

BFP720ESD

Robust High Performance Low Noise Bipolar RF Transistor

Data Sheet

Revision 1.0, 2010-06-29

RF & Protection Devices

Edition 2010-06-29

Published by Infineon Technologies AG 81726 Munich, Germany © 2010 Infineon Technologies AG All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

BFP720ESD, Robust High Performance Low Noise Bipolar RF Transistor

Revision History: 2010-06-29, Revision 1.0

Previous Revision:							
Page	Subjects (major changes since last revision)						

Trademarks of Infineon Technologies AG

BlueMoon[™], COMNEON[™], C166[™], CROSSAVE[™], CanPAK[™], CIPOS[™], CoolMOS[™], CoolSET[™], CORECONTROL[™], DAVE[™], EasyPIM[™], EconoBRIDGE[™], EconoDUAL[™], EconoPACK[™], EconoPIM[™], EiceDRIVER[™], EUPEC[™], FCOS[™], HITFET[™], HybridPACK[™], ISOFACE[™], I²RF[™], IsoPACK[™], MIPAQ[™], ModSTACK[™], my-d[™], NovalithIC[™], OmniTune[™], OptiMOS[™], ORIGA[™], PROFET[™], PRO-SIL[™], PRIMARION[™], PrimePACK[™], RASIC[™], ReverSave[™], SatRIC[™], SensoNor[™], SIEGET[™], SINDRION[™], SMARTi[™], SmartLEWIS[™], TEMPFET[™], thinQ![™], TriCore[™], TRENCHSTOP[™], X-GOLD[™], XMM[™], X-PMU[™], XPOSYS[™].

Other Trademarks

Advance Design System[™] (ADS) of Agilent Technologies, AMBA[™], ARM[™], MULTI-ICE[™], PRIMECELL[™], REALVIEW[™], THUMB[™] of ARM Limited, UK. AUTOSAR[™] is licensed by AUTOSAR development partnership. Bluetooth™ of Bluetooth SIG Inc. CAT-iq[™] of DECT Forum. COLOSSUS[™], FirstGPS[™] of Trimble Navigation Ltd. EMV™ of EMVCo, LLC (Visa Holdings Inc.). EPCOS™ of Epcos AG. FLEXGO™ of Microsoft Corporation. FlexRay[™] is licensed by FlexRay Consortium. HYPERTERMINAL[™] of Hilgraeve Incorporated. IEC[™] of Commission Electrotechnique Internationale. IrDA™ of Infrared Data Association Corporation. ISO™ of INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. MATLAB™ of MathWorks, Inc. MAXIM™ of Maxim Integrated Products, Inc. MICROTEC[™], NUCLEUS[™] of Mentor Graphics Corporation. Mifare[™] of NXP. MIPI™ of MIPI Alliance, Inc. MIPS™ of MIPS Technologies, Inc., USA. muRata™ of MURATA MANUFACTURING CO., MICROWAVE OFFICE™ (MWO) of Applied Wave Research Inc., OmniVision™ of OmniVision Technologies, Inc. Openwave™ Openwave Systems Inc. RED HAT™ Red Hat, Inc. RFMD™ RF Micro Devices, Inc. SIRIUS™ of Sirius Sattelite Radio Inc. SOLARIS™ of Sun Microsystems, Inc. SPANSION™ of Spansion LLC Ltd. Symbian™ of Symbian Software Limited. TAIYO YUDEN™ of Taiyo Yuden Co. TEAKLITE™ of CEVA, Inc. TEKTRONIX™ of Tektronix Inc. TOKO™ of TOKO KABUSHIKI KAISHA TA. UNIX™ of X/Open Company Limited. VERILOG™, PALLADIUM™ of Cadence Design Systems, Inc. VLYNQ™ of Texas Instruments Incorporated. VXWORKS™, WIND RIVER™ of WIND RIVER SYSTEMS, INC. ZETEX™ of Diodes Zetex Limited.

Last Trademarks Update 2010-03-22

Table of Contents

Table of Contents

	Table of Contents	4
	List of Figures	5
	List of Tables	6
1	Features	7
2	Product Brief	8
3	Maximum Ratings 1	10
4	Thermal Characteristics	11
5 5.1 5.2 5.3 5.4 5.5	Electrical Characteristics 1 DC Characteristics 1 General AC Characteristics 1 Frequency Dependent AC Characteristics 1 Characteristic DC Diagrams 1 Characteristic AC Diagrams 2	12 12 13 18
6	Simulation Data	27
7	Package Information SOT343 2	28

