

KP200

Technical product description

PRO-SIL[™] pressure sensor for side crash detection This document is only an extract of the technical datasheet which can be provided by Infineon in its full version under NDA only.

Features

- Synchronous data transmission based on PSI5-P10P-500/3L and PSI5-P10P-250/1L mode
- Asynchronous data transmission based on PSI5-A10P-250/1L¹⁾ mode
- AK-LV 29 compatible
- 2-wire interface with on chip current modulator for Manchester communication
- E²PROM for ID number, calibration and mode selection
- On chip voltage regulator
- Relative pressure signal (Δp/p₀-signal)

PG-DSOF-8-16

Potential applications

The KP200 is used to detect the pressure change inside a door during a side crash.

Product validation

Qualified for automotive applications. Product validation according to AEC-Q100.

Description

The KP200 is a pressure sensor for the detection of side crashes in passenger cars. In this application the pressure sensor is assembled in a door module located within the car's side door. When the door is compressed due to a side impact, the KP200 provides a signal pulse which is proportional to the pressure change inside the door $\Delta p/p_0$). The height of signal pulse is independent of the ambient pressure but is dependent on the relative pressure change. This is achieved by dividing the absolute pressure change by the ambient pressure. The division is performed on-chip. The ambient pressure is calculated with a low pass filter from the absolute pressure.

The sensor provides the relative pressure as a digital Manchester encoded output signal.

This cost optimized configuration allows autonomous operation of the sensor without any further logic ICs in the pressure satellite.

During the normal operation mode there is a continuous internal range check.

Product name	Product type	Ordering code	Package
KP200	Pressure sensor for side crash detection	SP000849342	PG-DSOF-8-16

 $^{^{1}}$ In the asynchronous mode, the sensor sends every 228 μ s ± clock variation a Manchester frame.

Table of contents

Table of contents

	Features	1
	Potential applications	1
	Product validation	1
	Description	1
	Table of contents	2
1	Application example	
2	Specification	4
2.1	Absolute maximum ratings	4
2.2	Operating range	
3	Package information	7
	References	8
	Revision history	8
	Disclaimer	9

...;

1 Application example

1

Application example

Figure 1

Application example for a restraint system

2 Specification

2 Specification

2.1 Absolute maximum ratings

Attention: Stresses above the max. values listed in the table below may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Maximum ratings are absolute ratings; exceeding only one of these values may cause irreversible damage to the integrated circuit.

Parameter	Symbol	Values			Unit	Note or Test	Number
		Min.	Тур.	Max.		Condition	
Voltage on VDD ²⁾	V _{DD}	-16.5	-	16.5	V	<i>V</i> _{DD} - <i>V</i> _{iout} < 16.5V	1.1
Voltage on <i>I_OUT</i>	V _{iout}	-16.5	-	16.5	V	V _{DD} - V _{iout} < 16.5V	1.2
Voltage on CAP	V _{CAP}	-16.5	-	16.5	V		1.3
Voltage on digital pins	V _{dig_pin}	-0.3	_	3.5	V		1.4
Voltage on <i>DAT_IN/</i> V _{PROG} during programming	V _{dig_prog}	-0.3	-	20.0	V		1.5
Current on serial pin	I _{dig_out}	-	_	0.1	mA		1.6
Latch-up robustness for each pin	I _{latchup}	100	-	-	mA	according to EIA/ JESD78	1.7
Ambient storage temperature	T _{st}	-55	_	125	С		1.8
Mechanical shock survival	g _{st}	-2000	-	2000	g	unpowered, 0.5 ms	1.9
Input pressure range	p _{range}	10	-	200	kPa		1.10
				600	kPa	limited time: max. 300 s	
ESD robustness at pins (HBM: 1.5 k, 100 pF)	V _{ESD}	-	-			according to EIA/ JESD22-A114-B	1.11
VDD, GND, I_OUT, CAP				4	kV		
CLK, CS, DAT_IN, DAT_OUT	1			2	kV		
Lid pull-off force	F _{pull_off_lid}	1	-	-	N		1.12
Lid push-in force	F _{push_in_lid}	-	-	10	N	max. allowed force on top of the lid without damaging the sensor	1.13

 Table 1
 Absolute maximum ratings

² Outside the normal operation supply voltage range the over voltage detection disables the Manchester communication; as long as the over voltage detection has not detected an over voltage, the sensor operates inside the specified operating range.

