

WM8770

24-bit, 192kHz 8-Channel CODEC with Volume Control

DESCRIPTION

The WM8770 is a high performance, multi-channel audio codec. The WM8770 is ideal for surround sound processing applications for home hi-fi, automotive and other audio visual equipment.

A stereo 24-bit multi-bit sigma delta ADC is used with an eight stereo channel input selector. Each channel has analogue domain mute and programmable gain control. Digital audio output word lengths from 16-32 bits and sampling rates from 8kHz to 96kHz are supported.

Four stereo 24-bit multi-bit sigma delta DACs are used with oversampling digital interpolation filters. Digital audio input word lengths from 16-32 bits and sampling rates from 8kHz to 192kHz are supported. Each DAC channel has independent analogue volume and mute control, with a set of input multiplexors allowing selection of an external 3 channel stereo analogue input into these volume controls.

The audio data interface supports I^2S , left justified and right justified digital audio formats.

The device is controlled via a 3 wire serial interface. The interface provides access to all features including channel selection, volume controls, mutes, de-emphasis and power management facilities. The device is available in a 64-lead TQFP package.

BLOCK DIAGRAM

FEATURES

- Audio Performance
 - 106dB SNR ('A' weighted @ 48kHz) DAC
 - 102dB SNR ('A' weighted @ 48kHz) ADC
- DAC Sampling Frequency: 8KHz 192kHz
- ADC Sampling Frequency: 8KHz 96kHz
- 3-Wire SPI or CCB MPU Serial Control Interface
- Master or Slave Clocking Mode
- Programmable Audio Data Interface Modes
 - I²S, Left or Right Justified
 - 16/20/24/32 bit Word Lengths
- Four Independent stereo DAC outputs with independent analogue and digital volume controls
- Analogue Bypass Path Feature
- Six channel selectable AUX input to the volume controls
- Eight stereo ADC inputs with analogue gain adjust from +19dB to –12dB in 1dB steps
- 2.7V to 5.5V Analogue, 2.7V to 3.6V Digital supply Operation
- 5V tolerant digital inputs

APPLICATIONS

- Surround Sound AV Processors and Hi-Fi systems
- Automotive Audio

WOLFSON MICROELECTRONICS plc

Production Data, March 2011, Rev 4.3

To receive regular email updates, sign up at http://www.wolfsonmicro.com/enews

TABLE OF CONTENTS

DESCRIPTION	1
FEATURES	1
APPLICATIONS	1
BLOCK DIAGRAM	
TABLE OF CONTENTS	
PIN CONFIGURATION	3
ORDERING INFORMATION	-
PIN DESCRIPTION	
ABSOLUTE MAXIMUM RATINGS	
ELECTRICAL CHARACTERISTICS	
TERMINOLOGY	
MASTER CLOCK TIMING	9
DIGITAL AUDIO INTERFACE – MASTER MODE	9
DIGITAL AUDIO INTERFACE – SLAVE MODE	11
MPU INTERFACE TIMING	
INTERNAL POWER ON RESET CIRCUIT	
DEVICE DESCRIPTION	
INTRODUCTION	
AUDIO DATA SAMPLING RATES	
ZERO DETECT	19
CONTROL INTERFACE OPERATION	
REGISTER MAP	
DIGITAL FILTER CHARACTERISTICS	31 AA
DAC FILTER RESPONSES	
ADC FILTER RESPONSES	
ADC HIGH PASS FILTER	
DIGITAL DE-EMPHASIS CHARACTERISTICS	
APPLICATIONS INFORMATION	
RECOMMENDED EXTERNAL COMPONENTS	47
EXTERNAL CIRCUIT CONFIGURATION	48
PACKAGE DIMENSIONS	50
IMPORTANT NOTICE	51
ADDRESS:	-
REVISION HISTORY	52

PIN CONFIGURATION

ORDERING INFORMATION

DEVICE	TEMPERATURE RANGE	PACKAGE	MOISTURE SENSITIVITY LEVEL	PEAK SOLDERING TEMPERATURE
WM8770SIFT/V	-40°C to +85°C	64-lead TQFP (Pb-free)	MSL3	260°C
WM8770SIFT/RV	-40°C to +85°C	64-lead TQFP (tape and reel, Pb-free)	MSL3	260°C

Note:

Reel Quantity: 750

WM8770

PIN DESCRIPTION

PIN DESCRIPTION						
PIN	NAME	TYPE	DESCRIPTION			
1	AIN1L	Analogue Input	Channel 1 left input multiplexor virtual ground			
2	AIN1R	Analogue Input	Channel 1 right input multiplexor virtual ground			
3	AIN2L	Analogue Input	Channel 2 left input multiplexor virtual ground			
4	AIN2R	Analogue Input	Channel 2 right input multiplexor virtual ground			
5	AIN3L	Analogue Input	Channel 3 left input multiplexor virtual ground			
6	AIN3R	Analogue Input	Channel 3 right input multiplexor virtual ground			
7	AIN4L	Analogue Input	Channel 4 left input multiplexor virtual ground			
8	AIN4R	Analogue Input	Channel 4 right input multiplexor virtual ground			
9	AIN5L	Analogue Input	Channel 5 left input multiplexor virtual ground			
10	AIN5R	Analogue Input	Channel 5 right input multiplexor virtual ground			
11	AIN6L	Analogue Input	Channel 6 left input multiplexor virtual ground			
12	AIN6R	Analogue Input	Channel 6 right input multiplexor virtual ground			
13	AIN7L	Analogue Input	Channel 7 left input multiplexor virtual ground			
14	AIN7R	Analogue Input	Channel 7 right input multiplexor virtual ground			
15	AIN8L	Analogue Input	Channel 8 left input multiplexor virtual ground			
16	AIN8R	Analogue Input	Channel 8 right input multiplexor virtual ground			
17	AINOPL	Analogue Output	Left channel multiplexor output			
18	AINVGL	Analogue Input	Left channel multiplexor virtual ground			
19	AINVGR	Analogue Input	Right channel multiplexor virtual ground			
20	AINOPR	Analogue Output	Right channel multiplexor output			
21	RECL	Analogue Output	Left channel input mux select output			
22	RECR	Analogue Output	Right channel input mux select output			
23	REFADC	Analogue Output	ADC reference buffer decoupling pin; 10uF external decoupling			
23	VMIDADC	Analogue Output	ADC midrail divider decoupling pin; 10uF external decoupling			
24	AGND1	Supply	Analogue negative supply and substrate connection			
26	AVDD1	Supply	Analogue positive supply			
20	AUX1L	Analogue input	3.1 Multiplexor channel 1 left virtual ground input			
28	AUX1R	Analogue input	3.1 Multiplexor channel 1 right virtual ground input			
29	AUX2L	Analogue input	3.1 Multiplexor channel 2 left virtual ground input			
30	AUX2R	Analogue input	3.1 Multiplexor channel 2 right virtual ground input			
31	AUX3L	Analogue input	3.1 Multiplexor channel 3 left virtual ground input			
32	AUX3R	Analogue input	3.1 Multiplexor channel 3 right virtual ground input			
33	AVDD2	Supply	Analogue positive supply			
34	VOUT1L	Analogue output	DAC channel 1 left output			
35	VOUT1R	Analogue output	DAC channel 1 right output			
36	DACREFP1	Supply	DAC positive reference supply			
37	VOUT2L	Analogue output	DAC channel 2 left output			
38	GR1	Supply	DAC ground reference			
39	VOUT2R	Analogue output	DAC channel 2 right output			
40	VMIDDAC	Analogue output	DAC midrail decoupling pin ; 10uF external decoupling			
41	VOUT3L	Analogue output	DAC channel 3 left output			
42	GR2	Supply	DAC ground reference			
43	VOUT3R	Analogue output	DAC channel 3 right output			
44	DACREFP2	Supply	DAC positive reference supply			
45	VOUT4L	Analogue output	DAC channel 4 left output			
46	VOUT4R	Analogue output	DAC channel 4 right output			
47	AGND2	Supply	Analogue negative supply and substrate connection			
48	DGND	Supply	Digital negative supply			
49	DVDD	Supply	Digital positive supply			
50	ZFLAG1	Digital output	DAC Zero Flag output			
51	ZFLAG2	Digital output	DAC Zero Flag output			
	•		-			

PD, Rev 4.3, March 2011

Production Data

PIN	NAME	TYPE	DESCRIPTION
52	DOUT	Digital output	ADC data output
53	DIN1	Digital Input	DAC channel 1 data input
54	DIN2	Digital Input	DAC channel 2 data input
55	DIN3	Digital Input	DAC channel 3 data input
56	DIN4	Digital Input	DAC channel 4 data input
57	DACLRC	Digital input/output	DAC left/right word clock
58	ADCLRC	Digital input/output	ADC left/right word clock
59	BCLK	Digital input/output	ADC and DAC audio interface bit clock
60	MCLK	Digital input	Master DAC and ADC clock; 256, 384, 512 or 768fs (fs = word clock frequency)
61	CL	Digital input	Serial interface clock (5V tolerant)
62	DI	Digital input	Serial interface data (5V tolerant)
63	CE	Digital input	Serial interface Latch signal (5V tolerant)
64	RESETB	Digital input	Device reset input (mutes DAC outputs, resets gain stages to 0dB)
			(5V tolerant)

Note: Digital input pins have Schmitt trigger input buffers and are 5V tolerant.

ABSOLUTE MAXIMUM RATINGS

Absolute Maximum Ratings are stress ratings only. Permanent damage to the device may be caused by continuously operating at or beyond these limits. Device functional operating limits and guaranteed performance specifications are given under Electrical Characteristics at the test conditions specified.

ESD Sensitive Device. This device is manufactured on a CMOS process. It is therefore generically susceptible to damage from excessive static voltages. Proper ESD precautions must be taken during handling and storage of this device.

Wolfson tests its package types according to IPC/JEDEC J-STD-020B for Moisture Sensitivity to determine acceptable storage conditions prior to surface mount assembly. These levels are:

MSL1 = unlimited floor life at <30°C / 85% Relative Humidity. Not normally stored in moisture barrier bag. MSL2 = out of bag storage for 1 year at <30°C / 60% Relative Humidity. Supplied in moisture barrier bag. MSL3 = out of bag storage for 168 hours at <30°C / 60% Relative Humidity. Supplied in moisture barrier bag.

The Moisture Sensitivity Level for each package type is specified in Ordering Information.

CONDITION	MIN	MAX
Digital supply voltage	-0.3V	+3.63V
Analogue supply voltage	-0.3V	+7V
Voltage range digital inputs (DI, CL, CE & RESETB)	DGND -0.3V	+7V
Voltage range digital inputs (MCLK, DIN[3:0], ADCLRC, DACLRC & BCLK)	DGND -0.3V	DVDD + 0.3V
Voltage range analogue inputs	AGND -0.3V	AVDD +0.3V
Master Clock Frequency		37MHz
Operating temperature range, T _A	-40°C	+85°C
Storage temperature	-65°C	+150°C

Note:

1. Analogue and digital grounds must always be within 0.3V of each other.

RECOMMENDED OPERATING CONDITIONS

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Digital supply range	DVDD		2.7		3.6	V
Analogue supply range	AVDD		2.7		5.5	V
Ground	AGND, DGND			0		V
Difference DGND to AGND			-0.3	0	+0.3	V

Note: digital supply DVDD must never be more than 0.3V greater than AVDD.

ELECTRICAL CHARACTERISTICS

Test Conditions

AVDD = 5V, DVDD = 3.3V, AGND = 0V, DGND = 0V, $T_A = +25^{\circ}C$, fs = 48kHz, MCLK = 256fs, ADC/DAC in Slave Mode unless otherwise stated.