List of Figures

List of Figures

Total Power Dissipation $P_{\text{tot}} = f(T_s)$	11
BFP720ESD Testing Circuit	13
Collector Current vs. Collector Emitter Voltage $I_{\rm C} = f(V_{\rm CE})$, $I_{\rm B}$ = Parameter	
DC Current Gain $h_{\text{FE}} = f(I_{\text{C}}), V_{\text{CE}} = 3 \text{ V}$	18
Collector Current vs. Base Emitter Voltage $I_{\rm C} = f(V_{\rm BE}), V_{\rm CE} = 2 \text{V}.$	
Base Current vs. Base Emitter Forward Voltage $I_{B} = f(V_{BE})$, $V_{CE} = 2 V$	19
Base Current vs. Base Emitter Reverse Voltage $I_{\rm B} = f(V_{\rm EB})$, $V_{\rm CE} = 2 \text{V}$	20
Transition Frequency $f_T = f(I_C)$, $f = 1$ GHz, $V_{CE} = Parameter$.	21
3rd Order Intercept Point $OIP_3 = f(I_C)$, $Z_S = Z_L = 50 \Omega$, V_{CE} , $f = Parameters$.	21
Collector Base Capacitance $C_{CB} = f(V_{CB}), f = 1 \text{ MHz}$.	22
Gain G_{ma} , G_{ms} , $ S_{21} ^2 = f(f)$, $V_{CE} = 3 \text{ V}$, $I_C = 15 \text{ mA}$	22
Maximum Power Gain $G_{\text{max}} = f(I_{\text{C}}), V_{\text{CE}} = 3 \text{ V}, f = \text{Parameter in GHz}$	23
Maximum Power Gain $G_{max} = f(V_{CE})$, $I_C = 15 \text{ mA}$, $f = \text{Parameter in GHz}$.	23
Input Matching $S_{11} = f(f)$, $V_{CE} = 3 \text{ V}$, $I_C = 5 / 15 \text{ mA}$	24
Source Impedance for Minimum Noise Figure $Z_{opt} = f(f)$, $V_{CE} = 3 \text{ V}$, $I_C = 5 / 15 \text{ mA}$	24
Output Matching $S_{22} = f(f)$, $V_{CE} = 3 \text{ V}$, $I_C = 5 / 15 \text{ mA}$	25
Noise Figure $NF_{min} = f(f)$, $V_{CE} = 3 \text{ V}$, $I_C = 5 / 15 \text{ mA}$, $Z_S = Z_{opt}$	25
Noise Figure $NF_{min} = f(I_C)$, $V_{CE} = 3 \text{ V}$, $Z_S = Z_{opt}$, $f = \text{Parameter in GHz}$	26
Noise Figure $NF_{50} = f(I_C)$, $V_{CE} = 3 \text{ V}$, $Z_S = 50 \Omega$, $f = \text{Parameter in GHz}$.	26
Package Outline	28
Package Foot Print	28
Marking Description (Marking BFP720ESD: T3s)	
Tape Dimensions	28
	DC Current Gain $h_{FE} = f(I_C)$, $V_{CE} = 3 \vee$. Collector Current vs. Base Emitter Voltage $I_C = f(V_{BE})$, $V_{CE} = 2 \vee$. Base Current vs. Base Emitter Forward Voltage $I_B = f(V_{BE})$, $V_{CE} = 2 \vee$. Base Current vs. Base Emitter Reverse Voltage $I_B = f(V_{EB})$, $V_{CE} = 2 \vee$. Transition Frequency $f_T = f(I_C)$, $f = 1$ GHz, $V_{CE} =$ Parameter. 3rd Order Intercept Point $OIP_3 = f(I_C)$, $Z_S = Z_L = 50 \Omega$, V_{CE} , $f =$ Parameters. Collector Base Capacitance $C_{CB} = f(V_{CB})$, $f = 1$ MHz. Gain G_{ma} , G_{ms} , $ S_{21} ^2 = f(f)$, $V_{CE} = 3 \vee$, $I_C = 15 \text{ mA}$. Maximum Power Gain $G_{max} = f(I_C)$, $V_{CE} = 3 \vee$, $f =$ Parameter in GHz. Maximum Power Gain $G_{max} = f(V_{CE})$, $I_C = 15 \text{ mA}$. Source Impedance for Minimum Noise Figure $Z_{opt} = f(f)$, $V_{CE} = 3 \vee$, $I_C = 5 / 15 \text{ mA}$. Noise Figure $NF_{min} = f(f)$, $V_{CE} = 3 \vee$, $I_C = 5 / 15 \text{ mA}$. Noise Figure $NF_{min} = f(f)$, $V_{CE} = 3 \vee$, $I_C = 5 / 15 \text{ mA}$. Noise Figure $NF_{min} = f(f)$, $V_{CE} = 3 \vee$, $I_C = 5 / 15 \text{ mA}$. Noise Figure $NF_{min} = f(I_C)$, $V_{CE} = 3 \vee$, $I_C = 5 / 15 \text{ mA}$. Noise Figure $NF_{min} = f(I_C)$, $V_{CE} = 3 \vee$, $I_C = 5 / 15 \text{ mA}$. Noise Figure $NF_{min} = f(I_C)$, $V_{CE} = 3 \vee$, $I_C = 5 / 15 \text{ mA}$. Noise Figure $NF_{50} = f(I_C)$, $V_{CE} = 3 \vee$, $Z_S = Z_{opt}$, $f =$ Parameter in GHz. Noise Figure $NF_{50} = f(I_C)$, $V_{CE} = 3 \vee$, $Z_S = 50 \Omega$, $f =$ Parameter in GHz. Package Outline Package Foot Print. Marking Description (Marking BFP720ESD: T3s)