2 Specification

Operating range 2.2

Operating conditions Table 2

Parameter	Symbol	Values			Unit	Note or Test	Number
		Min.	Тур.	Max.		Condition	
Supply voltage at pin VDD	V _{DD}	4.5	-	11.0	V		2.1
Voltage at pin <i>I_OUT</i>	V _{iout}	3.5	-	11.0	V		2.2
Voltage at pin CAP	V _{CAP}	4.5	-	11.0	V	connector only defined to connect with a capacitor; connection with a constant voltage source not allowed	2.3
Voltage during sync pulse at pin <i>VDD</i> & pin <i>I_OUT</i>	V _{sync}	-	-	16.5	V		2.4
Supply voltage power up/down gradient	V _{grad}	1E-5	-	1E4	V/ms		2.5
Input voltage for low level at pins <i>DAT_IN</i> , <i>CLK</i> & CS	V _{low_in}	0.0	-	1.0	V	not valid for programming pulse (see parameter 3.84: programming pulse voltage level in [1])	2.6
Input voltage for high level at pins <i>DAT_IN</i> , <i>CLK</i> & CS	V _{high_in}	2.3	-	3.3	V	not valid for programming pulse (see parameter 3.84: programming pulse voltage level in [1])	2.7
Output voltage for low level at pin DAT_OUT	V _{low_out}	0.0	-	1.0	V		2.8
Output voltage for high level at pin DAT_OUT	V _{high_out}	2.3	-	3.4	V		2.9
Current on pin DAT_OUT	I _{DAT_OUT}	-	-	0.1	mA		2.10
Ambient operating temperature	T _{Op}	-40	-	85	С		2.11
Thermal resistance	R _{thj-pin}	-	180	-	Κ/Ω	describes the thermal resistance between the die and the pins	2.12
Absolute operating pressure range	<i>p</i> _{abs}	50.9	-	126.5	kPa	range for pressure pulses during a crash	2.13
Ambient operating pressure range	p _{amb}	53.6	-	110.0	kPa	range for <i>p</i> ₀ value	2.14
Lifetime	t _{live}	15	-	-	years		2.15

(table continues...)

Datasheet

Parameter	Symbol	Values			Unit	Note or Test	Number
		Min.	Тур.	Max.		Condition	
No. of programming cycles	n _{prog}	-	-	20	-	 inside programming temperature a programming cycle is defined as applying the programming pulse once in order to change the state of at least one E²PROM cell 	2.16
Programming temperature	T _{prog}	10	-	30	С		2.17
External buffer capacitor	C _{buf}	0	-	4.7	μF	no capacitor needed to avoid oscillation of regulator	2.18
Autarky time	t _{µb}	-	-	2	ms	the autarky time defined with C _{buf} must not exceed 2 ms	2.19

 Table 2
 (continued) Operating conditions

In addition to the lifetime (ambient operation temperature), the temperature profile over lifetime is given as follows.

Table 3Lifetime profile (biased device)

Ambient temperature T _a [°C]	Lifetime [%]	Lifetime [h]
-40	6	720
+23	20	2400
+52	65	7800
+80	8	960
+85	1	120

3 Package information

3 Package information

For passivation the sensor die is covered with a transparent silicone gel. Bubbles adjacent to the bond wires are not allowed (delivery status). The bond wires have to be completely covered by gel. The surface of the gel must be smooth.

PG-DSOF-8-16 package outline (all dimensions in mm)

References

References

[1] Infineon Technologies AG: *Datasheet KP200* (Revision 1.2), 2011-02-11

Revision history

Document version	Date of release	Description of changes			
V1.00	2020-12-01	Extracted from Datasheet KP200 [1]			
V1.01	2022-02-14	Editorial changes			

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2022-02-14 Published by Infineon Technologies AG 81726 Munich, Germany

© 2022 Infineon Technologies AG All Rights Reserved.

Do you have a question about any aspect of this document? Email: erratum@infineon.com

Document reference IFX-fxb1602158767623

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.