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Digital Logic Levels (TTL Levels)						
Input LOW level	VIL				0.8	V
Input HIGH level	VIH		2.0			V
Output LOW	V _{OL}	I _{OL} =1mA			0.1 x DVDD	V
Output HIGH	V _{OH}	I _{OH} -1mA	0.9 x DVDD			V
Analogue Reference Levels			1		1 1	
Reference voltage	V _{VMID}			AVDD/2		V
Potential divider resistance	R _{VMID}	AVDD to VMID and VMID to AGND		50k		Ω
DAC Performance (Load = $10k\Omega$,	50pF)					
0dBFs Full scale output voltage				1.0 x		Vrms
				AVDD/5		
SNR (Note 1,2)		A-weighted, @ fs = 48kHz	100	106		dB
SNR (Note 1,2)		A-weighted		106		dB
- (,/		@ fs = 96kHz				
Dynamic Range (Note 2)	DNR	A-weighted, -60dB full scale input	100	106		dB
Total Harmonic Distortion (THD)		1kHz, 0dBFs		-94	-88	dB
DAC channel separation				110		dB
DAC analogue Volume Gain Step Size				1		dB
DAC analogue Volume Gain Range		1kHz Input		0 to -100		dB
Output Noise		A-weighted output muted		-116		dB
DAC analogue Volume Mute Attenuation		1kHz Input, 0dB gain		100		dB
Power Supply Rejection Ratio	PSRR	1kHz 100mVpp		50		dB
		20Hz to 20kHz 100mVpp		45		dB
ADC Performance						
Input Signal Level (0dB)				1.0 x		Vrms
· · /				AVDD/5		
SNR (Note 1,2)		A-weighted, 0dB gain @ fs = 48kHz		102		dB
SNR (Note 1,2)		A-weighted, 0dB gain		96	1 1	dB
		@ fs = 96kHz				30
Dynamic Range (note 2)		A-weighted, -60dB full scale input		102		dB
Total Harmonic Distortion (THD)		kHz, 0dBFs		-89	1 1	dB
		1kHz, -1dBFs		-94	-90	dB
ADC Channel Separation		1kHz Input		85		dB
Programmable Gain Step Size		inpor		1.0	+ +	dB
Programmable Gain Range		1kHz Input		-12 to +19	1 1	dB
Mute Attenuation		1kHz Input, 0dB gain		82	+ +	dB
Power Supply Rejection Ratio	PSRR	1kHz 100mVpp		50	+ +	dB
Tower Supply Rejection Ratio	IONN	20Hz to 20kHz 100mVpp		45		dB

PD, Rev 4.3, March 2011

WM8770

Test Conditions

AVDD = 5V, DVDD = 3.3V, AGND = 0V, DGND = 0V, T_A = +25°C, fs = 48kHz, MCLK = 256fs, ADC/DAC in Slave Mode unless otherwise stated.

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Analogue input (AIN) to Analog	ue output (VOU	T) (Load=10kΩ, 50pF, g	ain = 0dB) B	ypass Mode		
0dB Full scale output voltage				1.0 x		Vrms
				AVDD/5		
SNR (Note 1)				104		dB
THD		1kHz, 0dB		-90		dB
		1kHz, -3dB		-95		dB
Power Supply Rejection Ratio	PSRR	1kHz 100mVpp		50		dB
		20Hz to 20kHz 100mVpp		45		dB
Mute Attenuation		1kHz, 0dB		100		dB
Supply Current		·				
Analogue supply current		AVDD = 5V		120		mA
Digital supply current		DVDD = 3.3V		16		mA

Notes:

1. Ratio of output level with 1kHz full scale input, to the output level with all zeros into the digital input, measured 'A' weighted.

- All performance measurements done with 20kHz low pass filter, and where noted an A-weight filter. Failure to use such a filter will result in higher THD+N and lower SNR and Dynamic Range readings than are found in the Electrical Characteristics. The low pass filter removes out of band noise; although it is not audible it may affect dynamic specification values.
- 3. VMID decoupled with 10uF and 0.1uF capacitors (smaller values may result in reduced performance).

TERMINOLOGY

- 1. Signal-to-noise ratio (dB) SNR is a measure of the difference in level between the full scale output and the output with no signal applied. (No Auto-zero or Automute function is employed in achieving these results).
- 2. Dynamic range (dB) DNR is a measure of the difference between the highest and lowest portions of a signal. Normally a THD+N measurement at 60dB below full scale. The measured signal is then corrected by adding the 60dB to it. (e.g. THD+N @ -60dB= -32dB, DR= 92dB).
- 3. THD+N (dB) THD+N is a ratio, of the rms values, of (Noise + Distortion)/Signal.
- 4. Stop band attenuation (dB) Is the degree to which the frequency spectrum is attenuated (outside audio band).
- 5. Channel Separation (dB) Also known as Cross-Talk. This is a measure of the amount one channel is isolated from the other. Normally measured by sending a full scale signal down one channel and measuring the other.
- 6. Pass-Band Ripple Any variation of the frequency response in the pass-band region.

MASTER CLOCK TIMING

Figure 1 Master Clock Timing Requirements

Test Conditions

AVDD = 5V, DVDD = 3.3V, AGND = 0V, DGND = 0V, $T_A = +25^{\circ}C$, fs = 48kHz, MCLK = 256fs, ADC/DAC in Slave Mode unless otherwise stated.

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	ТҮР	MAX	UNIT
System Clock Timing Information						
MCLK System clock pulse width high	t _{MCLKH}		11			ns
MCLK System clock pulse width low	t _{MCLKL}		11			ns
MCLK System clock cycle time	t _{MCLKY}		28		1000	ns
MCLK Duty cycle			40:60		60:40	
Power-saving mode activated		After MCLK stopped	2		10	μs
Normal mode resumed		After MCLK re-started	0.5		1	MCLK
						cycle

Table 1 Master Clock Timing Requirements

Note: If MCLK period is longer than maximum specified above, DACs are powered down with internal digital audio filters being reset. In this mode, all registers will retain their values and can be accessed in the normal manner through the control interface. Once MCLK is restored, the DACs are automatically powered up.

DIGITAL AUDIO INTERFACE – MASTER MODE

Figure 2 Audio Interface - Master Mode

WM8770

Figure 3 Digital Audio Data Timing – Master Mode

Test Conditions

AVDD = 5V, DVDD = 3.3V, AGND = 0V, DGND = 0V, $T_A = +25^{\circ}C$, fs = 48kHz, MCLK = 256fs, ADC/DAC in Slave Mode unless otherwise stated.

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT			
Audio Data Input Timing Inf	Audio Data Input Timing Information								
ADCLRC/DACLRC propagation delay from BCLK falling edge	t _{DL}		0		10	ns			
DOUT propagation delay from BCLK falling edge	t _{DDA}		0		10	ns			
DIN1/2/3/4 setup time to BCLCK rising edge	t _{DST}		10			ns			
DIN1/2/3/4 hold time from BCLK rising edge	t _{DHT}		10			ns			

Table 2 Digital Audio Data Timing – Master Mode

DIGITAL AUDIO INTERFACE – SLAVE MODE

Figure 4 Audio Interface – Slave Mode

Figure 5 Digital Audio Data Timing – Slave Mode

Test Conditions

AVDD = 5V, DVDD = 3.3V, AGND = 0V, DGND = 0V, $T_A = +25^{\circ}C$, fs = 48kHz, MCLK = 256fs, ADC/DAC in Slave Mode unless otherwise stated.

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT		
Audio Data Input Timing Information								
BCLK cycle time	t _{BCY}		80			ns		
BCLK pulse width high	t _{BCH}		20			ns		
BCLK pulse width low	t _{BCL}		20			ns		
DACLRC/ADCLRC set-up time to BCLK rising edge	t _{LRSU}		10			ns		
DACLRC/ADCLRC hold time from BCLK rising edge	t _{LRH}		10			ns		
DIN1/2/3/4 set-up time to BCLK rising edge	t _{DS}		10			ns		
DIN1/2/3/4 hold time from BCLK rising edge	t _{DH}		10			ns		
DOUT propagation delay from BCLK falling edge	t _{DD}		0		10	ns		

Table 3 Digital Audio Data Timing - Slave Mode

Note: ADCLRC and DACLRC should be synchronous with MCLK, although the WM8770 interface is tolerant of phase variations or jitter on these signals.

MPU INTERFACE TIMING

Figure 6 SPI Compatible Control Interface Input Timing

Test Conditions

AVDD = 5V, DVDD = 3.3V, AGND = 0V, DGND = 0V, $T_A = +25^{\circ}C$, fs = 48kHz, MCLK = 256fs, ADC/DAC in Slave Mode unless otherwise stated.

PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT
CE to RESETB hold time	t _{RCSU}	20			ns
RESETB to CL setup time	t _{RCHO}	20			ns
CL rising edge to CE rising edge	t _{scs}	60			ns
CL pulse cycle time	tscy	80			ns
CL pulse width low	t _{SCL}	30			ns
CL pulse width high	t _{SCH}	30			ns
DI to CL set-up time	t _{DSU}	20			ns
CL to DI hold time	t _{DHO}	20			ns
CE pulse width low	t _{CSL}	20			ns
CE pulse width high	t _{CSH}	20			ns
CE rising to CL rising	t _{css}	20			ns

Table 4 3 Wire SPI Compatible Control Interface Input Timing Information

Figure 7 3 Wire CCB Compatible Interface Input Timing Information – CL Stopped Low

Figure 8 3 Wire CCB Compatible Interface Input Timing Information – CL Stopped High

Test Conditions

AVDD = 5V, DVDD = 3.3V, AGND = 0V, DGND = 0V, $T_A = +25^{\circ}C$, fs = 48kHz, MCLK = 256fs, ADC/DAC in Slave Mode unless otherwise stated.

PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT
CE to RESETB setup time	t _{RCES}	20			ns
RESETB to CL hold time	t _{RCLH}	20			ns
DI to CL setup time	t _{DSU}	20			ns
CL to DI hold time	t _{DHO}	20			ns
CL to CE setup time	t _{cs}	20			ns
CE to CL wait time	t _{CP}	20			ns
CL to CE hold time	t _{CH}	20			ns
CL pulse width high	t _{SCH}	30			ns
CL pulse width low	t _{SCL}	30			ns
CL pulse cycle time	t _{SCY}	80			ns

Table 5 3 wire CCB Compatible Interface Input Timing Information

INTERNAL POWER ON RESET CIRCUIT

Figure 9 Internal Power On Reset Circuit Schematic

The WM8770 includes an internal Power On Reset Circuit which is used to reset the digital logic into a default state after power up.

Figure 9 shows a schematic of the internal POR circuit. The POR circuit is powered from AVDD. The circuit monitors DVDD and VMIDADC and asserts PORB low if DVDD or VMIDADC are below the minimum threshold Vpor_off.

On power up, the POR circuit requires AVDD to be present to operate. PORB is asserted low until AVDD, DVDD and VMIDADC are established. When AVDD, DVDD, and VMIDADC have been established, PORB is released high, all registers are in their default state and writes to the digital interface may take place.

On power down, PORB is asserted low whenever DVDD or VMIDADC drop below the minimum threshold Vpor_off.

If AVDD is removed at any time, the internal Power On Reset circuit is powered down and PORB will follow AVDD.

In most applications the time required for the device to release PORB high will be determined by the charge time of the VMIDADC node.

Figure 10 Typical Power up sequence where DVDD is powered before AVDD.

Figure 11 Typical Power up sequence where AVDD is powered before DVDD

SYMBOL	MIN	TYP	MAX	UNIT
V _{pora}	0.5	0.7	1.0	V
Vporr	0.5	0.7	1.1	V
V _{pora_off}	1.0	1.4	2.0	V
V _{pord_off}	0.6	0.8	1.0	V

Typical POR Operation (typical values, not tested)

In a real application the designer is unlikely to have control of the relative power up sequence of AVDD and DVDD. Using the POR circuit to monitor VMIDADC ensures a reasonable delay between applying power to the device and Device Ready.

Figure 10 and Figure 11 show typical power up scenarios in a real system. Both AVDD and DVDD must be established and VMIDADC must have reached the threshold Vporr before the device is ready and can be written to. Any writes to the device before Device Ready will be ignored.

Figure 10 shows DVDD powering up before AVDD. Figure 11 shows AVDD powering up before DVDD. In both cases, the time from applying power to Device Ready is dominated by the charge time of VMIDADC.

A 10uF cap is recommended for decoupling on VMIDADC. The charge time for VMIDADC will dominate the time required for the device to become ready after power is applied. The time required for VMIDADC to reach the threshold is a function of the VMIDADC resistor string and the decoupling capacitor. The Resistor string has a typical equivalent resistance of 50kohm (+/-20%). Assuming a 10uF capacitor, the time required for VMIDADC to reach threshold of 1V is approx 110ms.

DEVICE DESCRIPTION

INTRODUCTION

WM8770 is a complete 8-channel DAC, 2-channel ADC audio codec, including digital interpolation and decimation filters, multi-bit sigma delta stereo ADC, and switched capacitor multi-bit sigma delta DACs with analogue volume controls on each channel and output smoothing filters.