List of Tables

List of Tables

Quick Reference DC Characteristics at $T_A = 25^{\circ}C$. 8
Quick Reference AC Characteristics at $T_A = 25^{\circ}C$. 9
Maximum Ratings at $T_A = 25^{\circ}$ C (unless otherwise specified)	10
Thermal Resistance	11
DC Characteristics at $T_A = 25 \text{ °C}$	12
General AC Characteristics at T_A = 25 °C	12
AC Characteristics, V_{CE} = 3 V, f = 150 MHz	13
AC Characteristics, V_{CE} = 3 V, f = 450 MHz	14
AC Characteristics, V_{CE} = 3 V, f = 900 MHz	14
AC Characteristics, V_{CE} = 3 V, f = 1.5 GHz	15
AC Characteristics, V_{CE} = 3 V, f = 1.9 GHz	15
AC Characteristics, V_{CE} = 3 V, f = 2.4 GHz	16
AC Characteristics, V_{CE} = 3 V, f = 3.5 GHz	16
AC Characteristics, V_{CE} = 3 V, f = 5.5 GHz	17
AC Characteristics, V_{CE} = 3 V, f = 10 GHz	17
	Quick Reference DC Characteristics at $T_A = 25^{\circ}$ CQuick Reference AC Characteristics at $T_A = 25^{\circ}$ CMaximum Ratings at $T_A = 25^{\circ}$ C (unless otherwise specified)Thermal ResistanceDC Characteristics at $T_A = 25^{\circ}$ CGeneral AC Characteristics at $T_A = 25^{\circ}$ CAC Characteristics, $V_{CE} = 3 \vee, f = 150 \text{ MHz}$ AC Characteristics, $V_{CE} = 3 \vee, f = 450 \text{ MHz}$ AC Characteristics, $V_{CE} = 3 \vee, f = 150 \text{ MHz}$ AC Characteristics, $V_{CE} = 3 \vee, f = 150 \text{ MHz}$ AC Characteristics, $V_{CE} = 3 \vee, f = 150 \text{ MHz}$ AC Characteristics, $V_{CE} = 3 \vee, f = 15 \text{ GHz}$ AC Characteristics, $V_{CE} = 3 \vee, f = 1.9 \text{ GHz}$ AC Characteristics, $V_{CE} = 3 \vee, f = 3.5 \text{ GHz}$ AC Characteristics, $V_{CE} = 3 \vee, f = 3.5 \text{ GHz}$ AC Characteristics, $V_{CE} = 3 \vee, f = 3.5 \text{ GHz}$ AC Characteristics, $V_{CE} = 3 \vee, f = 3.5 \text{ GHz}$ AC Characteristics, $V_{CE} = 3 \vee, f = 3.5 \text{ GHz}$ AC Characteristics, $V_{CE} = 3 \vee, f = 5.5 \text{ GHz}$ AC Characteristics, $V_{CE} = 3 \vee, f = 10 \text{ GHz}$

Robust High Performance Low Noise Bipolar RF Transistor

BFP720ESD

1 Features

- Robust high performance low noise amplifier based on Infineon's reliable, high volume SiGe:C wafer technology
- 2 kV ESD robustness (HBM) due to integrated protection circuits
- High maximum RF input power of 21 dBm
- 0.65 dB minimum noise figure typical at 2.4 GHz, 0.9 dB at 5.5 GHz, 5 mA
- 26 dB maximum gain ($G_{\rm ma}$, $G_{\rm ms}$) typical at 2.4 GHz, 19.5 dB at 5.5 GHz, 15 mA
- 22 dBm OIP₃ typical at 5.5 GHz, 15 mA
- Accurate SPICE GP model available to enable effective design in process (see chapter 6)
- · Easy to use, Pb- and halogen free (RoHS compliant) standard package with visible leads

Applications

As Low Noise Amplifier (LNA) in

- Mobile, portable and fixed connectivity applications: WLAN 802.11a/b/g/n, WiMax 2.5/3.5/5 GHz, UWB, Bluetooth
- Satellite communication systems: Navigation (GPS, Glonass), satellite radio (SDARs, DAB) and LNB
- 3G/4G UMTS/LTE mobile phone applications
- Multimedia applications such as mobile/portable TV, CATV, FM Radio
- · ISM applications like RKE, AMR and Zigbee, as well as for emerging wireless applications

As discrete active mixer, amplifier in VCO's and buffer amplifier.

