

rfmd.com

RFSA2614

PARALLEL CONTROLLED DIGITAL STEP ATTENUATOR 50MHz TO 4000MHz, 6-BIT, 0.5dB

Package: QFN, 24-Pin, 4mm x 4mm

RESA2614 RESA2614 BEEND 2000

Features

- Frequency Range 50MHz to 4000MHz
- 6 Bits, 31.5dB Range, 0.5dB Step
- High Linearity, IIP3 >49dBm
- 3V and 5V Logic Compatible
- On-chip Parallel Decoder
- Parallel Programming Interface
- On-chip ESD Protection >500V HBM
- Single Supply, 3V to 5V Operation

Applications

- Transceiver RF and IF Applications
- Cellular, PCS, GSM, UMTS, LTE, WiMax/WiFi
- Wireless Data, Satellite Terminals
- Test Equipment

Product Description

The RFSA2614 is a 6-bit digital step attenuator (DSA) that features high linearity over the entire 31.5dB gain control range with excellent step accuracy in 0.5dB steps. The parallel-controlled RFSA2614 has an on-chip decoder that is both 3V and 5V compatible. It also offers a rugged Class 1B HBM ESD rating via on-chip ESD circuitry.

Ordering Information

-	
RFSA2614SR	7" Reel with 100 pieces
RFSA2614SQ	Sample bag with 25 pieces
RFSA2614TR7	7" Reel with 750 pieces
RFSA2614TR13	13" Reel with 2500 pieces
RFSA2614PCK-410	50MHz to 4000MHz PCBA with 5-piece sample bag

C	ptimum Technolog	y Matching [®] Appl	ied
🗌 GaAs HBT	□ SiGe BiCMOS	🗹 GaAs pHEMT	🗌 GaN HEMT
GaAs MESFET	Si BiCMOS	Si CMOS	Bifet HBT
InGaP HBT	SiGe HBT	🗌 Si BJT	

RF MICRO DEVICES®, RFMD®, Optimum Technology Matching®, Enabling Wireless Connectivity^M, PowerStar®, POLARIS^M TOTAL RADIO^M and UltimateBlue^M are trademarks of RFMD. LLC. BLUETOOTH is a trade mark owned by Bluetooth SIG, Inc., U.S.A. and licensed for use by RFMD. All other trade names, trademarks and registered trademarks are the property of their respective owners. ©2012. RF Micro Devices. Inc.

7628 Thorndike Road, Greensboro, NC 27409-9421 · For sales or technical support, contact RFMD at (+1) 336-678-5570 or customerservice@rfmd.com.

Absolute Maximum Ratings

0		
Parameter	Rating	Unit
Supply Voltage	5.5	V _{DC}
DC Supply Current	15	mA
DC Power Dissipation	83	mW
Max RF Input Power	27	dBm
Operating Temperature (T _{CASE})	-40 to +85	°C
Storage Temperature	-40 to +150	°C
Junction Temperature	150	°C
ESD Rating (HBM)	Class 1B	
Moisture Sensitivity Level	MSL1	

Caution! ESD sensitive device.

Exceeding any one or a combination of the Absolute Maximum Rating conditions may cause permanent damage to the device. Extended application of Absolute Maximum Rating conditions to the device may reduce device reliability. Specified typical perfor-mance or functional operation of the device under Absolute Maximum Rating condi-tions is not implied.

The information in this publication is believed to be accurate and reliable. However, no responsibility is assumed by RF Micro Devices, Inc. ("RFMD") for its use, nor for any infringement of patents, or other rights of third parties, resulting from its use. No license is granted by implication or otherwise under any patent or patent rights of RFMD. RFMD reserves the right to change component circuitry, recommended application circuitry and specifications at any time without prior notice.

RFMD Green: RoHS compliant per EU Directive 2002/95/EC, halogen free per IEC 61249-2-21, < 1000 ppm each of antimony trioxide in polymeric materials and red phosphorus as a flame retardant, and <2% antimony in solder.

Devenatev	Specification		11	Occudition		
Parameter	Min.	Тур.	Max.	Unit	Condition	
Frequency Range	50		4000	MHz		
Insertion Loss		1.6	1.9	dB	500MHz, 0dB attenuation	
		1.7		dB	850MHz, 0dB attenuation	
		2.1		dB	2140MHz, 0dB attenuation	
		2.2	2.8	dB	2700MHz, 0dB attenuation	
		2.8		dB	3800MHz, 0dB attenuation	
Gain Control Range		31.5		dB	0.5dB step size	
Step Accuracy	±(0.15 +	+ 5.0% attenuation	setting)	dB		
IIP3		>49		dBm	700MHz to 2700MHz, states 0 thru 27.5dB	
IIP3		>45		dBm	700MHz to 2700MHz, states 28 thru 31.5dB	
Input P1dB		>27		dBm	700MHz to 2700MHz, all states	
Return Loss		>18		dB	700MHz to 2700MHz, all states	
Control Interface		6		bit	Parallel interface	
Settling Time		200		ns	t _{RISE} , t _{FALL} (10%/90% RF)	
Switching Speed		200		ns	t _{ON} , t _{OFF} (50% CTL to 10%/90% RF)	
Supply Voltage (V _{DD})	3.0	5.0	5.25	V	Typical performance based on 5V opreation.	
Supply Current		3.5		mA		
Control Voltage (V _{CTL})	0		0.8	V	Low	
	2.0		V _{DD}	V	High	