The device is implemented as four separate stereo DACs and a stereo ADC with flexible input multiplexor, in a single package and controlled by a single interface.

The four stereo channels may either be used to implement a 5.1 channel surround system, with additional stereo channel for a stereo mix down channel, or for a complete 7.1 channel surround system.

An analogue bypass path option is available, to allow stereo analogue signals from any of the 8 stereo inputs to be sent to the stereo outputs via the main volume controls. This allows a purely analogue input to analogue output high quality signal path to be implemented if required. This would allow, for example, the user to play back a 5.1 channel surround movie through 6 of the DACs, whilst playing back a separate analogue or digital signal into a remote room installation.

Each stereo DAC has its own data input DIN1/2/3/4. DAC word clock DACLRC is shared between them. The stereo ADC has it's own data output DOUT, and word clock ADCLRC. BITCLK and MCLK are shared between the ADCs and DACs. The Audio Interface may be configured to operate in either master or slave mode. In Slave mode ADCLRC, DACLRC and BCLK are all inputs. In Master mode ADCLRC, DACLRC and BCLK are all outputs.

The input multiplexor to the ADC is configured to allow large signal levels to be input to the ADC, using external resistors to reduce the amplitude of larger signals to within the normal operating range of the ADC. The ADC input PGA also allows input signals to be gained up to +19dB and attenuated down to -12dB. This allows the user maximum flexibility in the use of the ADC.

A selectable stereo record output is also provided on RECL/R. It is intended that the RECL/R outputs are only used to drive a high impedance buffer.

Each DAC has its own analogue and separate digital volume control. The analogue volume control is adjustable in 1dB steps and the digital volume control in 0.5dB steps. The analogue and digital volume controls may be operated independently. In addition a zero cross detect circuit is provided for each DAC for both analogue and digital volume controls. When analogue volume zero-cross detection is enabled the attenuation values are only updated when the input signal to the gain stage is close to the analogue ground level. The digital volume control detects a transition through the zero point before updating the volume. This minimises audible clicks and 'zipper' noise as the gain values change.

Additionally, 6 of the DAC outputs incorporate an input selector and mixer allowing an external 6 channel, or 5.1 channel signal, to be either switched into the signal path in place of the DAC signal or mixed with the DAC signal before the volume controls. This allows the device to be used as a 6 channel volume control for an externally provided 5.1 type analogue input. Use of external resistors allows larger input levels to be accepted by the device, giving maximum user flexibility.

Control of internal functionality of the device is by 3-wire serial control interface. An SPI or CCB type interface may used, selectable by the state of the CE pin on the rising edge of RESETB. The control interface may be asynchronous to the audio data interface as control data will be re-synchronised to the audio processing internally.

CE, CL, DI and RESETB are 5V tolerant with TTL input thresholds, allowing the WM8770 to used with DVDD = 3.3V and be controlled by a controller with 5V output.

Operation using system clock of 128fs, 192fs, 256fs, 384fs, 512fs or 768fs is provided. In Slave mode selection between clock rates is automatically controlled. In master mode the master clock to sample rate ratio is set by control bits ADCRATE and DACRATE. ADC and DAC may run at different rates within the constraint of a common master clock for the ADC and DACs. For example with master clock at 24.576MHz, a DAC sample rate of 96kHz (256fs mode) and an ADC sample rate of 48kHz (512fs mode) can be accomadated. Master clock.Sample rates (fs) from less than 8ks/s up to 192ks/s are allowed, provided the appropriate system clock is input.

The audio data interface supports right, left and $\mathsf{I}^2\mathsf{S}$ interface formats.

AUDIO DATA SAMPLING RATES

In a typical digital audio system there is only one central clock source producing a reference clock to which all audio data processing is synchronised. This clock is often referred to as the audio system's Master Clock. The external master system clock can be applied directly through the MCLK input pin with no software configuration necessary. In a system where there are a number of possible sources for the reference clock it is recommended that the clock source with the lowest jitter be used to optimise the performance of the ADC and DAC.

The master clock for WM8770 supports DAC and ADC audio sampling rates from 256fs to 768fs, where fs is the audio sampling frequency (DACLRC or ADCLRC) typically 32kHz, 44.1kHz, 48kHz or 96kHz (the DAC also supports operation at 128fs and 192fs and 192kHz sample rate). The master clock is used to operate the digital filters and the noise shaping circuits.

In Slave mode the WM8770 has a master detection circuit that automatically determines the relationship between the master clock frequency and the sampling rate (to within +/- 32 system clocks). If there is a greater than 32 clocks error the interface is disabled and maintains the output level at the last sample. The master clock must be synchronised with ADCLRC/DACLRC, although the WM8770 is tolerant of phase variations or jitter on this clock. Table 6 shows the typical master clock frequency inputs for the WM8770.

The signal processing for the WM8770 typically operates at an oversampling rate of 128fs for both ADC and DAC. The exception to this for the DAC is for operation with a 128/192fs system clock, e.g. for 192KHz operation where the oversampling rate is 64fs. For ADC operation at 96kHz it is recommended that the user set the ADCOSR bit. This changes the ADC signal processing oversample rate to 64fs.

SAMPLING	System Clock Frequency (MHz)							
RATE (DACLRC/	128fs	192fs	256fs	384fs	512fs	768fs		
ADCLRC)	DAC	ONLY						
32kHz	4.096	6.144	8.192	12.288	16.384	24.576		
44.1kHz	5.6448	8.467	11.2896	16.9340	22.5792	33.8688		
48kHz	6.144	9.216	12.288	18.432	24.576	36.864		
96kHz	12.288	18.432	24.576	36.864	Unavailable	Unavailable		
192kHz	24.576	36.864	Unavailable	Unavailable	Unavailable	Unavailable		

Table 6 System Clock Frequencies Versus Sampling Rate

In Master mode BCLK, DACLRC and ADCLRC are generated by the WM8770. The frequencies of ADCLRC and DACLRC are set by setting the required ratio of MCLK to DACLRC and ADCLRC using the DACRATE and ADCRATE control bits (Table 7).

ADCRATE[2:0]/ DACRATE[2:0]	MCLK:ADCLRC/DACLRC RATIO
000	128fs (DAC Only)
001	192fs (DAC Only)
010	256fs
011	384fs
100	512fs
101	768fs

Table 7 Master Mode MCLK: ADCLRC/DACLRC Ratio Select

Table 8 shows the settings for ADCRATE and DACRATE for common sample rates and MCLK frequencies.

SAMPLING RATE	System Clock Frequency (MHz)							
(DACLRC/	128fs	192fs	256fs	384fs	512fs	768fs		
ADCLRC)	DACRATE =000	DACRATE =001	ADCRATE/ DACRATE =010	ADCRATE/ DACRATE =011	ADCRATE/ DACRATE =100	ADCRATE/ DACRATE =101		
32kHz	4.096	6.144	8.192	12.288	16.384	24.576		
44.1kHz	5.6448	8.467	11.2896	16.9340	22.5792	33.8688		
48kHz	6.144	9.216	12.288	18.432	24.576	36.864		
96kHz	12.288	18.432	24.576	36.864	Unavailable	Unavailable		
192kHz	24.576	36.864	Unavailable	Unavailable	Unavailable	Unavailable		

Table 8 Master Mode ADC/DACLRC Frequency Selection

BCLK is also generated by the WM8770. The frequency of BCLK depends on the mode of operation.

In 128/192fs modes (DACRATE=000 or 001) BCLK = MCLK/2. In 256/384/512fs modes (ADCRATE/DACRATE=010 or 011 or 100) BCLK = MCLK/4.

ZERO DETECT

The WM8770 has a zero detect circuit for each DAC channel which detects when 1024 consecutive zero samples have been input. Two zero flag outputs (ZFLAG1 and ZFLAG2) may be programmed to output the zero detect signals (see Table 9) which may then be used to control external muting circuits. A '1' on ZFLAG1 or ZFLAG2 indicates a zero detect. When a DAC is powered down ZFLAG1 and ZFLAG2 will go high by default if the Zero Detect is selected for that DAC. When this DAC is powered off, the Bypass path is selected and there is an external mute circuit controlled by ZFLAG1 or ZFLAG2, the Zero Detect feature should be de-selected or the output will be muted.

The zero detect may also be used to automatically enable the PGA mute by setting IZD. The zero flag output may be disabled by setting DZFM to 0000. The zero flag signal for a DAC channel will only be enabled if that channel is enabled as an input to the output summing stage.

DZFM[3:0]	ZFLAG1	ZFLAG2
0000	Zero flag disabled	Zero flag disabled
0001	All channels zero	All channels zero
0010	Left channels zero	Right channels zero
0011	Channel 1 zero	Channels 2-4 zero
0100	Channel 1 zero	Channel 2 zero
0101	Channel 1 zero	Channel 3 zero
0110	Channel 1 zero	Channel 4 zero
0111	Channel 2 zero	Channel 3 zero
1000	Channel 2 zero	Channel 4 zero
1001	Channel 3 zero	Channel 4 zero
1010	Channels 1-3 zero	Channel 4 zero
1011	Channel 1 zero	Channels 2 & 3 zero
1100	Channel 1 left zero	Channel 1 right zero
1101	Channel 2 left zero	Channel 2 right zero
1110	Channel 3 left zero	Channel 3 right zero
1111	Channel 4 left zero	Channel 4 right zero

Table 9 Zero Flag Output Select

POWERDOWN MODES

The WM8770 has powerdown control bits allowing specific parts of the WM8770 to be powered off when not being used. The 8-channel input source selector and input buffer may be powered down using control bit AINPD. When AINPD is set all inputs to the source selector (AIN1I/R to AIN8L/R) are switched to a buffered VMIDADC. Control bit ADCPD powers off the ADC and also the ADC input PGAs. The four stereo DACs each have a separate powerdown control bit, DACPD[3:0] allowing individual steteo DACs to be powered off when not in use. The analogue output mixers and EVRs may also be powered down by setting OUTPD[3:0]. OUTPD[3:0] also switches the analogue outputs VOUTL/R to VMIDDAC to maintain a dc level on the output. Setting AINPD, ADCPD, DACPD[3:0] and OUTPD[3:0] will powerdown everything except the references VMIDADC, ADCREF and VMIDDAC. These may be powered down by setting PDWN. Setting PDWN will override all other powerdown control bits. It is recommended that the 8-channel input mux and buffer, ADC, DAC and output mixers and EVRs are powered down before setting PDWN. The default is for all powerdown bits to be set except PDWN.

The Powerdown control bits allow parts of the device to be powered down when not in use. For example, if only an analogue bypass path from AINL/R to VOUTL/R is required the ADCPD and DACPD[3:0] control bits may be set leaving the analogue input and analogue output powered up.

DIGITAL AUDIO INTERFACE

MASTER AND SLAVE MODES

The audio interface operates in either Slave or Master mode, selectable using the MS control bit. In both Master and Slave modes DACDAT is always an input to the WM8770 and ADCDAT is always an output. The default is Slave mode.

In Slave mode (MS=0) ADCLRC, DACLRC and BCLK are inputs to the WM8770 (Figure 12). DIN1/2/3/4, ADCLRC and DACLRC are sampled by the WM8770 on the rising edge of BCLK. ADC data is output on DOUT and changes on the falling edge of BCLK. By setting control bit BCLKINV the polarity of BCLK may be reversed so that DIN1/2/3/4, ADCLRC and DACLRC are sampled on the falling edge of BCLK and DOUT changes on the rising edge of BCLK.

Figure 12 Slave Mode

In Master mode (MS=1) ADCLRC, DACLRC and BCLK are outputs from the WM8770 (Figure 13). ADCLRC, DACLRC and BITCLK are generated by the WM8770. DIN1/2/3/4 are sampled by the WM8770 on the rising edge of BCLK so the controller must output DAC data that changes on the falling edge of BCLK. ADCDAT is output on DOUT and changes on the falling edge of BCLK. By setting control bit BCLKINV the polarity of BCLK may be reversed so that DIN1/2/3/4 are sampled on the falling edge of BCLK and DOUT changes on the rising edge of BCLK.