Attention: ESD (Electrostatic discharge) sensitive device, observe handling precautions

Product Name	Package		Marking			
BFP720ESD	SOT343	1 = B	2 = E	3 = C	4 = E	T3s

Product Brief

2 Product Brief

The BFP720ESD is a Silicon Germanium Carbon (SiGe:C) NPN Heterojunction wideband Bipolar RF Transistor (HBT) in a plastic dual emitter standard package with visible leads. The device is fitted with internal protection circuits, which enhance robustness against ESD and high RF input power strongly. The device combines robustness with very high RF gain and lowest noise figure at low operation current for use in a wide range of wireless applications.

The BFP720ESD is especially well-suited for portable battery-powered applications in which reduced power consumption is a key requirement. Device design supports collector voltages up to 4.2 V.

Parameter	Symbol	Values			Unit	Note / Test Condition
		Min.	Тур.	Max.		
Collector emitter breakdown voltage	V _{(BR)CEO}	4.2	4.7	_	V	$I_{\rm C}$ = 1 mA, $I_{\rm B}$ = 0
						Open base
Collector base leakage current	I _{CBO}	-	_	400	nA	$V_{\rm CB}$ = 2 V, $I_{\rm E}$ = 0
						Open emitter
DC current gain	h _{FE}	160	250	400		$V_{\rm CE}$ = 3 V, $I_{\rm C}$ = 15 mA
Collector current	I _C	-	-	30	mA	
Total power dissipation	P _{tot}	-	_	100	mW	$T_{\rm S} \le 108 \ ^{\circ}{\rm C}$

Table 1 Quick Reference DC Characteristics at $T_A = 25^{\circ}C$

Product Brief

Parameter	Symbol		Values	S	Unit	Note / Test Condition	
		Min.	Тур.	Max.			
Transition frequency	f_{T}	_	43	-	GHz	$V_{\rm CE}$ = 3 V, $I_{\rm C}$ = 15mA	
						<i>f</i> = 1 GHz	
V _{CE} = 3 V, f = 2.4 GHz							
Maximum power gain					dB		
Low noise operation point	$G_{\sf ms}$	_	22.5	-		<i>I</i> _C = 5 mA	
High linearity operation point	$G_{\sf ms}$	_	26	-		<i>I</i> _C = 15 mA	
Transducer gain					dB	$Z_{\rm S}$ = $Z_{\rm L}$ = 50 Ω	
Low noise operation point	S ₂₁	-	20	-		<i>I</i> _C = 5 mA	
High linearity operation point	S ₂₁	-	23	-		<i>I</i> _C = 15 mA	
Minimum noise figure					dB	$Z_{\rm S}$ = $Z_{\rm opt}$	
Minimum noise figure	$N\!F_{\sf min}$	-	0.65	-		<i>I</i> _C = 5 mA	
Associated gain	G_{ass}	_	21.5	-		I _C = 5 mA	
Linearity					dBm	$Z_{\rm S}$ = $Z_{\rm L}$ = 50 Ω	
1 dB gain compression point	OP_{1dB}	-	7.5	-		<i>I</i> _C = 15 mA	
3rd order intercept point	OIP ₃	-	22.5	-		<i>I</i> _C = 15 mA	
V _{CE} = 3 V, <i>f</i> = 5.5 GHz							
Maximum power gain					dB		
Low noise operation point	$G_{\sf ms}$	-	20	-		<i>I</i> _C = 5 mA	
High linearity operation point	$G_{\sf ma}$	-	19.5	-		<i>I</i> _C = 15 mA	
Transducer gain					dB	$Z_{\rm S}$ = $Z_{\rm L}$ = 50 Ω	
Low noise operation point	S ₂₁	-	14.5	-		<i>I</i> _C = 5 mA	
High linearity operation point	S ₂₁	-	16	-		<i>I</i> _C = 15 mA	
Minimum noise figure					dB	$Z_{\rm S}$ = $Z_{\rm opt}$	
Minimum noise figure	$N\!F_{\min}$	-	0.9	-		<i>I</i> _C = 5 mA	
Associated gain	G_{ass}	_	14.5	-		<i>I</i> _C = 5 mA	
Linearity					dBm	$Z_{\rm S}$ = $Z_{\rm L}$ = 50 Ω	
1 dB gain compression point	OP_{1dB}	-	8	-		<i>I</i> _C = 15 mA	
3rd order intercept point	OIP ₃	-	22	-		<i>I</i> _C = 15 mA	

