

CMPA601C025F

25 W, 6.0 - 12.0 GHz, GaN MMIC, Power Amplifier

The CMPA601C025F is a gallium nitride (GaN) High Electron Mobility Transistor (HEMT) based monolithic microwave integrated circuit (MMIC) on a silicon carbide (SiC) substrate, using a 0.25 μ m gate length fabrication process. The semiconductor offers 25 Watts of power from 6 to 12 GHz of instantaneous bandwidth. The GaN HEMT MMIC is housed in a thermally-enhanced, 10-lead 25 mm x 9.9 mm metal/ceramic flanged package. It offers high gain and superior efficiency in a small footprint package at 50 ohms.

PN: CMPA601C025F Package Type: 440213

Typical Performance Over 6.0-12.0 GHz (T_c = 25°C)

Parameter	6.0 GHz	7.5 GHz	9.0 GHz	10.5 GHz	12.0 GHz	Units
Small Signal Gain	35	34	34	37	31	dB
P _{out} @ P _{IN} = 22 dBm	34	51	49	49.5	36.5	W
Power Gain @ P _⊪ = 22 dBm	23	25	25	25	23.5	dB
PAE @ P _{IN} = 22 dBm	21	36	35	33	27	%

Note: All data CW.

Features

- 34 dB Small Signal Gain
- 40 W Typical P_{SAT}
- Operation up to 28 V
- High Breakdown Voltage
- High Temperature Operation
- Size 0.172 x 0.239 x 0.004 inches

Applications

- Jamming Amplifiers
- Test Equipment Amplifiers
- Broadband Amplifiers

CREE ᆃ

Absolute Maximum Ratings (not simultaneous) at 25°C

Parameter	Symbol	Rating	Units	Conditions
Drain-source Voltage	V _{DS}	84	V _{DC}	25°C
Gate-source Voltage	V _{gs}	-10, +2	V _{DC}	25°C
Storage Temperature	T _{stg}	-40, +150	°C	
Operating Junction Temperature	Tj	225	°C	
Maximum Forward Gate Current	I _{gmax}	23	mA	25°C
Soldering Temperature ¹	T _{stg}	245	°C	
Screw Torque	Т	40	in-oz	
Thermal Resistance, Junction to Case ²	R _{eJC}	0.85	°C/W	85°C @ P _{DISS} = 116 W
Case Operating Temperature ²	T _c	-40, +150	°C	

Note¹ Refer to the Application Note on soldering at http://www.cree.com/rf/document-library

Note² See also, the Power Dissipation De-rating Curve on page 4

Electrical Characteristics (Frequency = 6.0 GHz to 12.0 GHz unless otherwise stated; $T_c = 25^{\circ}C$)

Characteristics	Symbol	Min.	Тур.	Max.	Units	Conditions	
DC Characteristics ^{1,2}							
Gate Threshold	V _{TH}	-3.8	-2.8	-2.3	V	V _{DS} = 10 V, I _D = 23 mA	
Saturated Drain Current	I _{DS}	10.6	13.0	-	А	$V_{_{DS}}$ = 6V, $V_{_{GS}}$ = 2 V	
Drain-Source Breakdown Voltage	V _{BD}	84	100	-	V	V _{GS} = -8 V, I _{DS} = 23 mA	
RF Characteristics ³							
Small Signal Gain	S21	28	31	-	dB	$V_{_{DD}}$ = 28 V, $I_{_{DQ}}$ = 2 A, $P_{_{\rm IN}}$ = -30 dBm	
Output Power ^{3,4}	P _{OUT1}	45.5	47.2	-	dBm	$V_{_{DD}}$ = 28 V, I $_{_{DQ}}$ = 2 A, $P_{_{IN}}$ = 22 dBm, Freq = 6 GHz	
Output Power ^{3,4}	P _{OUT2}	45.5	47.1	-	dBm	$V_{_{DD}}$ = 28 V, I $_{_{DQ}}$ = 2 A, P $_{_{\rm IN}}$ = 22 dBm, Freq = 9.5 GHz	
Output Power ^{3,4}	P _{OUT3}	43.7	45.5	-	dBm	$V_{_{DD}}$ = 28 V, $I_{_{DQ}}$ = 2 A, $P_{_{\rm IN}}$ = 22 dBm, Freq = 12 GHz	
Power Added Efficiency ^{3,4}	PAE ₁	23	33.2	-	%	$V_{_{DD}}$ = 28 V, $I_{_{DQ}}$ = 2 A, $P_{_{IN}}$ = 22 dBm, Freq = 6 GHz	
Power Added Efficiency ^{3,4}	PAE ₂	26	32.3	-	%	$V_{_{DD}}$ = 28 V, $I_{_{DQ}}$ = 2 A, $P_{_{\rm IN}}$ = 22 dBm, Freq = 9.5 GHz	
Power Added Efficiency ^{3,4}	PAE ₃	15.5	26.5	-	%	$V_{_{DD}}$ = 28 V, $I_{_{DQ}}$ = 2 A, $P_{_{\rm IN}}$ = 22 dBm, Freq = 12 GHz	
Input Return Loss	S11	-	-5	-	dB	$V_{_{DD}}$ = 28 V, $I_{_{DQ}}$ = 2 A, $P_{_{IN}}$ = -30 dBm	
Output Return Loss	S22	-	-5	-	dB	$V_{_{DD}}$ = 28 V, $I_{_{DQ}}$ = 2 A, $P_{_{IN}}$ = -30 dBm	
Output Mismatch Stress	VSWR	-	5:1	VSWR	Ψ	No damage at all phase angles, V_{DD} = 28 V, I_{DQ} = 2 A, P_{IN} = 22 dBm	

Notes:

¹ Measured on-wafer prior to packaging.