Figure 13 Master Mode

AUDIO INTERFACE FORMATS

Audio data is applied to the internal DAC filters, or output from the ADC filters, via the Digital Audio Interface. 3 popular interface formats are supported:

- Left Justified mode
- Right Justified mode
- I²S mode

All 3 formats send the MSB first and support word lengths of 16, 20, 24 and 32 bits, with the exception of 32 bit right justified mode, which is not supported.

In left justified, right justified and I²S modes, the digital audio interface receives DAC data on the DIN1/2/3/4 inputs and outputs ADC data on DOUT. Audio Data for each stereo channel is time multiplexed with ADCLRC/DACLRC indicating whether the left or right channel is present. ADCLRC/DACLRC is also used as a timing reference to indicate the beginning or end of the data words.

In left justified, right justified and I²S modes, the minimum number of BCLKs per DACLRC/ADCLRC period is 2 times the selected word length. ADCLRC/DACLRC must be high for a minimum of word length BCLKs and low for a minimum of word length BCLKs. Any mark to space ratio on ADCLRC/DACLRC is acceptable provided the above requirements are met.

LEFT JUSTIFIED MODE

In left justified mode, the MSB of DIN1/2/3/4 is sampled by the WM8770 on the first rising edge of BCLK following a DACLRC transition. The MSB of the ADC data is output on DOUT and changes on the same falling edge of BCLK as ADCLRC and may be sampled on the rising edge of BCLK. ADCLRC and DACLRC are high during the left samples and low during the right samples (Figure 14).

RIGHT JUSTIFIED MODE

In right justified mode, the LSB of DIN1/2/3/4 is sampled by the WM8770 on the rising edge of BCLK preceding a DACLRC transition. The LSB of the ADC data is output on DOUT and changes on the falling edge of BCLK preceding a ADCLRC transition and may be sampled on the rising edge of BCLK. ADCLRC and DACLRC are high during the left samples and low during the right samples (Figure 15).

Figure 15 Right Justified Mode Timing Diagram

I²S MODE

In I^2 S mode, the MSB of DIN1/2/3/4 is sampled by the WM8770 on the second rising edge of BCLK following a DACLRC transition. The MSB of the ADC data is output on DOUT and changes on the first falling edge of BCLK following an ADCLRC transition and may be sampled on the rising edge of BCLK. ADCLRC and DACLRC are low during the left samples and high during the right samples.

Figure 16 I²S Mode Timing Diagram

CONTROL INTERFACE OPERATION

The WM8770 is controlled using a 3-wire serial interface in either an SPI compatible configuration or a CCB (Computer Control Bus) configuration.

The interface configuration is determined by the state of the CE pin on the rising edge of the RESETB pin. If the CE pin is low on the rising edge of RESETB, CCB configuration is selected. If CE is high on the rising edge of RESETB, SPI compatible configuration is selected.

The control interface is 5V tolerant, meaning that the control interface input signals CE, CL and DI may have an input high level of 5V while DVDD is 3V. Input thresholds are determined by DVDD. RESETB is also 5V tolerant.

3-WIRE (SPI COMPATIBLE) SERIAL CONTROL MODE

DI is used for the program data, CL is used to clock in the program data and CE is used to latch the program data. DI is sampled on the rising edge of CL. The 3-wire interface protocol is shown in Figure 17.

Figure 17 3-wire SPI compatible Interface

- 1. B[15:9] are Control Address Bits
- 2. B[8:0] are Control Data Bits
- 3. CE is edge sensitive the data is latched on the rising edge of CE.

CCB INTERFACE MODE

CCB Interface mode allows multiple devices to be controlled off a common 3-wire bus. Each device on the 3-wire bus has its own identifying address. The WM8770 supports write only CCB interface mode.

DI is used for the device address and program data and CL is used to clock in the address and data on DI. DI is sampled on the rising edge of CL. CE indicates whether the data on DI is the device address or program data. The eight clocks before a rising edge on CE will clock in the device address. The device address is latched on the rising edge of CE. The sixteen clocks before a falling edge on CE will clock in the program data. The program data is latched on the falling edge of CE.

Figure 18 CCB Interface – CL stopped low

Figure 19 CCB Interface - CL stopped high

- 1. A[7:0] are Device Address bits
- 2. D[15:9] are Control Address bits
- 3. D[8:0] are Control Data bits

The address A[7:0] for WM8770 is 8Ch (10001100).

CONTROL INTERFACE REGISTERS

DIGITAL AUDIO INTERFACE CONTROL REGISTER

Interface format is selected via the FMT[1:0] register bits:

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
10110	1:0	FMT[1:0]	10	Interface format Select
Interface Control				00 : right justified mode
				01: left justified mode
				10: I ² S mode
				11: Reserved

In left justified, right justified or I²S modes, the LRP register bit controls the polarity of ADCLRC/DACLRC. If this bit is set high, the expected polarity of ADCLRC/DACLRC will be the opposite of that shown Figure 14, Figure 15 and Figure 16. Note that if this feature is used as a means of swapping the left and right channels, a 1 sample phase difference will be introduced.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
10110	2	LRP	0	ADCLRC/DACLRC Polarity (normal)
Interface Control				0 : normal ADCLRC/DACLRC polarity 1: inverted ADCLRC/DACLRC polarity

By default, ADCLRC/DACLRC and DIN1/2/3/4 are sampled on the rising edge of BCLK and should ideally change on the falling edge. Data sources that change ADCLRC/DACLRC and DIN1/2/3/4 on the rising edge of BCLK can be supported by setting the BCP register bit. Setting BCP to 1 inverts the polarity of BCLK to the inverse of that shown in Figure 14, Figure 15, Figure 16, , , and .

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
10110	3	BCP	0	BCLK Polarity
Interface Control				0 : normal BCLK polarity
				1: inverted BCLK polarity

The IWL[1:0] bits are used to control the input word length.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
10110	5:4	WL[1:0]	10	Input Word Length
Interface Control				00 : 16 bit data
				01: 20 bit data
				10: 24 bit data
				11: 32 bit data

Note: If 32-bit mode is selected in right justified mode, the WM8770 defaults to 24 bits.

In all modes, the data is signed 2's complement. The digital filters always input 24-bit data. If the DAC is programmed to receive 16 or 20 bit data, the WM8770 pads the unused LSBs with zeros. If the DAC is programmed into 32 bit mode, the 8 LSBs are ignored.

Note: In 24 bit I²S mode, any width of 24 bits or less is supported provided that ADCLRC/DACLRC is high for a minimum of 24 BCLKs and low for a minimum of 24 BCLKs.

A number of options are available to control how data from the Digital Audio Interface is applied to the DAC channels.

Control bit MS selects between audio interface Master and Slave Modes. In Master mode ADCLRC, DACLRC and BCLK are outputs and are generated by the WM8770. In Slave mode ADCLRC, DACLRC and BCLK are inputs to WM8770.

WM8770

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
10111	8	MS	0	Audio Interface Master/Slave
Interface Control				Mode select:
				0 : Slave Mode
				1: Master Mode

MASTER MODE ADCLRC/DACLRC FREQUENCY SELECT

In Master mode the WM8770 generates ADCLRC, DACLRC and BCLK. These clocks are derived from master clock and the ratio of MCLK to ADCLRC and DACLRC are set by ADCRATE and DACRATE.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
10111 ADCLRC and DACLRC Frequency Select	2:0	ADCRATE[2:0]	010	Master Mode MCLK:ADCLRC ratio select: 010: 256fs
				011: 384fs
				100: 512fs
				101: 768fs
	6:4	DACRATE[2:0]	010	Master Mode MCLK:DACLRC ratio select:
				000: 128fs
				001: 192fs
				010: 256fs
				011: 384fs
				100: 512fs
				101: 768fs

ADC OVERSAMPLING RATE SELECT

For ADC operation at 96kHz it is recommended that the user set the ADCOSR bit. This changes the ADC signal processing oversample rate to 64fs.

REGISTER ADDRESS	BIT LABEL		DEFAULT	DESCRIPTION
10111	3	ADCOSR	0	ADC oversampling rate select
ADC Oversampling				0: 128x oversampling
Rate				1: 64x oversampling

MUTE MODES

The WM8770 has individual mutes for each of the four DAC channels. Setting MUTE for a channel will apply a 'soff' mute to the input of the digital filters of the channel muted. DMUTE[0] mutes DAC channel 1, DMUTE[1] mutes DAC channel 2, DMUTE[2] mutes DAC channel 3 & DMUTE[3] mutes DAC channel 4.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION		
10100	3:0	DMUTE[3:0]	0	DAC Soft Mute select		
Mute Control				0 : Normal Operation		
				1: Soft mute enabled		

Setting the MUTEALL register bit will apply a 'soft' mute to the input of all the DAC digital filters:

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
10100	4	MUTEALL	0 Soft Mute select	
Mute Control			0 : Normal Operation	
				1: Soft mute all channels

Figure 20 Application and Release of Soft Mute

Figure 20 shows the application and release of MUTE whilst a full amplitude sinusoid is being played at 48kHz sampling rate. When MUTE (lower trace) is asserted, the output (upper trace) begins to decay exponentially from the DC level of the last input sample. The output will decay towards V_{MID} with a time constant of approximately 64 input samples. If MUTE is applied to all channels for 1024 or more input samples the DAC will be muted if IZD is set. When MUTE is de-asserted, the output will restart immediately from the current input sample.

Note that all other means of muting the DAC channels: setting the PL[3:0] bits to 0, setting the PDWN bit or setting attenuation to 0 will cause much more abrupt muting of the output.

Each ADC channel also has an individual mute control bit, which mutes the input to the ADC. In addition both channels may be muted by setting ADCMUTE.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION		
11001	7	ADCMUTE	0	ADC MUTE Left and Right		
ADC Mute				0 : Normal Operation		
				1: mute ADC left and ADC right		
11001	5	MUTE	0	ADC Mute select		
ADC Mute Left				0 : Normal Operation		
				1: mute ADC left		
11010	5	MUTE	0	ADC Mute select		
ADC Mute Right				0 : Normal Operation		
				1: mute ADC right		

The Record outputs may be enabled by setting RECEN, where RECEN enables the REC1L and REC1R outputs.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION	
10100	5	RECEN	0	REC Output Enable	
Mute Control				0 : REC output muted	
				1: REC output enabled	

DE-EMPHASIS MODE

A digital De-emphasis filter may be applied to each DAC channel. The De-emphasis filter for each stereo channel is enabled under the control of DEEMP[3:0]. DEEMP[0] enables the de-emphasis filter for channel 1, DEEMP[1] enables the de-emphasis filter for channel 2, DEEMP[2] enables the de-emphasis filter for channel 3 and DEEMP[3] enables the de-emphasis filter for channel 4.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
10101	[3:0]	DEEMPH[3:0]	0000 De-emphasis mode select:	
DAC De-emphasis				0 : Normal Mode
Control				1: De-emphasis Mode

Refer to Figure 30, Figure 31, Figure 32, Figure 33, Figure 34 and Figure 35 for details of the De-Emphasis modes at different sample rates.

POWERDOWN MODE AND ADC/DAC DISABLE

Setting the PDWN register bit immediately powers down the WM8770, including the references, overriding all other powerdown control bits. All trace of the previous input samples are removed, but all control register settings are preserved. When PDWN is cleared the digital filters will be reinitialised. It is recommended that the 8-channel input mux and buffer, ADC, DAC and output mixers and EVRs are powered down before setting PDWN.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION	
11000	0	PDWN	0	Power Down Mode Select:	
Powerdown Control				0 : Normal Mode	
				1: Power Down Mode	

The ADC and DACs may also be powered down by setting the ADCD and DACD disable bits. Setting ADCD will disable the ADC and select a low power mode. The ADC digital filters will be reset and will reinitialise when ADCD is reset. Each Stereo DAC channel has a separate disable DACD[3:0]. Setting DACD for a channel will disable the DACs and select a low power mode. Resetting DACD will reinitialise the digital filters. DACD[0] disbles DAC1, DACD[1] disables DAC2, DACD[2] disables DAC3 and DACD[3] disables DAC4,

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION		
11000	1	ADCD	1	ADC Disable:		
Powerdown Control				0 : Normal Mode		
				1: Power Down Mode		
	5:2	DACD[3:0]	1111	DAC Disable:		
				0 : Normal Mode		
				1: Power Down Mode		

ATTENUATOR CONTROL MODE

Setting the ATC register bit causes the left channel attenuation settings to be applied to both left and right channel DACs from the next audio input sample. No update to the attenuation registers is required for ATC to take effect.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION		
10011	1	ATC	0	Attenuator Control Mode:		
DAC Channel Control				0 : Right channels use Right attenuations		
				1: Right Channels use Left Attenuations		

INFINITE ZERO DETECT ENABLE

Setting the IZD register bit will enable the internal infinite zero detect function:

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION	
10011	2	IZD	0	Infinite zero Mute Enable	
DAC Channel Control				0 : disable inifinite zero mute	
				1: enable infinite zero Mute	

With IZD enabled, applying 1024 consecutive zero input samples to all 8 DAC channels will cause all DAC outputs to be muted. Mute will be removed as soon as any channel receives a non-zero input.