Table 2Quick Reference AC Characteristics at $T_A = 25^{\circ}C$

Maximum Ratings

3 Maximum Ratings

V _{CEO}	Min. _ _	Max. 4.2 3.7	V V	Open base $T_A = 25^{\circ}C$ $T_A = -55^{\circ}C$
	_			$T_{A} = 25^{\circ}C$
V _{CBO}	_ _			
V _{CBO}	_	3.7	V	<i>T</i> _▲ = -55 °C
V _{CBO}				n
				Open emitter
	-	4.9	V	<i>T</i> _A = 25°C
	_	4.4	V	<i>T</i> _A = -55 °C
V _{CES}				Emitter / base shortened
	_	4.2	V	<i>T</i> _A = 25°C
	_	3.7	V	<i>T</i> _A = -55 °C
IB	-10	3	mA	-
I _C	-	30	mA	-
P_{RFin}	_	21	dBm	-
	-2	2	kV	HBM, all pins, acc. to
				JESD22-A114
P _{tot}	_	100	mW	$T_{ m S} \le$ 108 °C
TJ	_	150	°C	-
T _{Stg}	-55	150	°C	-
	I_{B} I_{C} P_{RFin} V_{ESD} P_{tot}	$ \begin{array}{c} - \\ - \\ I_{B} & -10 \\ I_{C} & - \\ P_{RFin} & - \\ V_{ESD} & -2 \\ P_{tot} & - \\ T_{J} & - \\ \end{array} $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Table 3 Maximum Ratings at $T_A = 25^{\circ}$ C (unless otherwise specified)

1) Low $V_{\rm CBO}$ due to integrated protection circuits.

2) V_{CES} is identical to V_{CEO} due to integrated protection circuits.

3) Sustainable reverse bias current is high due to integrated protection circuits.

4) ESD robustness is high due to integrated protection circuits.

5) $T_{\rm S}$ is the soldering point temperature. $T_{\rm S}$ measured on the emitter lead at the soldering point of the pcb.

Attention: Stresses above the max. values listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Maximum ratings are absolute ratings; exceeding only one of these values may cause irreversible damage to the integrated circuit.

Thermal Characteristics

4 Thermal Characteristics

Table 4 Thermal Resistance

Parameter	Symbol	Values			Unit	Note / Test Condition
		Min.	Тур.	Max.		
Junction - soldering point ¹⁾	R _{thJS}	-	415	-	K/W	-

1)For calculation of R_{thJA} please refer to Application Note Thermal Resistance AN 077

Figure 1 Total Power Dissipation $P_{tot} = f(T_s)$

5 Electrical Characteristics

5.1 DC Characteristics

Table 5DC Characteristics at $T_A = 25 \text{ °C}$

Parameter	Symbol	Values			Unit	Note / Test Condition
		Min.	Тур.	Max.		
Collector emitter breakdown voltage	V _{(BR)CEO}	4.2	4.7	_	V	$I_{\rm C}$ = 1 mA, $I_{\rm B}$ = 0
						Open base
Collector emitter leakage current	I _{CES}	_	-	400	nA	$V_{\rm CE}$ = 2 V, $V_{\rm BE}$ = 0
						Emitter/base shortened
Collector base leakage current	I _{CBO}	_	-	400	nA	$V_{\rm CB}$ = 2 V, $I_{\rm E}$ = 0
						Open emitter
Emitter base leakage current	I _{EBO}	-	-	10	μA	$V_{\rm EB}$ = 0.5 V, $I_{\rm C}$ = 0
						Open collector
DC current gain	h _{FE}	160	250	400		$V_{\rm CE}$ = 3 V, $I_{\rm C}$ = 15 mA
						Pulse measured

5.2 General AC Characteristics

Table 6General AC Characteristics at $T_A = 25 \text{ °C}$

Parameter	Symbol	Values			Unit	Note / Test Condition	
		Min.	Тур.	Max.			
Transition frequency	f _T	-	43	-	GHz	V_{CE} = 3 V, I_{C} = 15 mA f = 1 GHz	
Collector base capacitance	C _{CB}	-	0.05	-	pF	V_{CB} = 3 V, V_{BE} = 0 f = 1 MHz Emitter grounded	
Collector emitter capacitance	C _{CE}	-	0.4	-	pF	V_{CE} = 3 V, V_{BE} = 0 f = 1 MHz Base grounded	
Emitter base capacitance	C _{EB}	-	0.45	-	pF	$V_{\rm EB}$ = 0.4 V, $V_{\rm CB}$ = 0 f = 1 MHz Collector grounded	

BFP720ESD

Electrical Characteristics

5.3 Frequency Dependent AC Characteristics

Measurement setup is a test fixture with Bias T's in a 50 Ω system, $T_{\rm A}$ = 25 °C

Figure 2 BFP720ESD Testing Circuit

Table 7 AC Characteristics, V_{CE} = 3 V, f = 150 MHz

Parameter	Symbol	mbol Values		Unit	Note / Test Condition	
		Min.	Тур.	Max.		
Maximum power gain					dB	
Low noise operation point	$G_{\sf ms}$	-	34.5	_		I _C = 5 mA
High linearity operation point	$G_{\sf ms}$	-	38.5	_		I _C = 15 mA
Transducer gain					dB	$Z_{\rm S}$ = $Z_{\rm L}$ = 50 Ω
Low noise operation point	S ₂₁	-	23.5	-		$I_{\rm C}$ = 5 mA
High linearity operation point	S ₂₁	-	30.5	-		I _C = 15 mA
Minimum noise figure					dB	$Z_{\rm S} = Z_{\rm opt}$
Minimum noise figure	NF_{\min}	-	0.55	-		$I_{\rm C}$ = 5 mA
Associated gain	G_{ass}	-	30.5	-		$I_{\rm C}$ = 5 mA
Linearity					dBm	$Z_{\rm S}$ = $Z_{\rm L}$ = 50 Ω
1 dB gain compression point	OP_{1dB}	-	6.5	_		I _c = 15 mA
3rd order intercept point	OIP ₃	-	21.5	-		I _C = 15 mA