² Scaled from PCM data.

³ Measured in CMPA601C025F-AMP with 12.4 GHz low pass filter.

⁴ Fixture loss de-embedded using the following offsets. The offset is subtracted from the input offset value and added to the output offset value.

a) 6.0 GHz - 0.13 dB

b) 9.50 GHz - 0.26 dB

c) 12.0 GHz - 0.35 dB

Copyright © 2014-2016 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree and the Cree logo are registered trademarks of Cree, Inc. Other trademarks, product and company names are the property of their respective owners and do not imply specific product and/or vendor endorsement, sponsorship or association.

Cree, Inc. 4600 Silicon Drive Durham, North Carolina, USA 27703 USA Tel: +1.919.313.5300 Fax: +1.919.869.2733 Fax: +1.919.869.2733 www.cree.com/RF

CMPA601C025F Typical Performance

Figure 2. - Output Power, Gain and Power Added Efficiency vs. Input Power $V_{DD} = 28 \text{ V}, \text{ I}_{DO} = 2.0 \text{ A}, \text{ P}_{IN} = 22 \text{ dBm}$

Copyright © 2014-2016 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree and the Cree logo are registered trademarks of Cree, Inc. Other trademarks, product and company names are the property of their respective owners and do not imply specific product and/or vendor endorsement, sponsorship or association.

Cree, Inc. 4600 Silicon Drive Durham, North Carolina, USA 27703 USA Tel: +1.919.313.5300 Fax: +1.919.869.2733 Fax: +1.919.869.2733 www.cree.com/RF

CMPA601C025F Typical Performance

Figure 3. - Power Added Efficiency vs. Input Power

Copyright © 2014-2016 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree and the Cree logo are registered trademarks of Cree, Inc. Other trademarks, product and company names are the property of their respective owners and do not imply specific product and/or vendor endorsement, sponsorship or association.

Cree, Inc. 4600 Silicon Drive Durham, North Carolina, USA 27703 USA Tel: +1.919.313.5300 Fax: +1.919.869.2733 Fax: +1.919.869.2733 www.cree.com/RF

CMPA601C025F Typical Performance

Copyright © 2014-2016 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree and the Cree logo are registered trademarks of Cree, Inc. Other trademarks, product and company names are the property of their respective owners and do not imply specific product and/or vendor endorsement, sponsorship or association.

Cree, Inc. 4600 Silicon Drive Durham, North Carolina, USA 27703 USA Tel: +1.919.313.5300 Fax: +1.919.869.2733 Fax: +1.919.869.2733 www.cree.com/RF

CMPA601C025F-AMP Demonstration Amplifier Circuit Bill of Materials

Designator	Description	Qty
C2,C4,C5,C7,C9,C12	CAP,33000PF, 0805,100V, X7R	6
C1,C3,C6,C8,C10,C13	CAP, 1.0UF, 100V, 10%, X7R, 1210	6
C11,C14	CAP ELECT 3.3UF 80V FK SMD	2
R1,R2	RES 0.0 OHM 1/16W 0402 SMD	2
J1,J2	CONN, SMA, PANEL MOUNT JACK, FLANGE, 4-HOLE, BLUNT POST, 20MIL	2
J3	HEADER RT>PLZ .1CEN LK 9POS	1
W1	WIRE, BLACK, 22 AWG ~ 1.50"	1
W2	WIRE, BLACK, 22 AWG ~ 1.75"	1
Q1	CMPA601C025F	1

CMPA601C025F-AMP Demonstration Amplifier Circuit

Copyright © 2014-2016 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree and the Cree logo are registered trademarks of Cree, Inc. Other trademarks, product and company names are the property of their respective owners and do not imply specific product and/or vendor endorsement, sponsorship or association.

Cree, Inc. 4600 Silicon Drive Durham, North Carolina, USA 27703 USA Tel: +1.919.313.5300 Fax: +1.919.869.2733 Fax: +1.919.869.2733 www.cree.com/RF

CMP601C025F-AMP Demonstration Amplifier Circuit Schematic

CMPA601C025F-AMP Demonstration Amplifier Circuit Outline

Copyright © 2014-2016 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree and the Cree logo are registered trademarks of Cree, Inc. Other trademarks, product and company names are the property of their respective owners and do not imply specific product and/or vendor endorsement, sponsorship or association.

