

Features

RoHS compliant*

- Glass passivated chip
- Low reverse leakage current
- Low forward voltage drop
- High current capability

CD214C-R350~R31000 Glass Passivated Rectifiers

General Information

The markets of portable communications, computing and video equipment are challenging the semiconductor industry to develop increasingly smaller electronic components. Bourns offers Glass Passivated Rectifiers for rectification applications, in compact chip DO-214AB (SMC) size format, which offer PCB real estate savings and are considerably smaller than most competitive parts. The Glass Passivated Rectifier Diodes offer a forward current of 3.0 A with a choice of repetitive peak reverse voltage of 50 V up to 1000 V.

Bourns[®] Chip Diodes conform to JEDEC standards, are easy to handle on standard pick and place equipment and their flat configuration minimizes roll away.

Electrical Characteristics (@ T_A = 25 °C Unless Otherwise Noted)

Parameter	Symbol	CD214C-							
		R350	R3100	R3200	R3400	R3600	R3800	R31000	Unit
Maximum Repetitive Peak Reverse Voltage	VRRM	50	100	200	400	600	800	1000	V
Maximum RMS Voltage	V _{RMS}	35	70	140	280	420	560	700	V
Maximum DC Blocking Voltage	V _{DC}	50	100	200	400	600	800	1000	V
Max. Average Forward Rectified Current ¹	I(AV)	3.0					A		
DC Reverse Current @ Rated DC Blocking Voltage (@ T _J = 25 °C)	IR	10.0					μA		
DC Reverse Current @ Rated DC Blocking Voltage (@ TJ = 125 °C)	IR	250.0					μA		
Typical Junction Capacitance ²	СЈ	40					pF		
Maximum Instantaneous Forward Voltage @ 3 A	V _F	1.15					V		
Typical Thermal Resistance ³	R _{0JL}	10					°C/W		
Peak forward surge current 8.3 ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM	100				A			

Notes:

1 See Forward Derating Curve.

2 Measured @ 1 MHz and applied reverse voltage of 4.0 V.

3 Thermal resistance from junction to lead.

Thermal Characteristics (@ T_A = 25 °C Unless Otherwise Noted)

Parameter	Symbol	CD214C-R350~R31000	Unit
Operating Temperature Range	TJ	-65 to +175	°C
Storage Temperature Range	Тѕтс	-65 to +175	°C

*RoHS Directive 2002/95/EC Jan. 27, 2003 including annex and RoHS Recast 2011/65/EU June 8, 2011.

Specifications are subject to change without notice.

The device characteristics and parameters in this data sheet can and do vary in different applications and actual device performance may vary over time. Users should verify actual device performance in their specific applications.

CD214C-R350~R31000 Glass Passivated Rectifiers

BOURNS®

Product Dimensions

This is an RoHS compliant product using 100 % Sn termination. It is a molded plastic package. A cathode band indicates the polarity. The package weighs approximately 0.21 g. The package and dimensions are shown below.

Recommended Pad Layout

DIMENSIONS: (INCHES)

How To Order

1000 = 1000 V

Typical Part Marking

CD214C-R350	R3A
CD214C-R3100	R3B
CD214C-R3200	R3D
CD214C-R3400	R3G
CD214C-R3600	R3J
CD214C-R3800	3R3K
CD214C-R31000	R3M

Specifications are subject to change without notice.

The device characteristics and parameters in this data sheet can and do vary in different applications and actual device performance may vary over time. Users should verify actual device performance in their specific applications.

CD214B-R350~R31000 Glass Passivated Rectifiers

BOURNS®

Packaging Information

This product will be dispensed in Tape and Reel format (see diagram below).

Devices are packed in accordance with EIA standard RS-481-A and specifications shown here.

Item	Symbol	(SMC) DO-214AB		
Carrier Width	А	$\frac{7.22 \pm 0.10}{(0.284 - 0.004)}$		
Carrier Length	В	<u>8.11 ±0.10</u> (0.319 - 0.004)		
Carrier Depth	С	$\frac{2.36 \pm 0.10}{(0.093 - 0.004)}$		
Sprocket Hole	d	<u>1.55 ±0.05</u> (0.061 - 0.002)		
Reel Outside Diameter	D	<u>330</u> (12.992)		
Reel Inner Diameter	D ₁	<u>50.0</u> (1.969) Min.		
Feed Hole Diameter	D ₂	<u>13.0 ±0.20</u> (0.512 - 0.008)		
Sprocket Hole Position	E	<u>1.75 ±0.10</u> (0.069 - 0.004)		
Punch Hole Position	F	$\frac{7.50 \pm 0.05}{(0.295 - 0.002)}$		
Punch Hole Pitch	Р	$\frac{4.00 \pm 0.10}{(0.157 - 0.004)}$		
Sprocket Hole Pitch	P ₀	$\frac{4.00 \pm 0.10}{(0.157 - 0.004)}$		
Embossment Center	P ₁	<u>2.00 ±0.05</u> (0.079 - 0.002)		
Overall Tape Thickness	Т	$\frac{0.30 \pm 0.10}{(0.012 - 0.004)}$		
Tape Width	W	$\frac{16.00 \pm 0.20}{(0.630 - 0.008)}$		
Reel Width	W ₁	<u>22.4</u> Max.		
Quantity per Reel	_	3,000		

Specifications are subject to change without notice.

The device characteristics and parameters in this data sheet can and do vary in different applications and actual device performance may vary over time. Users should verify actual device performance in their specific applications.

CD214C-R350~R31000 Glass Passivated Rectifiers

BOURNS®

Rating and Characteristic Curves

Forward Current Derating Curve

Maximum Non-Repetitive Surge Current

Typical Reverse Characteristics

REV. 01/18

Specifications are subject to change without notice.

The device characteristics and parameters in this data sheet can and do vary in different applications and actual device performance may vary over time. Users should verify actual device performance in their specific applications.