Table 8AC Characteristics, V_{CE} = 3 V, f = 450 MHz

Parameter	Symbol		Value	S	Unit	Note / Test Condition
		Min.	Тур.	Max.		
Maximum power gain					dB	
Low noise operation point	G_{ms}	_	30	_		I _C = 5 mA
High linearity operation point	G_{ms}	_	33.5	_		I _C = 15 mA
Transducer gain					dB	$Z_{\rm S}$ = $Z_{\rm L}$ = 50 Ω
Low noise operation point	S ₂₁	_	23	_		I _C = 5 mA
High linearity operation point	S ₂₁	_	30	_		I _C = 15 mA
Minimum noise figure					dB	$Z_{\rm S} = Z_{\rm opt}$
Minimum noise figure	$NF_{\sf min}$	_	0.55	_		I _C = 5 mA
Associated gain	G_{ass}	_	29	_		I _C = 5 mA
Linearity					dBm	$Z_{\rm S}$ = $Z_{\rm L}$ = 50 Ω
1 dB gain compression point	OP_{1dB}	_	6.5	_		I _C = 15 mA
3rd order intercept point	OIP ₃	_	21.5	_		I _C = 15 mA

Table 9 AC Characteristics, $V_{CE} = 3 V, f = 900 \text{ MHz}$

Parameter	Symbol		Values			Note / Test Condition
		Min.	Тур.	Max.		
Maximum power gain					dB	
Low noise operation point	G_{ms}	_	26.5	_		I _C = 5 mA
High linearity operation point	$G_{\sf ms}$	-	30.5	_		I _c = 15 mA
Transducer gain					dB	$Z_{\rm S}$ = $Z_{\rm L}$ = 50 Ω
Low noise operation point	S ₂₁	-	22.5	_		I _C = 5 mA
High linearity operation point	S ₂₁	-	28	_		I _C = 15 mA
Minimum noise figure					dB	$Z_{\rm S} = Z_{\rm opt}$
Minimum noise figure	$NF_{\sf min}$	-	0.6	_		I _C = 5 mA
Associated gain	G_{ass}	-	27	_		I _C = 5 mA
Linearity					dBm	$Z_{\rm S}$ = $Z_{\rm L}$ = 50 Ω
1 dB gain compression point	OP_{1dB}	-	6	-		I _C = 15 mA
3rd order intercept point	OIP ₃	_	21.5	_		I _C = 15 mA

Table 10 AC Characteristics, V_{CE} = 3 V, f = 1.5 GHz

Parameter	Symbol		Value	s	Unit	Note / Test Condition
		Min.	Тур.	Max.		
Maximum power gain					dB	
Low noise operation point	$G_{\sf ms}$	_	24.5	_		I _C = 5 mA
High linearity operation point	G_{ms}	_	28	_		I _C = 15 mA
Transducer gain					dB	$Z_{\rm S}$ = $Z_{\rm L}$ = 50 Ω
Low noise operation point	S ₂₁	-	21.5	_		I _C = 5 mA
High linearity operation point	S ₂₁	-	26	_		I _C = 15 mA
Minimum noise figure					dB	$Z_{\rm S} = Z_{\rm opt}$
Minimum noise figure	$NF_{\sf min}$	-	0.6	_		I _C = 5 mA
Associated gain	G_{ass}	-	24.5	_		I _C = 5 mA
Linearity					dBm	$Z_{\rm S}$ = $Z_{\rm L}$ = 50 Ω
1 dB gain compression point	OP_{1dB}	_	6	-		I _C = 15 mA
3rd order intercept point	OIP ₃	_	21.5	_		I _C = 15 mA

Table 11 AC Characteristics, V_{CE} = 3 V, f = 1.9 GHz

Parameter	Symbol		Values	5	Unit	Note / Test Condition
		Min.	Тур.	Max.		
Maximum power gain					dB	
Low noise operation point	$G_{\sf ms}$	_	23.5	_		I _C = 5 mA
High linearity operation point	$G_{\sf ms}$	_	27	_		I _C = 15 mA
Transducer gain					dB	$Z_{\rm S}$ = $Z_{\rm L}$ = 50 Ω
Low noise operation point	S ₂₁	-	21	_		I _C = 5 mA
High linearity operation point	S ₂₁	-	24.5	_		I _C = 15 mA
Minimum noise figure					dB	$Z_{\rm S} = Z_{\rm opt}$
Minimum noise figure	NF_{min}	-	0.6	_		I _C = 5 mA
Associated gain	G_{ass}	-	23.5	_		I _C = 5 mA
Linearity					dBm	$Z_{\rm S}$ = $Z_{\rm L}$ = 50 Ω
1 dB gain compression point	OP_{1dB}	-	6.5	-		I _C = 15 mA
3rd order intercept point	OIP ₃	-	22	-		I _C = 15 mA