ZERO FLAG OUTPUT

The DZFM control bits allow the selection of the eight DAC channel zero flag bits for output on the ZFLAG1 and ZFLAG2 pins. A '1' on ZFLAG1 or ZFLAG2 indicates 1024 consecutive zero input samples to the channels selected.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
10101 Zero Flag Select	7:4	DZFM[3:0]	0000	Selects the ouput for ZFLAG1 and ZFLAG2 pins (see Table 9). A '1' indicates 1024 consecutive zero input samples on the channels selected.

DAC OUTPUT CONTROL

The DAC output control word determines how the left and right inputs to the audio Interface are applied to the left and right DACs:

REGISTER ADDRESS	BIT	LABEL	DEFAULT		DESCRIPTIC	DN
10011 DAC Control	7:4	PL[3:0]	1001	PL[3:0]	Left Output	Right Output
				0000	Mute	Mute
				0001	Left	Mute
				0010	Right	Mute
				0011	(L+R)/2	Mute
				0100	Mute	Left
				0101	Left	Left
				0110	Right	Left
				0111	(L+R)/2	Left
				1000	Mute	Right
				1001	Left	Right
				1010	Right	Right
				1011	(L+R)/2	Right
				1100	Mute	(L+R)/2
				1101	Left	(L+R)/2
				1110	Right	(L+R)/2
				1111	(L+R)/2	(L+R)/2

DAC ANALOGUE VOLUME CONTROL

The DAC volume may be adjusted independently in both the analogue and digital domain using separate volume control registers.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION	
00000 Analogue	6:0	L1A[6:0]	1111111 (0dB)	Attenuation data for Left channel DACL1 in 1dB steps. See Table 11	
Attenuation DACL1	7	L1ZCEN	0	DACL1 zero cross detect enable 0: zero cross disabled 1: zero cross enabled	
	8	UPDATE	Not latched	Controls simultaneous update of all Attenuation Latches 0: Store L1A in intermediate latch (no change to output) 1: Store L1A and update attenuation on all channels.	
00001 Analogue	6:0	R1A[6:0]	1111111 (0dB)	Attenuation data for Right channel DACR1 in 1dB steps. See Table 11	
Attenuation DACR1	7	R1ZCEN	0	DACR1 zero cross detect enable 0: zero cross disabled 1: zero cross enabled	
	8	UPDATE	Not latched	Controls simultaneous update of all Attenuation Latches 0: Store R1A in intermediate latch (no change to output) 1: Store R1A and update attenuation on all channels.	
00010 Analogue	6:0	L2A[6:0]	1111111 (0dB)	Attenuation data for Left channel DACL2 in 1dB steps. See Table 11	
Attenuation DACL2	7	L2ZCEN	0	DACL2 zero cross detect enable 0: zero cross disabled 1: zero cross enabled	
	8	UPDATE	Not latched	Controls simultaneous update of all Attenuation Latches 0: Store L2A in intermediate latch (no change to output) 1: Store L2A and update attenuation on all channels.	
00011 Analogue	6:0	R2A[6:0]	1111111 (0dB)	Attenuation data for Right channel DACR2 in 1dB steps. See Table 11	
Attenuation DACR2	7	R2ZCEN	0	DACR2 zero cross detect enable 0: zero cross disabled 1: zero cross enabled	
	8	UPDATE	Not latched	Controls simultaneous update of all Attenuation Latches 0: Store R2A in intermediate latch (no change to output) 1: Store R2A and update attenuation on all channels.	
00100 Analogue	6:0	L3A[6:0]	1111111 (0dB)	Attenuation data for Left channel DACL3 in 1dB steps. See Table 11	
Attenuation DACL3	7	L3ZCEN	0	DACL3 zero cross detect enable 0: zero cross disabled 1: zero cross enabled	
	8	UPDATE	Not latched	Controls simultaneous update of all Attenuation Latches 0: Store L3A in intermediate latch (no change to output) 1: Store L3A and update attenuation on all channels.	
00101 Analogue	6:0	R3A[6:0]	1111111 (0dB)	Attenuation data for Right channel DACL3 in 1dB steps. See Table 11	
Attenuation DACR3	7	R3ZCEN	0	DACR3 zero cross detect enable 0: zero cross disabled 1: zero cross enabled	
	8	UPDATE	Not latched	Controls simultaneous update of all Attenuation Latches 0: Store R3A in intermediate latch (no change to output) 1: Store R3A and update attenuation on all channels.	

PD, Rev 4.3, March 2011

Production Data

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
00110 Analogue	6:0	L4A[6:0]	1111111 (0dB)	Attenuation data for Left channel DACL4 in 1dB steps. See Table 11
Attenuation DACL4	7	L4ZCEN	0	DACL4 zero cross detect enable 0: zero cross disabled 1: zero cross enabled
	8	UPDATE	Not latched	Controls simultaneous update of all Attenuation Latches 0: Store L4A in intermediate latch (no change to output) 1: Store L4A and update attenuation on all channels.
00111 Analogue	6:0	R4A[6:0]	1111111 (0dB)	Attenuation data for Right channel DACL4 in 1dB steps. See Table 11
Attenuation DACR4	7	R4ZCEN	0	DACR4 zero cross detect enable 0: zero cross disabled 1: zero cross enabled
	8	UPDATE	Not latched	Controls simultaneous update of all Attenuation Latches 0: Store R4A in intermediate latch (no change to output) 1: Store R4A and update attenuation on all channels.
01000 Master	6:0	MASTA[6:0]	1111111 (0dB)	Attenuation data for all channel DAC in 1dB steps. See Table 11
Analogue Attenuation (all channels)	7	MZCEN	0	Master zero cross detect enable 0: zero cross disabled 1: zero cross enabled
	8	UPDATE	Not latched	Controls simultaneous update of all Attenuation Latches 0: Store gain in intermediate latch (no change to output) 1: Store gain and update attenuation on all channels.

Table 10 Attenuation Register Map

Each DAC channel volume can be controlled digitally in an analogue volume stage after the DAC. Attenuation is 0dB by default but can be set between 0 and -100dB in 1dB steps using the 7 Attenuation control words. All attenuation registers are double latched allowing new values to be prelatched to several channels before being updated synchronously. Setting the UPDATE bit on any attenuation write will cause all pre-latched values to be immediately applied to the DAC channels. A master attenuation register is also included, allowing all volume levels to be set to the same value in a single write.

Note: The UPDATE bit is not latched. If UPDATE=0, the Attenuation value will be written to the prelatch but not applied to the relevant DAC. If UPDATE=1, all pre-latched values will be applied from the next input sample. Writing to MASTA[6:0] overwrites any values previously sent to L1A[6:0], L2A[6:0], L3A[6:0], L4A[6:0], R1A[6:0], R2A[6:0], R3A[6:0], R4A[6:0].

In addition a zero cross detect circuit is provided for each DAC volume under the control of bit 7 (xZCEN) in each DAC attenuation register. When ZCEN is set the attenuation values are only updated when the input signal to the gain stage is close to the analogue ground level. This minimises audible clicks and 'zipper' noise as the gain values change. A timeout clock is also provided which will generate an update after a minimum of 131072 master clocks (= ~10.5ms with a master clock of 12.288MHz). The timeout clock may be disabled by setting TOD.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
10011	3	TOD	0	DAC Analogue Zero cross detect
Timeout Clock Disable				timeout disable
				0 : Timeout enabled
				1: Timeout disabled

DAC ANALOGUE OUTPUT ATTENUATION

Register bits L1A and R1A control the left and right channel attenuation of DAC 1. Register bits L2A and R2A control the left and right channel attenuation of DAC 2. Register bits L3A and R3A control the left and right channel attenuation of DAC 3. Register bits L4A and R4A control the left and right channel attenuation of DAC 4. Register bits MASTA can be used to control attenuation of all channels.

Table 8 shows how the attenuation levels are selected from the 7-bit words.

L/RAX[6:0]	ATTENUATION LEVEL
00(hex)	-∞dB (mute)
:	:
1A(hex)	-∞dB (mute)
1B(hex)	-100dB
:	:
7D(hex)	-2dB
7E(hex)	-1dB
7F(hex)	0dB

DAC DIGITAL VOLUME CONTROL

The DAC volume may also be adjusted in the digital domain using independent digtal attenuation control registers

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION	
01001	7:0	LDA1[7:0]	11111111	Digital Attenuation data for Left channel DACL1 in 0.5dB steps. See	
Digital			(0dB)	Table 12	
Attenuation DACL1	8	UPDATE	Not latched	Controls simultaneous update of all Attenuation Latches	
DACLI				0: Store LDA1 in intermediate latch (no change to output)	
				1: Store LDA1 and update attenuation on all channels	
01010 Digital	7:0	RDA1[6:0]	11111111 (0dB)	Digital Attenuation data for Right channel DACR1 in 0.5dB steps. See Table 12	
Attenuation DACR1	8	UPDATE	Not latched	Controls simultaneous update of all Attenuation Latches	
DAOIN				0: Store RDA1 in intermediate latch (no change to output)	
				1: Store RDA1 and update attenuation on all channels.	
01011 Digital	7:0	LDA2[7:0]	11111111 (0dB)	Digital Attenuation data for Left channel DACL2 in 0.5dB steps. Se Table 12	
Attenuation DACL2	8	UPDATE	Not latched	Controls simultaneous update of all Attenuation Latches	
DACLZ				0: Store LDA2 in intermediate latch (no change to output)	
				1: Store LDA2 and update attenuation on all channels.	
01100 Digital	7:0	RDA2[7:0]	11111111 (0dB)	Digital Attenuation data for Right channel DACR2 in 0.5dB steps. See Table 12	
Attenuation DACR2	8	UPDATE	Not latched	Controls simultaneous update of all Attenuation Latches	
DAGINZ				0: Store RDA2 in intermediate latch (no change to output)	
				1: Store RDA2 and update attenuation on all channels.	
01101	7:0	LDA3[7:0]	11111111	Digital Attenuation data for Left channel DACL3 in 0.5dB steps. See	
Digital			(0dB)	Table 12	
Attenuation DACL3	8	UPDATE	Not latched	Controls simultaneous update of all Attenuation Latches	
2.1020				0: Store LDA3 in intermediate latch (no change to output)	
				1: Store LDA3 and update attenuation on all channels.	

Production Data

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
01110 Digital	7:0	RDA3[7:0]	11111111 (0dB)	Digital Attenuation data for Right channel DACR3 in 0.5dB steps. See Table 12
Attenuation DACR3	8	UPDATE	Not latched	Controls simultaneous update of all Attenuation Latches 0: Store RDA3 in intermediate latch (no change to output) 1: Store RDA3 and update attenuation on all channels.
01111 Digital	7:0	LDA4[7:0]	11111111 (0dB)	Digital Attenuation data for Left channel DACL4 in 0.5dB steps. See Table 12
Attenuation DACL4	8	UPDATE	Not latched	Controls simultaneous update of all Attenuation Latches 0: Store LDA4 in intermediate latch (no change to output) 1: Store LDA4 and update attenuation on all channels.
10000 Digital	7:0	RDA4[7:0]	11111111 (0dB)	Digital Attenuation data for Right channel DACR4 in 0.5dB steps. See Table 12
Attenuation DACR4	8	UPDATE	Not latched	Controls simultaneous update of all Attenuation Latches 0: Store RDA4 in intermediate latch (no change to output) 1: Store RDA4 and update attenuation on all channels.
10001 Master Digital Attenuation (all channels)	7:0	MASTDA[7:0]	11111111 (0dB)	Digital Attenuation data for all DAC channels in 0.5dB steps. See Table 12
	8	UPDATE	Not latched	Controls simultaneous update of all Attenuation Latches 0: Store gain in intermediate latch (no change to output) 1: Store gain and update attenuation on all channels.

