/0.15%	10ms

Typical Application Circuits

Typical Application Circuit

Ordering Information

PART NUMBER	TEMP RANGE	PIN-PACKAGE
MAX16193ATA00/VY+T	-40°C to +125°C	8 TDFN

+Denotes a lead(Pb)-free/RoHS-compliant package.

T = Tape and reel.

N denotes an automotive qualified part.

Y = Side-wettable package.

0.3% Accuracy Dual-Channel Supervisory Circuit

Revision History

REVISION	REVISION	DESCRIPTION	PAGES
NUMBER	DATE		CHANGED
0	3/22	Release for Market Intro	—

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.