Table 12 AC Characteristics, V_{CE} = 3 V, f = 2.4 GHz

Parameter	Symbol		Value	s	Unit	Note / Test Condition
		Min.	Тур.	Max.		
Maximum power gain					dB	
Low noise operation point	$G_{\sf ms}$	-	22.5	-		I _C = 5 mA
High linearity operation point	$G_{\sf ms}$	-	26	-		I _C = 15 mA
Transducer gain					dB	$Z_{\rm S}$ = $Z_{\rm L}$ = 50 Ω
Low noise operation point	S ₂₁	-	20	-		I _C = 5 mA
High linearity operation point	S ₂₁	-	23	-		I _C = 15 mA
Minimum noise figure					dB	$Z_{\rm S} = Z_{\rm opt}$
Minimum noise figure	NF_{min}	-	0.65	-		I _C = 5 mA
Associated gain	G_{ass}	-	21.5	-		I _C = 5 mA
Linearity					dBm	$Z_{\rm S}$ = $Z_{\rm L}$ = 50 Ω
1 dB gain compression point	OP_{1dB}	_	7.5	-		I _C = 15 mA
3rd order intercept point	OIP ₃	_	22.5	-		I _C = 15 mA

Table 13 AC Characteristics, $V_{CE} = 3 V, f = 3.5 GHz$

Parameter	Symbol		Value	S	Unit	Note / Test Condition
		Min.	Тур.	Max.		
Maximum power gain					dB	
Low noise operation point	$G_{\sf ms}$	-	21.5	_		I _C = 5 mA
High linearity operation point	G_{ms}	_	24	_		<i>I</i> _C = 15 mA
Transducer gain					dB	$Z_{\rm S}$ = $Z_{\rm L}$ = 50 Ω
Low noise operation point	S ₂₁	-	18	_		I _C = 5 mA
High linearity operation point	S ₂₁	-	20	_		I _C = 15 mA
Minimum noise figure					dB	$Z_{\rm S} = Z_{\rm opt}$
Minimum noise figure	NF_{min}	_	0.75	_		I _C = 5 mA
Associated gain	G_{ass}	-	18.5	_		I _C = 5 mA
Linearity					dBm	$Z_{\rm S}$ = $Z_{\rm L}$ = 50 Ω
1 dB gain compression point	OP_{1dB}	-	7.5	-		<i>I</i> _C = 15 mA
3rd order intercept point	OIP ₃	-	22.5	-		I _C = 15 mA

AC Characteristics, V_{CE} = 3 V, f = 5.5 GHz Table 14

Parameter	Symbol		Values	5	Unit	Note / Test Condition
		Min.	Тур.	Max.		
Maximum power gain					dB	
Low noise operation point	$G_{\sf ms}$	-	20	_		I _C = 5 mA
High linearity operation point	G_{ma}	-	19.5	_		I _C = 15 mA
Transducer gain					dB	$Z_{\rm S}$ = $Z_{\rm L}$ = 50 Ω
Low noise operation point	S ₂₁	-	14.5	-		I _C = 5 mA
High linearity operation point	S ₂₁	-	16	_		I _c = 15 mA
Minimum noise figure					dB	$Z_{\rm S} = Z_{\rm opt}$
Minimum noise figure	NF_{min}	-	0.9	_		I _C = 5 mA
Associated gain	G_{ass}	-	14.5	_		I _C = 5 mA
Linearity					dBm	$Z_{\rm S}$ = $Z_{\rm L}$ = 50 Ω
1 dB gain compression point	OP_{1dB}	_	8	_		I _c = 15 mA
3rd order intercept point	OIP ₃	_	22	-		I _C = 15 mA

AC Characteristics, V_{CE} = 3 V, f = 10 GHz Table 15

Parameter	Symbol		Value	5	Unit	Note / Test Condition
		Min.	Тур.	Max.		
Maximum power gain					dB	
Low noise operation point	G_{ms}	_	15.5	_		I _C = 5 mA
High linearity operation point	G_{ms}	_	15.5	_		I _C = 15 mA
Transducer gain					dB	$Z_{\rm S}$ = $Z_{\rm L}$ = 50 Ω
Low noise operation point	S ₂₁	-	7.5	_		I _C = 5 mA
High linearity operation point	S ₂₁	-	9.5	_		I _C = 15 mA
Minimum noise figure					dB	$Z_{\rm S} = Z_{\rm opt}$
Minimum noise figure	$N\!F_{\sf min}$	-	1.55	_		I _C = 5 mA
Associated gain	G_{ass}	-	11	_		I _C = 5 mA
Linearity					dBm	$Z_{\rm S}$ = $Z_{\rm L}$ = 50 Ω
1 dB gain compression point	OP_{1dB}	_	5.5	_		I _C = 15 mA
3rd order intercept point	OIP ₃	-	20	-		I _c = 15 mA