L/RDAX[7:0]	ATTENUATION LEVEL
00(hex)	-∞ dB (mute)
01(hex)	-127.5dB
:	:
:	:
:	:
FE(hex)	-0.5dB
FF(hex)	0dB

Table 12 Digital Volume Control Attenuation Levels

The Digital volume control also incorporates a zero cross detect circuit which detects a transition through the zero point before updating the digital volume control with the new volume. This is enabled by control bit DZCEN.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
10011	0	DZCEN	0	DAC Digital Volume Zero Cross
DAC Control				Enable:
				0: Zero cross detect disabled
				1: Zero cross detect enabled

DAC OUTPUT PHASE

The DAC Phase control word determines whether the output of each DAC is non-inverted or inverted

REGISTER ADDRESS	BIT	LABEL	DEFAULT	I	DESCRIPTIC)N
10010	7:0	PH[7:0]	00000000	Bit	DAC	Phase
DAC Phase				0	DAC1L	1 = invert
				1	DAC1R	1 = invert
				2	DAC2L	1 = invert
				3	DAC2R	1 = invert
				4	DAC3L	1 = invert
				5	DAC3R	1 = invert
				6	DAC4L	1 = invert
				7	DAC4R	1 = invert

ADC GAIN CONTROL

Control bits LAG[4:0] and RAG[4:0] control the ADC input gain, allowing the user to attenuate the ADC input signal to match the full-scale range of the ADC. The gain is independently adjustable on left and right inputs. Left and right inputs may also be independently muted. The LRBOTH control bit allows the user to write the same attenuation value to both left and right volume control registers. The ADC volume and mute also applies to the bypass signal path.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
11001 Attenuation	4:0	LAG[4:0]	01100 (0dB)	Attenuation data for Left channel ADC gain in 1dB steps. See Table 13
ADCL	5	MUTE	0	Mute for Left channel ADC: 0: Mute off
	6	LRBOTH	0	1: Mute on Setting LRBOTH will write the same gain value to LAG[4:0] and RAG[4:0]
11010 Attenuation	4:0	RAG[4:0]	01100 (0dB)	Attenuation data for right channel ADC gain in 1dB steps. See Table 13
ADCR	5	MUTE	0	Mute for RIght channel ADC: 0: Mute off 1: Mute on
	6	LRBOTH	0	Setting LRBOTH will write the same gain value to RAG[4:0] and LAG[4:0]

ADC INPUT GAIN

Registers LAG and RAG control the left and right channel gain into the stereo ADC in 1dB steps from +19dB to -12dB Table 8 shows how the attenuation levels are selected from the 5-bit words.

L/RAG[6:0]	ATTENUATION LEVEL
0	-12dB
:	:
01100	0dB
:	:
11111	+19dB

Table 13 ADC Gain Control

ADC HIGHPASS FILTER DISABLE

The ADC digital filters contain a digital highpass filter. This defaults to enabled and can be disabled using software control bit ADCHPD.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
10110	8	ADCHPD	0	ADC Highpass filter disable:
ADC control				0: Highpass filter enabled
				1: Highpass filter disabled

ADC INPUT MUX AND POWERDOWN CONTROL

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
11011 ADC Mux and	2:0	LMX[2:0]	000	ADC left channel input mux control bits (see Table 14)
Powerdown Control	6:4	RMX[2:0]	000	ADC right channel input mux control bits (see Table 14)
	8	AINPD	1	Input mux and buffer powerdown 0: Input mux and buffer enabled 1: Input mux and buffer powered down

Register bits LMX and RMX control the left and right channel inputs into the stereo ADC. The default is AIN1. However if the analogue input buffer is powered down, by setting AINPD, then all 8-channel mux inputs are switched to buffered VMIDADC.

LMX[2:0]	LEFT ADC INPUT	RMX[2:0]	RIGHT ADC INPUT
000	AIN1L	000	AIN1R
001	AIN2L	001	AIN2R
010	AIN3L	010	AIN3R
011	AIN4L	011	AIN4R
100	AIN5L	100	AIN5R
101	AIN6L	101	AIN6R
110	AIN7L	110	AIN7R
111	AIN8L	111	AIN8R

Table 14 ADC Input Mux Control

OUTPUT SELECT AND ENABLE CONTROL

Register bits MX1 to MX4 control the output select. The output select block consists of a summing stage and an input select switch for each input allowing each signal to be output individually or summed with other signals and output on each analogue output. The default for all outputs is DAC playback only. VOUT1/2/3 may be selected to output DAC playback, AUX, analogue bypass or a sum of these using the output select controls MX1/2/3[2:0]. VOUT4 may be selected to output DAC playback, analogue bypass or a sum of these signals using MX4[1:0]. It is recommended that bypass is not selected for output on more than two stereo channels simultaneously to avoid overloading the input buffer, resulting in a decrease in performance.

The output mixers and EVRs can be powered down under control of OUTPD[3:0]. Each stereo channel may be powered down separately. Setting OUTPD[3:0] will power off the mixer and EVR and switch the analogue outputs VOUTL/R to VMIDDAC to maintain a dc level on the output.

When setting OUTPD MX1/2/3/4 should be set to deselect all signals.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
11100	2:0	MX1[2:0]	001	VOUT1 Output select (Figure 21)
Output Mux			(DAC playback)	
and	5:3	MX2[2:0]	001	VOUT2 Output select (see Figure 21)
Powerdown			(DAC playback)	
Control	8:7	OUTPD[1:0]	11	Mixer and EVR Powerdown select
				0: mixer and EVR enabled
				1: mixer and EVR powered
				down
11101	2:0	MX3[2:0]	001	VOUT3 Output select (see Figure 21)
Output Mux			(DAC playback)	
and	4:3	MX4[1:0]	01	VOUT4 Output select (see Figure 22)
Powerdown			(DAC playback)	
Control	8:7	OUTPD[3:2]	11	Mixer and EVR Powerdown select
				0: mixer and EVR enabled
				1: mixer and EVR powered
				down

MX1/2/3[2:0] selects the output for VOUT1/2/3.

Figure 21 MX1/2/3[2:0] Output Select

MX4[1:0] selects the output for VOUT4L/R.

Figure 22 MX4[1:0] Output Select

SOFTWARE REGISTER RESET

Wrting to register 11111 will cause a register reset, resetting all register bits to their default values.

REGISTER MAP

The complete register map is shown below. The detailed description can be found in the relevant text of the device description. The WM8770 can be configured using the Control Interface. All unused bits should be set to '0'.

REGISTER	B15	B14	B13	B12	B11	B10	В9	B8	B7	B6	B5	B4	B3	B2	B1	В0	DEFAULT
R0(00h)	0	0	0	0	0	0	0	UPDATE	L1ZCEN	ZCEN L1A[6:0]			X01111111				
R1(01h)	0	0	0	0	0	0	1	UPDATE	R1ZCEN	R1ZCEN R1A[6:0]					X01111111		
R2(02h)	0	0	0	0	0	1	0	UPDATE	L2ZCEN			L	2A[6:0]				X01111111
R3(03h)	0	0	0	0	0	1	1	UPDATE	R2ZCEN			R	2A[6:0]				X01111111
R4(04h)	0	0	0	0	1	0	0	UPDATE	L3ZCEN			L	3A[6:0]				X01111111
R5(05h)	0	0	0	0	1	0	1	UPDATE	R3ZCEN			R	3A[6:0]				X01111111
R6(06h)	0	0	0	0	1	1	0	UPDATE	L4ZCEN			L	4A[6:0]				X01111111
R7(07h)	0	0	0	0	1	1	1	UPDATE	R4ZCEN			R	4A[6:0]				X01111111
R8(08h)	0	0	0	1	0	0	0	UPDATE	MZCEN			MA	STA[6:0]				X01111111
R9(09h)	0	0	0	1	0	0	1	UPDATE				LDA1[7:0)]				X11111111
R10(0Ah)	0	0	0	1	0	1	0	UPDATE				RDA1[7:0	0]				X11111111
R11(0Bh)	0	0	0	1	0	1	1	UPDATE				LDA2[7:0]			X11111111		
R12(0Ch)	0	0	0	1	1	0	0	UPDATE				RDA2[7:0]			X11111111		
R13(0Dh)	0	0	0	1	1	0	1	UPDATE				LDA3[7:0	DA3[7:0]			X11111111	
R14(0Eh)	0	0	0	1	1	1	0	UPDATE		RDA3[7:0]				X11111111			
R15(0Fh)	0	0	0	1	1	1	1	UPDATE				LDA4[7:0	0]			X11111111	
R16(10h)	0	0	1	0	0	0	0	UPDATE				RDA4[7:0	4[7:0]			X11111111	
R17(11h)	0	0	1	0	0	0	1	UPDATE				MASTDA[7	' :0]				X11111111
R18(12h)	0	0	1	0	0	1	0	0				PHASE[7	:0]				000000000
R19(13h)	0	0	1	0	0	1	1	0		PL			TOD	IZD	ATC	DZCEN	010010000
R20(14h)	0	0	1	0	1	0	0	0	0	0	RECEN	MUTEALL		DMUT	E[3:0]		000000000
R21(15h)	0	0	1	0	1	0	1	0		DZFM	[3:0]			DEEM	IP[3:0]		000000000
R22(16h)	0	0	1	0	1	1	0	ADCHPD	0	0	WL[1:0]	BCP	LRP	FMT	[1:0]	000100010
R23(17h)	0	0	1	0	1	1	1	MS	0	DA	ACRATE[2:	0]	ADCOSR	AD	DCRATE[2	2:0]	000100010
R24(18h)	0	0	1	1	0	0	0	0	0	0		DACD	3:0]		ADCD	PWDN	000111110
R25(19h)	0	0	1	1	0	0	1	0	ADCMUTE	LRBOTH	MUTE		L	AG[4:0]			000001100
R26(1Ah)	0	0	1	1	0	1	0	0	0	LRBOTH	MUTE		RAG[4:0]		000001100		
R27(1Bh)	0	0	1	1	0	1	1	AINPD	0		RMX[2:0]		0	0 LMX[2:0]		10000000	
R28(1Ch)	0	0	1	1	1	0	0	OUTF	PD[1:0]	0		MX2[2:0]			MX1[2:0]		110001001
R29(1Dh)	0	0	1	1	1	0	1	OUTF	PD[3:2]	0	0	MX4[1:0]		MX3[2:0]		110001001
R31(1Fh)	0	0	1	1	1	1	1			_	RI	ESET					not reset
			ADI	DRES	s						D	ATA					DEFAULT

