
EPC2019 – Enhancement Mode Power Transistor

 V_{DSS} , 200 V $R_{\text{DS(on)}}$, $\,50\,m\Omega$ I_D , 8.5 A

Gallium Nitride is grown on Silicon Wafers and processed using standard CMOS equipment leveraging the infrastructure that has been developed over the last 55 years. GaN's exceptionally high electron mobility and low temperature coefficient allows very low R_{DS(on)}, while its lateral device structure and majority carrier diode provide exceptionally low Q_G and zero Q_{RR} . The end result is a device that can handle tasks where very high switching frequency, and low on-time are beneficial as well as those where on-state losses dominate.

	Maximum Ratings			
V_{DS}	Drain-to-Source Voltage (Continuous)	200	V	
	Continuous (T _A = 25°C, R _{EJA} = 18 °C/W)	8.5	А	
I _D	Pulsed (25°C, T _{Pulse} = 300 μs)	42		
V	Gate-to-Source Voltage	6	V	
V _{GS}	Gate-to-Source Voltage	-4	V	
T,	Operating Temperature	-40 to 150	°C	
T_{STG}	Storage Temperature	-40 to 150	C	

EPC2019 eGaN® FETs are supplied only in passivated die form with solder bars

Applications

- High Speed DC-DC conversion
- · Class-D Audio
- · High Frequency Hard-Switching and **Soft-Switching Circuits**

Benefits

- · Ultra High Efficiency
- Ultra Low R_{DS(on)}
- Ultra low Q_G
- · Ultra small footprint

www.epc-co.com/epc/Products/eGaNFETs/EPC2019.aspx

Static Characteristics ($T_J = 25^{\circ}$ C unless otherwise stated)						
PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
BV _{DSS}	Drain-to-Source Voltage	$V_{GS} = 0 \text{ V}, I_D = 125 \mu\text{A}$	200			V
I _{DSS}	Drain Source Leakage	$V_{DS} = 160 \text{ V}, V_{GS} = 0 \text{ V}$		20	100	μΑ
	Gate-to-Source Forward Leakage	$V_{GS} = 5 \text{ V}$		0.8	2.5	mA
I _{GSS}	Gate-to-Source Reverse Leakage	$V_{GS} = -4 V$		20	100	μΑ
$V_{GS(TH)}$	Gate Threshold Voltage	$V_{DS} = V_{GS}$, $I_{D} = 1.5 \text{ mA}$	0.8	1.4	2.5	V
R _{DS(on)}	Drain-Source On Resistance	$V_{GS} = 5 \text{ V}, I_D = 7 \text{ A}$		36	50	mΩ
V_{SD}	Source-Drain Forward Voltage	$I_S = 0.5 \text{ A}, V_{GS} = 0 \text{ V}$		1.8		V

All measurements were done with substrate shorted to source.

Thermal Characteristics					
		TYP	UNIT		
$R_{ heta$ JC	Thermal Resistance, Junction to Case	2.7	°C/W		
$R_{\scriptscriptstyle heta JB}$	Thermal Resistance, Junction to Board	7.5	°C/W		
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient (Note 1)	72	°C/W		

Note 1: R_{BJA} is determined with the device mounted on one square inch of copper pad, single layer 2 oz copper on FR4 board. ee http://epc-co.com/epc/documents/product-training/Appnote_Thermal_Performance_of_eGaN_FETs.pdf for details.

	Dynamic Characteristics (T _j = 25°C unless otherwise stated)					
PARAMETER		TEST CONDITIONS	MIN	ТҮР	MAX	UNIT
C _{ISS}	Input Capacitance			200	270	
C _{oss}	Output Capacitance	$V_{DS} = 100 \text{ V}, V_{GS} = 0 \text{ V}$		110	150	pF
C_{RSS}	Reverse Transfer Capacitance			0.7	1	
R_{G}	Gate Resistance			0.4		Ω
Q_{G}	Total Gate Charge	$V_{DS} = 100 \text{ V}, V_{GS} = 5 \text{ V}, I_{D} = 7 \text{ A}$		1.8	2.5	
Q_{GS}	Gate-to-Source Charge			0.6		
Q_{GD}	Q_{GD} Gate-to-Drain Charge $V_{DS} = 100 \text{ V}, I_D = 70 \text{ C}$			0.35	0.6	nC
$Q_{G(TH)}$	Gate Charge at Threshold	ge at Threshold		0.4		
Qoss	Q_{OSS} Output Charge $V_{DS} = 100 \text{ V}, V_{GS} = 0 \text{ V}$			18	23	
Q_{RR}	Source-Drain Recovery Charge			0		

All measurements were done with substrate shorted to source.