Note:

- 1. $G_{ms} = IS_{21} / S_{12}I$ for k < 1; $G_{ma} = IS_{21} / S_{12}I(k-(k^2-1)^{1/2})$ for k > 12. In order to get the NF_{min} values stated in this chapter the test fixture losses have been subtracted from all measured results.
- 3. OIP33 value depends on termination of all intermodulation frequency components. Termination used for this measurement is 50 Ω from 0.2 MHz to 12 GHz.

Figure 4 DC Current Gain $h_{FE} = f(I_C), V_{CE} = 3 V$

BFP720ESD

Figure 5 Collector Current vs. Base Emitter Voltage $I_{\rm C} = f(V_{\rm BE}), V_{\rm CE} = 2 \text{ V}$

Figure 6 Base Current vs. Base Emitter Forward Voltage $I_{\rm B} = f(V_{\rm BE}), V_{\rm CE} = 2 \text{ V}$

BFP720ESD

Figure 7 Base Current vs. Base Emitter Reverse Voltage $I_{\rm B} = f(V_{\rm EB}), V_{\rm CE} = 2 \text{ V}$

5.5 Characteristic AC Diagrams

Figure 8 Transition Frequency $f_T = f(I_C), f = 1$ GHz, V_{CE} = Parameter

Figure 9 3rd Order Intercept Point $OIP_3 = f(I_C), Z_S = Z_L = 50 \Omega, V_{CE}, f = Parameters$

BFP720ESD

Figure 10 Collector Base Capacitance $C_{CB} = f(V_{CB}), f = 1 \text{ MHz}$

Figure 11 Gain G_{ma} , G_{ms} , $|S_{21}|^2 = f(f)$, $V_{CE} = 3 \text{ V}$, $I_C = 15 \text{ mA}$

Figure 12 Maximum Power Gain $G_{max} = f(I_c)$, $V_{CE} = 3 V$, f = Parameter in GHz

Figure 13 Maximum Power Gain $G_{max} = f(V_{CE})$, $I_{C} = 15 \text{ mA}$, f = Parameter in GHz

Figure 14 Input Matching $S_{11} = f(f)$, $V_{CE} = 3 \text{ V}$, $I_C = 5 / 15 \text{ mA}$

Figure 15 Source Impedance for Minimum Noise Figure $Z_{opt} = f(f)$, $V_{CE} = 3 V$, $I_{C} = 5 / 15 mA$

Figure 16 Output Matching $S_{22} = f(f)$, $V_{CE} = 3 \text{ V}$, $I_C = 5 / 15 \text{ mA}$

Figure 17 Noise Figure $NF_{min} = f(f)$, $V_{CE} = 3 \text{ V}$, $I_C = 5 / 15 \text{ mA}$, $Z_S = Z_{opt}$

Figure 18 Noise Figure $NF_{min} = f(I_{C}), V_{CE} = 3 V, Z_{S} = Z_{opt}, f = Parameter in GHz$

Figure 19 Noise Figure $NF_{50} = f(I_C)$, $V_{CE} = 3 \text{ V}$, $Z_S = 50 \Omega$, f = Parameter in GHz

Note: The curves shown in this chapter have been generated using typical devices but shall not be considered as a guarantee that all devices have identical characteristic curves. $T_A = 25 \degree$ C

Simulation Data

6 Simulation Data

For the SPICE Gummel Poon (GP) model as well as for the S-parameters (including noise parameters) please refer to our internet website: www.infineon.com/rf.models. Please consult our website and download the latest versions before actually starting your design.

You find the BFP720ESD SPICE GP model in the internet in MWO- and ADS-format, which you can import into these circuit simulation tools very quickly and conveniently. The model already contains the package parasitics and is ready to use for DC- and high frequency simulations. The terminals of the model circuit correspond to the pin configuration of the device.

The model parameters have been extracted and verified up to 10 GHz using typical devices. The BFP720ESD SPICE GP model reflects the typical DC- and RF-performance within the limitations which are given by the SPICE GP model itself. Besides the DC characteristics all S-parameters in magnitude and phase, as well as noise figure (including optimum source impedance, equivalent noise resistance and flicker noise) and intermodulation have been extracted.

Package Information SOT343

7 Package Information SOT343

Figure 20 Package Outline

Figure 22 Marking Description (Marking BFP720ESD: T3s)

Figure 23 Tape Dimensions

www.infineon.com

Published by Infineon Technologies AG