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
00000 Analogue Attenuation	6:0	L1A[6:0]	1111111 (0dB)	Attenuation Data for Left Channel DACL1 in 1dB steps. See Table 11
DACL1	7	L1ZCEN	0	DACL1 Zero Cross Detect Enable 0: zero cross disabled 1: zero cross enabled
	8	UPDATE	Not latched	Controls simultaneous update of all Attenuation Latches 0: Store DACL1 in intermediate latch (no change to output) 1: Store DACL1 and update attenuation on all channels.
00001 Analogue Attenuation	6:0	R1A[6:0]	1111111 (0dB)	Attenuation Data for Left channel DACL1 in 1dB steps. See Table 11
DACR1	7	R1ZCEN	0	DACR1 Zero Cross Detect Enable 0: zero cross disabled 1: zero cross enabled
	8	UPDATE	Not latched	Controls simultaneous update of all Attenuation Latches 0: Store DACR1 in intermediate latch (no change to output) 1: Store DACR1 and update attenuation on all channels.
00010 Analogue	6:0	L2A[6:0]	1111111 (0dB)	Attenuation Data for Left Channel DACL2 in 1dB Steps. See Table 11
Attenuation DACL2	7	L2ZCEN	0	DACL2 Zero Cross Detect Enable 0: zero cross disabled 1: zero cross enabled
	8	UPDATE	Not latched	Controls simultaneous update of all Attenuation Latches 0: Store DACL2 in intermediate latch (no change to output) 1: Store DACL2 and update attenuation on all channels.
00011 Analogue	6:0	R2A[6:0]	1111111 (0dB)	Attenuation Data for Right Channel DACR2 in 1dB steps. See Table 11
Attenuation DACR2	7	R2ZCEN	0	DACR2 Zero Cross Detect Enable 0: zero cross disabled 1: zero cross enabled
	8	UPDATE	Not latched	Controls simultaneous update of all Attenuation Latches 0: Store DACR2 in intermediate latch (no change to output) 1: Store DACR2 and update attenuation on all channels.
00100 Analogue	6:0	L3A[6:0]	1111111 (0dB)	Attenuation Data for Left channel DACL3 in 1dB steps. See Table 11
Attenuation DACL3	7	L3ZCEN	0	DACL2 Zero Cross Detect Enable 0: zero cross disabled 1: zero cross enabled
	8	UPDATE	Not latched	Controls simultaneous update of all Attenuation Latches 0: Store DACL3 in intermediate latch (no change to output) 1: Store DACL3 and update attenuation on all channels.
00101 Analogue	6:0	R3A[6:0]	1111111 (0dB)	Attenuation Data for Left channel DACL3 in 1dB steps. Table 11
Attenuation DACR3	7	R3ZCEN	0	DACR2 Zero Cross Detect Enable 0: zero cross disabled 1: zero cross enabled
	8	UPDATE	Not latched	Controls simultaneous update of all Attenuation Latches 0: Store DACR3 in intermediate latch (no change to output) 1: Store DACR3 and update attenuation on all channels.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
00110 Analogue	6:0	L4A[6:0]	1111111 (0dB)	Attenuation Data for Left Channel DACL4 in 1dB steps. See Table 11
Attenuation DACL4	7	L4ZCEN	0	DACL2 Zero Cross Detect Enable 0: zero cross disabled 1: zero cross enabled
	8	UPDATE	Not latched	Controls simultaneous update of all Attenuation Latches 0: Store DACL4 in intermediate latch (no change to output) 1: Store DACL4 and update attenuation on all channels.
00111 Analogue	6:0	R4A[6:0]	1111111 (0dB)	Attenuation Data for Left Channel DACL4 in 1dB steps. See Table 11
Attenuation DACR4	7	R4ZCEN	0	DACR2 Zero Cross Detect Enable 0: zero cross disabled 1: zero cross enabled
	8	UPDATE	Not latched	Controls simultaneous update of all Attenuation Latches 0: Store DACR4 in intermediate latch (no change to output) 1: Store DACR4 and update attenuation on all channels.
01000 Analogue	6:0	MASTA[6:0]	1111111 (0dB)	Attenuation Data for all DAC Gains in 1dB steps. See Table 11
Master Attenuation (all channels)	7	MZCEN	0	Master Zero Cross Detect Enable 0: zero cross disabled 1: zero cross enabled
	8	UPDATE	Not latched	Controls simultaneous update of all Attenuation Latches 0: Store gains in intermediate latch (no change to output) 1: Store gains and update attenuation on all channels.
01001 Digital	7:0	LDA1[7:0]	11111111 (0dB)	Digital Attenuation Data for Left Channel DACL1 in 0.5dB steps. See Table 12
Attenuation DACL1	8	UPDATE	Not latched	Controls simultaneous Update of all Attenuation Latches 0: Store LDA1 in intermediate latch (no change to output) 1: Store LDA1 and update attenuation on all channels
01010 Digital	7:0	RDA1[6:0]	11111111 (0dB)	Digital Attenuation Data for Right Channel DACR1 in 0.5dB steps. See Table 12
Attenuation DACR1	8	UPDATE	Not latched	Controls simultaneous update of all Attenuation Latches 0: Store RDA1 in intermediate latch (no change to output) 1: Store RDA1 and update attenuation on all channels.
01011 Digital	7:0	LDA2[7:0]	11111111 (0dB)	Digital Attenuation data for Left channel DACL2 in 0.5dB steps. See Table 12
Attenuation DACL2	8	UPDATE	Not latched	Controls simultaneous update of all Attenuation Latches 0: Store LDA2 in intermediate latch (no change to output) 1: Store LDA2 and update attenuation on all channels.
01100 Digital	7:0	RDA2[7:0]	11111111 (0dB)	Digital Attenuation Data for Right Channel DACR2 in 0.5dB steps. See Table 12
Attenuation DACR2	8	UPDATE	Not latched	Controls simultaneous update of all Attenuation Latches 0: Store RDA2 in intermediate latch (no change to output) 1: Store RDA2 and update attenuation on all channels.
01101 Digital	7:0	LDA3[7:0]	11111111 (0dB)	Digital Attenuation Data for Left Channel DACL3 in 0.5dB steps. See Table 12
Attenuation DACL3	8	UPDATE	Not latched	Controls simultaneous update of all Attenuation Latches 0: Store LDA3 in intermediate latch (no change to output) 1: Store LDA3 and update attenuation on all channels.

7:0 8 7:0 8	RDA3[7:0] UPDATE LDA4[7:0] UPDATE	11111111 (0dB) Not latched 11111111 (0dB)	See Table Controls s 0: 1	e 12 simultaneou	Ũ		ACR3 in 0.5	dB steps.		
7:0	LDA4[7:0]	11111111	0: : 1: :		s update of	- 11 A 44	Digital Attenuation Data for Right channel DACR3 in 0.5dB steps. See Table 12			
				Controls simultaneous update of all Attenuation Latches 0: Store RDA3 in intermediate latch (no change to output) 1: Store RDA3 and update attenuation on all channels.						
8	UPDATE	(000)	•							
		Not latched	Controls simultaneous update of all Attenuation Latches 0: Store LDA4 in intermediate latch (no change to output) 1: Store LDA4 and update attenuation on all channels.							
7:0	RDA4[7:0]	11111111 (0dB)	U U		ata for Right	Channel D	ACR4 in 0.5	dB steps.		
8	UPDATE	Not latched	0: 3	Store RDA4	in intermed	liate latch (r	no change t	o output)		
10001 7:0 MASTDA[7:0] 11111111 Digital Attenuation Data for all DAC Channels in 0.5dE Master (0dB) Table 12					s in 0.5dB s	teps. See				
(all channels) 0: Store gain in intermediate latch (no change					change to	output)				
7:0	PHASE	0000000	Controls Phase of DAC Outputs 0: Sets non inverted output phase 1: inverts phase of DAC output							
0	DZCEN	0	DAC Digital Volume Zero Cross Enable: 0: Zero Cross detect disabled 1: Zero Cross detect enabled							
1	ATC	0	0 Attenuator Control 0: All DACs use attenuations as programmed. 1: Right channel DACs use corresponding left DAC attenuations 0 Infinite Zero Detection Circuit Control and Automute Control 0: Infinite Zero Detect automute disabled 1: Infinite zero detect automute enabled DAC Analogue Zero Cross Detect Timeout Disable 0 0 : Timeout enabled							
2	IZD	0								
3	TOD	0								
7:4	PL[3:0]	1001	DAC Outp PL[3:0] 0000 0001 0010 0011 0100 0101 0110	Left Output Mute Left Right (L+R)/2 Mute Left	Right Output Mute Mute Mute Left Left Left	PL[3:0] 1000 1001 1010 1011 1100 1101 1110	Left Output Mute Left Right (L+R)/2 Mute Left Right	Right Output Right Right Right (L+R)/2 (L+R)/2 (L+R)/2		
	8 7:0 8 7:0 0 1 2 3	8UPDATE7:0MASTDA[7:0]8UPDATE7:0PHASE0DZCEN1ATC2IZD3TOD	MART(M) (0dB) 8 UPDATE Not latched 7:0 MASTDA[7:0] 11111111 (0dB) 8 UPDATE Not latched 7:0 PHASE 00000000 0 DZCEN 0 1 ATC 0 2 IZD 0 3 TOD 0	Not latched See Table 8 UPDATE Not latched Controls s 7:0 MASTDA[7:0] 11111111 Digital Att 7:0 MASTDA[7:0] 11111111 Oigital Att 8 UPDATE Not latched Controls s 8 UPDATE Not latched Controls s 7:0 PHASE 00000000 Controls s 7:0 PHASE 00000000 Controls s 0 DZCEN 0 DAC Digit 1 ATC 0 Attenuato 0:1 Infinite Ze 0:1 0:1 1 ATC 0 Infinite Ze 1 ATC 0 Infinite Ze 1:1 Infinite Ze 0:1 0:1 3 TOD Infinite Ze 0:1 7:4 PL[3:0] 1001 DAC Out 1:1 Infinite Ze 0:1 0:1 1:1 Infinite Ze 0:1 0:1 1:1 <	Not latchedSee Table 128UPDATENot latchedControls simultaneou 0: Store RDA4 1: Store RDA47:0MASTDA[7:0]11111111 (0dB)Digital Attenuation Da Table 128UPDATENot latchedControls simultaneou 0: Store gain in 1: Store gain a 0: Store gain in 1: Store gain a 1: Store gain a <b< td=""><td>Image: Sec Table 12 See Table 12 8 UPDATE Not latched Controls simultaneous update of 0: Store RDA4 in intermee 1: Store RDA4 and update 0: Store RDA4 and update 1: Store RDA4 and update 1: Store RDA4 and update 0: Store gain in intermedia 1: Store gain and update at 1: Zero Cross detect disa 1: Zero Cross detect disa 1: Zero Cross detect disa 1: Zero Cross detect at 1: Right channel DACs us attenuations 2 IZD 0 Infinite Zero Detection Circuit Con 0: Infinite Zero Detect auto 1: Timeout disabled 3 TOD 0 DAC Analogue Zero Cross Detect 0: Timeout enabled 1: Timeout disabled 7:4 PL[3:0] 1001 DAC Output Output 7:4 PL[3:0] 1001 Left Right Output 0001 Right Mute 0010 Right Mute 0011 Left Mute 0101 Right Mute</td><td>Image: Control series in the intermediate is a contrest intermediate is a contrest of the inter</td><td>Interfere (odB) See Table 12 8 UPDATE Not latched Controls simultaneous update of all Attenuation Latches 0: Store RDA4 and update attenuation on all chan 1: Store RDA4 and update attenuation on all chan rable 12 8 UPDATE Not latched Controls simultaneous update of all Attenuation Latches 0: Store RDA4 and update attenuation on all chan rable 12 8 UPDATE Not latched Controls simultaneous update of all Attenuation Latches 0: Store gain in intermediate latch (no change to 1: Store gain and update attenuation on all chan rable 12 7:0 PHASE 00000000 Controls Phase of DAC Outputs 0: Sets non inverted output phase 1: inverts phase of DAC output 0: Zero Cross detect disabled 1: Zero Cross detect disabled 1: Zero Cross detect enabled 1 ATC 0 DAC Digital Volume Zero Cross Enable: 0: Zero Cross detect automute disabled 1: Right channel DACs use corresponding left DA attenuations 2 IZD 0 Infinite Zero Detection Circuit Control and Automute Cor 0: Infinite zero detect automute disabled 1: Infinite zero detect automute disabled 3 TOD 0 DAC Output Control 7.4 PL[3:0] 1001 Left Right 0010 Uppt Output 0000 Mute 1000 Mute 1001</td></b<>	Image: Sec Table 12 See Table 12 8 UPDATE Not latched Controls simultaneous update of 0: Store RDA4 in intermee 1: Store RDA4 and update 0: Store RDA4 and update 1: Store RDA4 and update 1: Store RDA4 and update 0: Store gain in intermedia 1: Store gain and update at 1: Zero Cross detect disa 1: Zero Cross detect disa 1: Zero Cross detect disa 1: Zero Cross detect at 1: Right channel DACs us attenuations 2 IZD 0 Infinite Zero Detection Circuit Con 0: Infinite Zero Detect auto 1: Timeout disabled 3 TOD 0 DAC Analogue Zero Cross Detect 0: Timeout enabled 1: Timeout disabled 7:4 PL[3:0] 1001 DAC Output Output 7:4 PL[3:0] 1001 Left Right Output 0001 Right Mute 0010 Right Mute 0011 Left Mute 0101 Right Mute	Image: Control series in the intermediate is a contrest intermediate is a contrest of the inter	Interfere (odB) See Table 12 8 UPDATE Not latched Controls simultaneous update of all Attenuation Latches 0: Store RDA4 and update attenuation on all chan 1: Store RDA4 and update attenuation on all chan rable 12 8 UPDATE Not latched Controls simultaneous update of all Attenuation Latches 0: Store RDA4 and update attenuation on all chan rable 12 8 UPDATE Not latched Controls simultaneous update of all Attenuation Latches 0: Store gain in intermediate latch (no change to 1: Store gain and update attenuation on all chan rable 12 7:0 PHASE 00000000 Controls Phase of DAC Outputs 0: Sets non inverted output phase 1: inverts phase of DAC output 0: Zero Cross detect disabled 1: Zero Cross detect disabled 1: Zero Cross detect enabled 1 ATC 0 DAC Digital Volume Zero Cross Enable: 0: Zero Cross detect automute disabled 1: Right channel DACs use corresponding left DA attenuations 2 IZD 0 Infinite Zero Detection Circuit Control and Automute Cor 0: Infinite zero detect automute disabled 1: Infinite zero detect automute disabled 3 TOD 0 DAC Output Control 7.4 PL[3:0] 1001 Left Right 0010 Uppt Output 0000 Mute 1000 Mute 1001		