Figure 1: Typical Output Characteristics at 25°C

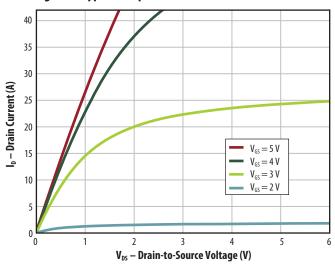


Figure 2: Transfer Characteristics

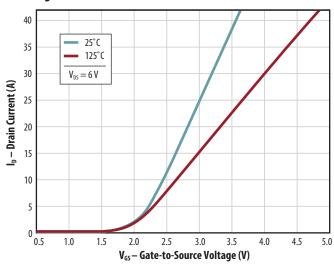


Figure 3: $R_{DS(on)}$ vs. V_{GS} for Various Drain Currents

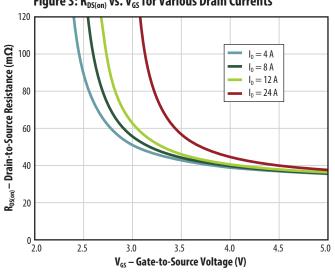


Figure 4: $R_{DS(on)}$ vs. V_{GS} for Various Temperatures

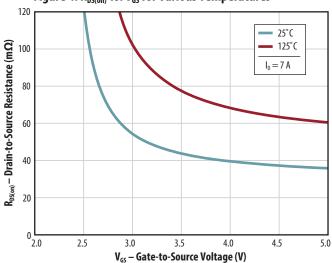


Figure 5a: Capacitance (Linear Scale)

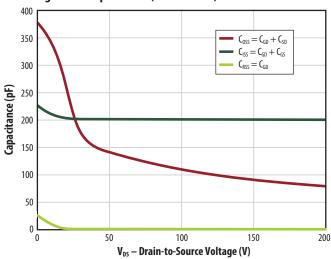


Figure 5b: Capacitance (Log Scale)

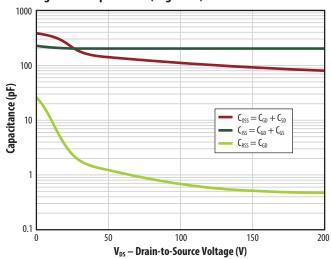


Figure 6: Gate Charge

Figure 7: Reverse Drain-Source Characteristics

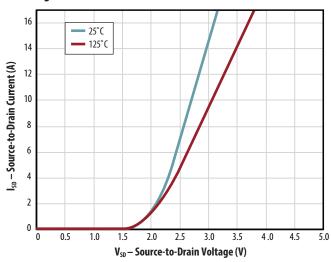
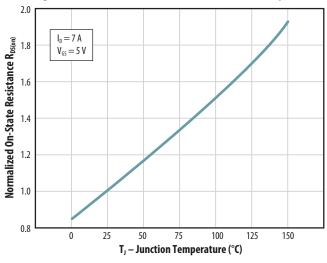
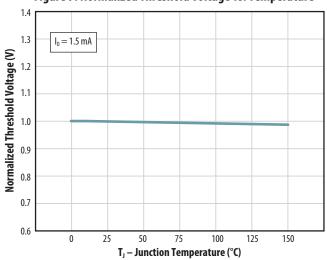
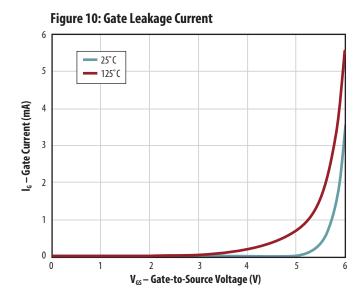
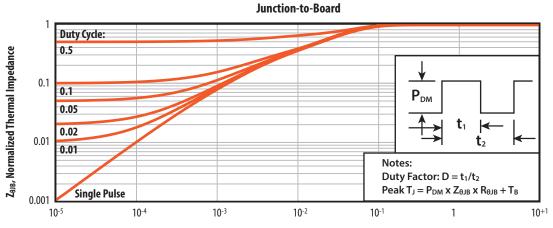


Figure 8: Normalized On-State Resistance vs. Temperature


Figure 9: Normalized Threshold Voltage vs. Temperature

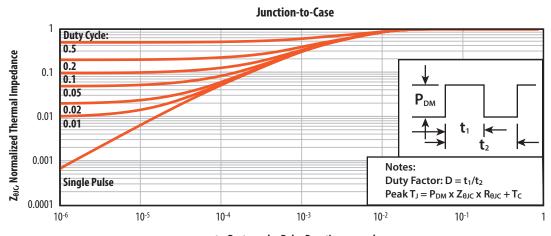
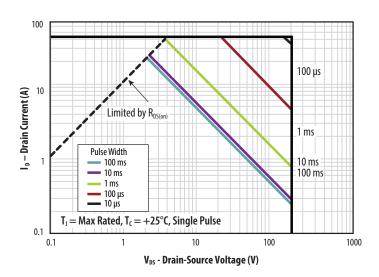
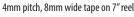
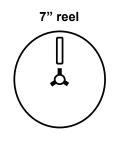