Notes:

1. V_{DD} = 5V, V_{CTL} = 3V, T = 25 °C

2. Broadband Application Circuit (with ACG capacitors)

3. IIP3 measured with 1MHz spacing, P_{IN} = 4dBm/tone for frequency < 300MHz, P_{IN} = 10dBm/tone for frequency > 300MHz

Typical Broadband Application Circuit Performance

(with ACG capacitors)

RF1 RL versus Frequency, Major States

RF2 RL versus Frequency, Major States

Relative Phase, Major States 60 50 0.5dB -1dB -2dB 4dB 8dB 16dB 40 -31.5dE 30 S21 (dB) 20 10 0 -10 -20 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 Frequency (GHz)

Input IP3 versus Frequency, All States, 25C

Typical Broadband Application Circuit Performance

(with and without ACG capacitors)

DS120706

Truth Table

	Control Bit					
C16	C8	C4	C2	C1	C0.5	Gain Setting
1	1	1	1	1	1	Max gain
1	1	1	1	1	0	-0.5dB
1	1	1	1	0	1	-1dB
1	1	1	0	1	1	-2dB
1	1	0	1	1	1	-4dB
1	0	1	1	1	1	-8dB
0	1	1	1	1	1	-16dB
0	0	0	0	0	0	-31.5dB

Logic Voltage Levels					
State Logic					
Low	0V to 0.8V				
High 2.0V to 5.0V					

Pin Names and Descriptions

Pin	Name	Description
1	NC	No internal connection. EVB can be ground or no connect.
2	VDD	Power supply.
3	NC	No internal connection. EVB can be ground or no connect.
4	RF1	RF port. External DC block required.
5	NC	No internal connection. EVB can be ground or no connect.
6	NC	No internal connection. EVB can be ground or no connect.
7	ACG	AC ground connection for operation below 500MHz.
8	ACG	AC ground connection for operation below 500MHz.
9	ACG	AC ground connection for operation below 500MHz.
10	ACG	AC ground connection for operation below 500MHz.
11	ACG	AC ground connection for operation below 500MHz.
12	NC	No internal connection. EVB can be ground or no connect.
13	ACG	AC ground connection for operation below 500MHz.
14	NC	No internal connection. EVB can be ground or no connect.
15	RF2	RF port. External DC block required.
16	NC	No internal connection. EVB can be ground or no connect.
17	NC	No internal connection. EVB can be ground or no connect.
18	NC	No internal connection. EVB can be ground or no connect.
19	D5	16dB control bit.
20	D4	8dB control bit.
21	D3	4dB control bit.
22	D2	2dB control bit.
23	D1	1dB control bit.
24	DO	0.5dB control bit.
EPAD	GND	DC and RF ground. Must be soldered to EVB ground plane over a bed of vias for thermal and RF performance.

Evaluation Board Assembly Drawing

Evaluation Board Schematic

(with ACG capacitors)

Evaluation Board Bill of Materials

Description	Reference Designator	Manufacturer	Manufacturer's P/N
RFSA2714 Evaluation Board	PCB itself	Dynamic Details (DDI) Toronto	SA2714410(A)
6-Bit SA Parallel 0.5dB QFN 4x4	U1	RFMD	RFSA2614SB
CAP, 680pF, 10%, 50V, X7R, 0402	C13, C15-C17	Murata Electronics N. America	GRM155R71H681KA01E
CAP, 1000pF, 10%, 50V, X7R, 0402	C7	Taiyo Yuden (USA), Inc.	RM UMK105BJ102KV-F
CAP, 470pF, 10%, 50V, X7R, 0402	C11-C12	Murata Electronics	GRM155R71H471KA01E
RES, 0Ω, 0402	R1-R6, R8	Kamaya, Inc	RMC1/16SJPTH
CONN, SMA, END LNCH, UNIV, HYB MNT, FLT	J1-J2, J99-J100	Molex	SD-73251-4000
CONN, HDR, ST, PLRZD, 9-PIN	P1	ITW Pancon	MPSS100-9-C
CONN, SKT, 24-PIN DIP, .600", T/H	P2	Aries Electronics Inc.	24-6518-10
MOD, USB TO SERIAL UART, SSOP-28	M1 (See Note Below)	Future Technology Devices Int'l	UM232R
DNP	C1-C6, C8-C9, C14, C18-C20, R7	NA	NA

Note: M1 should be mounted into P2 with respect to the Pin 1 alignment of M1 and P2

PIN #1 IDENTIFICATION 2.700±0.050 CHAMFER 0.300 X 45° PIN 1 DOT 4.000±0.050 Exp.DAP BY MARKING ŧ. 0.400±0.050 8 1 SA2614 0.500 Bsc 2.700±0.050 4 4.000±0.050 YYWW Exp.DAP Trace Code 0.250±0.050 2.500 R ef. **TOP VIEW BOTTOM VIEW** ١ .850±0.050 1 4 0.000-.050 .203 Ref. SIDE VIEW

Package Drawing

YYWW = Date Code, where YY=year, WW=week Trace Code to be assigned by assembly SubCon