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
10100 Mute Control	3:0	DMUTE[3:0]	0000	DAC Channel Soft Mute Enables: 0: mute disabled
				1: mute enabled
	4	MUTEALL	0	DAC Channel Master Soft Mute. Mutes all DAC channels:
				0: mute disabled
				1: mute enabled
	5	RECEN	0	REC Output Enable
				0 : REC output muted
				1: REC output enabled
10101	3:0	DEEMP[3:0]	0000	De-emphasis Mode Select:
DAC Control				0 : Normal Mode
				1: De-emphasis Mode
	7:4	DZFM[3:0]	0000	Selects the ouput for ZFLG1 and ZFLG2 pins (see Table 9).
				1: indicates 1024 consecutive zero input samples on the channels selected
				0: indicates at least one of selected channels has non zero sample in last 1024 inputs
	1:0	FMT[1:0]	10	Interface Format Select
10110				00: right justified mode
Interface				01: left justified mode
Control				10: I ² S mode
				11: Reserved
	2	LRP	0	ADCLRC/DACLRC Polarity
				0: Standard DACLRC Polarity
				1: Inverted DACLRC Polarity
	3	BCP	0	BITCLK Polarity
				0: Normal - DIN[3:0], DACLRC & ADCLRC sampled on rising edge of BCLK; DOUT changes on falling edge of BCLK.
				 Inverted - DIN[3:0], DACLRC & ADCLRC sampled on falling edge of BCLK; DOUT changes on rising edge of BCLK.
	5:4	WL[1:0]	10	Input Word Length
			-	00: 16-bit Mode
				01: 20-bit Mode
				10: 24-bit Mode
				11: 32-bit Mode (not supported in right justified mode)
	8	ADCHPD	0	ADC Highpass Filter Disable:
	_		-	0: Highpass Filter enabled
				1: Highpass Filter disabled

REGISTER BIT LABEL DEFAULT DESCRIPTION ADDRESS			DESCRIPTION	
10111 Master Mode Control	2:0	ADCRATE[2:0]	010	Master Mode MCLK:ADCLRC Ratio Select: 010: 256fs 011: 384fs 100: 512fs
	3	ADCOSR	0	ADC oversample rate select 0: 128x oversampling 1: 64x oversapmling
	6:4	DACRATE[2:0]	010	Master Mode MCLK:DACLRC Ratio Select: 000: 128fs 001: 192fs 010: 256fs 011: 384fs 100: 512fs
	8	MS	0	Maser/Slave Interface Mode Select 0: Slave Mode – ADCLRC, DACLRC and BCLK are inputs 1: Master Mode – ADCLRC, DACLRC and BCLK are outputs
11000 Powerdown Control	0	PWDN	0	Chip Powerdown Control (works in tandem with ADCD and DACD): 0: All circuits running, outputs are active 1: All circuits in power save mode, outputs muted
	1	ADCD	1	ADC Powerdown: 0: ADC enabled 1: ADC disabled
	5:2	DACD[3:0]	1111	DAC Powerdown 0: DAC enabled 1: DAC disabled
11001 Attenuation	4:0	LAG[4:0]	01100 (0dB)	Attenuation Data for Left Channel ADC Gain in 1dB steps
ADCL	5	MUTE	0	Mute for Left Channel ADC: 0: Mute off 1: Mute on
	6	LRBOTH	0	Setting LRBOTH will write the same gain value to LAG[4:0] and RAG[4:0]
	7	ADCMUTE	0	Mute for Left and Right Channel ADC: 0: Mute off 1: Mute on
11010 Attenuation	4:0	RAG[4:0]	01100 (0dB)	Attenuation Data for Right Channel ADC gain in 1dB steps
ADCR	5	MUTE	0	Mute for Right Channel ADC: 0: Mute off 1: Mute on
	6	LRBOTH	0	Setting LRBOTH will write the same gain value to RAG[4:0] and LAG[4:0]
11011	2:0	LMX[2:0]	000	ADC left channel input mux control bits
ADC Mux and	6:4	RMX[2:0]	000	ADC right channel input mux control bits
Powerdown Control	8	AINPD	1	Input mux and buffer powerdown 0: Input mux and buffer enabled 1: Input mux and buffer powered down

Production Data

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
11100	2:0	MX1[2:0]	001	VOUT1 Output Select (see Figure 21)
Output Mux	5:3	MX2[2:0]	001	VOUT2 Output Select (see Figure 21)
and Powerdown	8:7	OUTPD[1:0]	11	Mixer and EVR Powerdown Select
Control				0: mixer and EVR enabled
				1: mixer and EVR powered down
11101	2:0	MX3[2:0]	001	VOUT3 Output Select (see Figure 21)
Output Mux	4:3	MX4[1:0]	01	VOUT4 Output Select (see Figure 22)
and Powerdown	8:7	OUTPD[3:2]	11	Mixer and EVR Powerdown Select
Control				0: mixer and EVR enabled
				1: mixer and EVR powered down
11111	[8:0]	RESET	Not reset	Writing to this register will apply a reset to the device registers.
Software reset				

Table 15 Register Map Description

DIGITAL FILTER CHARACTERISTICS

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
ADC Filter		•			
Passband	±0.01 dB	0		0.4535fs	
	-6dB		0.5fs		
Passband ripple				±0.01	dB
Stopband		0.5465fs			
Stopband Attenuation	f > 0.5465fs	-65			dB
Group Delay			22		fs
DAC Filter					
Passband	±0.05 dB			0.444fs	
	-3dB		0.487fs		
Passband ripple				±0.05	dB
Stopband		0.555fs			
Stopband Attenuation	f > 0.555fs	-60			dB
Group Delay			16		fs

Table 16 Digital Filter Characteristics

DAC FILTER RESPONSES

Figure 23 DAC Digital Filter Frequency Response

Figure 24 DAC Digital Filter Ripple – 44.1, 48 and 96kHz

Figure 25 DAC Digital Filter Frequency Response – 192kHz

Figure 26 DAC Digital filter Ripple - 192kHz

Figure 27 ADC Digital Filter Frequency Response

Figure 28 ADC Digital Filter Ripple

ADC HIGH PASS FILTER

The WM8770 has a selectable digital highpass filter to remove DC offsets. The filter response is characterised by the following polynomial.

$$H(z) = \frac{1 - z^{-1}}{1 - 0.9995 z^{-1}}$$

Figure 29 ADC Highpass Filter Response

DIGITAL DE-EMPHASIS CHARACTERISTICS

Figure 30 De-Emphasis Frequency Response (32kHz)

Figure 32 De-Emphasis Frequency Response (44.1KHz)

Figure 34 De-Emphasis Frequency Response (48kHz)

Figure 31 De-Emphasis Error (32KHz)

Figure 33 De-Emphasis Error (44.1KHz)

Figure 35 De-Emphasis Error (48kHz)

APPLICATIONS INFORMATION RECOMMENDED EXTERNAL COMPONENTS

EXTERNAL CIRCUIT CONFIGURATION

In order to allow the use of 2Vrms and larger inputs to the ADC and AUX inputs, a structure is used that uses external resistors to drop these larger voltages. This also increases the robustness of the circuit to external abuse such as ESD pulse.

Figure 36 shows the ADC input multiplexor circuit with external components allowing 2Vrms inputs to be applied.

Figure 36 ADC Input Multiplexor Configuration

Figure 37 Shows the 5.1Channel Input Multiplexor Configuration

It is recommended that a lowpass filter be applied to the output from each DAC channel for Hi Fi applications. Typically a second order filter is suitable and provides sufficient attenuation of high frequency components (the unique low order, high bit count multi-bit sigma delta DAC structure used in WM8770 produces much less high frequency output noise than competitors devices). This filter is typically also used to provide the 2x gain needed to provide the standard 2Vrms output level from most consumer equipment. Figure 24 shows a suitable post DAC filter circuit, with 2x gain. Alternative inverting filter architectures might also be used with as good results.

Figure 41 Recommended Post DAC Filter Circuit

PACKAGE DIMENSIONS

Symbols	Dimensions (mm)					
	MIN	NOM	MAX			
Α	1.					
A ₁	0.05		0.15			
A ₂	0.95	1.00	1.05			
b	0.17	0.22	0.27			
С	0.09		0.20			
D		12.00 BSC				
D ₁		10.00 BSC				
E		12.00 BSC				
E₁		10.00 BSC				
е		0.50 BSC	-			
L	0.45	0.60	0.75			
L ₁		1.00 REF				
Θ	0°	3.5°	7°			
	Toleranc	es of Form and	d Position			
CCC	0.08					
	•					
REF:	JEDEC.95, MS-026, VARIATION ACD					

NOTES: A ALL LINEAR DIMENSIONS ARE IN MILLIMETERS. B. THIS DRAWING IS SUBJECT TO CHANGE WITHOUT NOTICE. C. BODY DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSION, NOT TO EXCEED 0.25MM. D. MEETS JEDEC.95 MS-026, VARIATION = ACD. REFER TO THIS SPECIFICATION FOR FURTHER DETAILS.

IMPORTANT NOTICE

Wolfson Microelectronics plc ("Wolfson") products and services are sold subject to Wolfson's terms and conditions of sale, delivery and payment supplied at the time of order acknowledgement.

Wolfson warrants performance of its products to the specifications in effect at the date of shipment. Wolfson reserves the right to make changes to its products and specifications or to discontinue any product or service without notice. Customers should therefore obtain the latest version of relevant information from Wolfson to verify that the information is current.

Testing and other quality control techniques are utilised to the extent Wolfson deems necessary to support its warranty. Specific testing of all parameters of each device is not necessarily performed unless required by law or regulation.

In order to minimise risks associated with customer applications, the customer must use adequate design and operating safeguards to minimise inherent or procedural hazards. Wolfson is not liable for applications assistance or customer product design. The customer is solely responsible for its selection and use of Wolfson products. Wolfson is not liable for such selection or use nor for use of any circuitry other than circuitry entirely embodied in a Wolfson product.

Wolfson's products are not intended for use in life support systems, appliances, nuclear systems or systems where malfunction can reasonably be expected to result in personal injury, death or severe property or environmental damage. Any use of products by the customer for such purposes is at the customer's own risk.

Wolfson does not grant any licence (express or implied) under any patent right, copyright, mask work right or other intellectual property right of Wolfson covering or relating to any combination, machine, or process in which its products or services might be or are used. Any provision or publication of any third party's products or services does not constitute Wolfson's approval, licence, warranty or endorsement thereof. Any third party trade marks contained in this document belong to the respective third party owner.

Reproduction of information from Wolfson datasheets is permissible only if reproduction is without alteration and is accompanied by all associated copyright, proprietary and other notices (including this notice) and conditions. Wolfson is not liable for any unauthorised alteration of such information or for any reliance placed thereon.

Any representations made, warranties given, and/or liabilities accepted by any person which differ from those contained in this datasheet or in Wolfson's standard terms and conditions of sale, delivery and payment are made, given and/or accepted at that person's own risk. Wolfson is not liable for any such representations, warranties or liabilities or for any reliance placed thereon by any person.

ADDRESS:

Wolfson Microelectronics plc Westfield House 26 Westfield Road Edinburgh EH11 2QB United Kingdom

Tel :: +44 (0)131 272 7000 Fax :: +44 (0)131 272 7001 Email :: sales@wolfsonmicro.com

REVISION HISTORY

DATE	REV	ORIGINATOR	CHANGES
09/03/11	4.3	BT	Removed reference to DSP Mode support