All measurements were done with substrate shortened to source

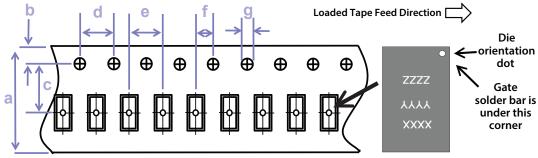
Figure 11: Transient Thermal Response Curves



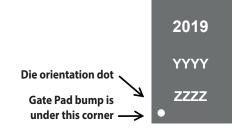
t_p, Rectangular Pulse Duration, seconds




 $t_p, Rectangular \ Pulse \ Duration, seconds$


Figure 12: Safe Operating Area

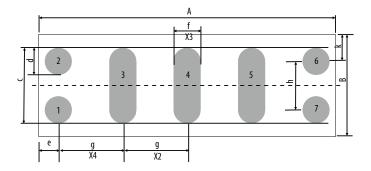
TAPE AND REEL CONFIGURATION


EPC2019 (note 1) Dimension (mm) target min max 8.00 | 7.90 | 8.30 1.75 1.65 | 1.85 b 3.50 3.45 3.55 c (see note) 4.00 3.90 4.10 4.10 4.00 3.90 е f (see note) 2.00 1.95 2.05 1.5 1.5 1.6

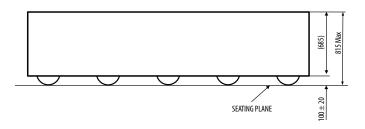
Die is placed into pocket solder bar side down (face side down)

Note 1: MSL 1 (moisture sensitivity level 1) classified according to IPC/JEDEC industry standard.

Note 2: Pocket position is relative to the sprocket hole measured as true position of the pocket, not the pocket hole.


DIE MARKINGS

	Part	Laser Markings				
	Number	Part # Marking Line 1	Lot_Date Code Marking line 2	Lot_Date Code Marking Line 3		
ſ	EPC2019	2019	YYYY	ZZZZ		


DIE OUTLINE

Solder Bar View

DIM	MICROMETERS				
DIM	MIN	Nominal	MAX		
Α	2736	2766	2796		
В	920	950	980		
c	697	700	703		
d	247	250	253		
e	168	183	198		
f	245	250	255		
g	600	600	600		
h	450	450	450		
i	235	250	265		

Side View

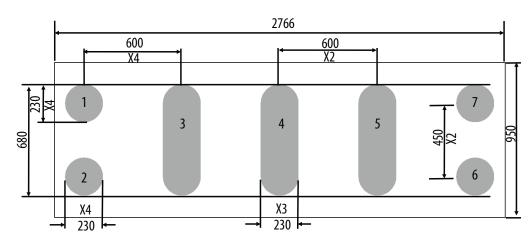
Pad no.1 is Gate

Pad no. 3, 5 are Drain

Pad no. 2, 4, 6 are Source

Pad no. 7 is Substrate

Recommended Land Pattern

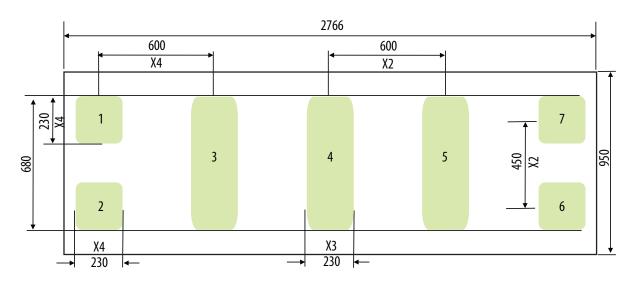

(Units in µm)

Pad no. 1 is Gate

Pad no. 3, 5 are Drain

Pad no. 2, 4, 6 are Source

Pad no. 7 is Substrate



The land pattern shown is solder mask defined. Copper is larger than the solder mask opening. The solder mask is 10um smaller per side than the bump.

RECOMMENDED STENCIL

(Units in µm)

Pad no. 1 is Gate
Pad no. 3, 5 are Drain
Pad no. 2, 4, 6 are Source
Pad no. 7 is Substrate

Recommended stencil should be 4mil ($100\mu m$) thick, must be laser cut, openings per drawing. The solder stencil is $10\mu m$ smaller per side than the bump. The corner has a radius of R60

For assembly recommendations please visit http://epc-co.com/epc/DesignSupport/AssemblyBasics.aspx

Efficient Power Conversion Corporation (EPC) reserves the right to make changes without further notice to any products herein to improve reliability, function or design. EPC does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others.

 $eGaN^{\circ} \ is \ a \ registered \ trademark \ of \ Efficient \ Power \ Conversion \ Corporation.$

U.S. Patents 8,350,294; 8,404,508; 8,431,960; 8,436,398; 8,785,974; 8,890,168; 8,969,918; 8,853,749; 8,823,012

Information subject to change without notice. revised September, 2015