Product Dimensions CMPA601C025F

Qty

Gate Bias for Stage 1, 2 & 3

Gate Bias for Stage 1, 2 & 3

RF IN

Gate Bias for Stage 1, 2 & 3

Gate Bias for Stage 1, 2 & 3 Drain Bias

> Drain Bias RF OUT

> **Drain Bias** Drain Bias

NDTES:

	4. LID MAY BE MISALIGNED TO THE BODY OF PACKAG BY A MAXIMUM OF 0.008″ IN ANY DIRECTION.					
	INC	HES	MILLIN	IETERS	NOTES	
DIM	MIN	MAX	MIN	МАХ		
Α	0.155	0.175	3.94	4.45		
A1	0.055	0.065	1.40	1.65		
A2	0.035	0.045	0.89	1.14		
b	0.01	TYP	0.254	TYP	10x	
с	0.007	0.009	0.18	0.23		
D	0.995	1.005	25.27	25.53		
D1	0.835	0.845	21.21	21.46		
D2	0.623	0.637	15.82	16.18		
Е	0.653	TYP	16.59	TYP		
E1	0.380	0.390	9.65	9.91		
E2	0.355	0.365	9.02	9.27		
E3	0.120	0.130	3.05	3.30		
E4	0.035	0.045	0.89	1.14	45' CHAMFER	
е	0.20) TYP	5.08	TYP	4x	
e1	0.15) TYP	3.81	TYP	4x	
L	0.115	0.155	2.92	3.94	10x	
r	0.02	5 TYP	.635	TYP	Зx	

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M -1994.

3. ADHESIVE FROM LID MAY EXTEND A MAXIMUM OF 0.020" BEYOND EDGE OF LID.

2. CONTROLLING DIMENSION: INCH.

1	
1	10
3	8
4	

1 Г

> Cree, Inc. 4600 Silicon Drive Durham, North Carolina, USA 27703 USA Tel: +1.919.313.5300 Fax: +1.919.869.2733 Fax: +1.919.869.2733 www.cree.com/RF

Copyright © 2014-2016 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree and the Cree logo are
registered trademarks of Cree, Inc. Other trademarks, product and company names are the property of their respective owners and do not imply specific
product and/or vendor endorsement, sponsorship or association.

8 CMPA601C025F Rev 2.2

Pin Number

1

2

3

4 5

6 7

8 9

10

Part Number System

Parameter	Value	Units
Lower Frequency	6.0	GHz
Upper Frequency ¹	12.0	GHz
Power Output	25	W
Package	Flanged	-

Note¹: Alpha characters used in frequency code indicate a value greater than 9.9 GHz. See Table 2 for value.

Character Code	Code Value
А	0
В	1
С	2
D	3
E	4
F	5
G	6
н	7
J	8
К	9
Examples:	1A = 10.0 GHz 2H = 27.0 GHz

Table 2.

Copyright © 2014-2016 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree and the Cree logo are registered trademarks of Cree, Inc. Other trademarks, product and company names are the property of their respective owners and do not imply specific product and/or vendor endorsement, sponsorship or association.

Cree, Inc. 400 Silicon Drive Durham, North Carolina, USA 27703 USA Tel: +1.919.313.5300 Fax: +1.919.869.2733 Fax: +1.919.869.2733 www.cree.com/RF

Product Ordering Information

Order Number	Description	Unit of Measure	Image
CMPA601C025F	GaN HEMT	Each	CHERTIC COST
CMPA601C025F-TB	Test board without GaN HEMT	Each	
CMPA601C025F-AMP	Test board with GaN HEMT installed	Each	

Copyright © 2014-2016 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree and the Cree logo are registered trademarks of Cree, Inc. Other trademarks, product and company names are the property of their respective owners and do not imply specific product and/or vendor endorsement, sponsorship or association.

Cree, Inc. 4600 Silicon Drive Durham, North Carolina, USA 27703 USA Tel: +1.919.313.5300 Fax: +1.919.869.2733 Fax: +1.919.869.2733 www.cree.com/RF

CREE ᆃ

Disclaimer

Specifications are subject to change without notice. Cree, Inc. believes the information contained within this data sheet to be accurate and reliable. However, no responsibility is assumed by Cree for its use or for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Cree. Cree makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose. "Typical" parameters are the average values expected by Cree in large quantities and are provided for information purposes only. These values can and do vary in different applications, and actual performance can vary over time. All operating parameters should be validated by customer's technical experts for each application. Cree products are not designed, intended, or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Cree product could result in personal injury or death, or in applications for the planning, construction, maintenance or direct operation of a nuclear facility. CREE and the CREE logo are registered trademarks of Cree, Inc.

For more information, please contact:

Cree, Inc. 4600 Silicon Drive Durham, North Carolina, USA 27703 www.cree.com/RF

Sarah Miller Marketing Cree, RF Components 1.919.407.5302

Ryan Baker Marketing & Sales Cree, RF Components 1.919.407.7816

Tom Dekker Sales Director Cree, RF Components 1.919.407.5639

Copyright © 2014-2016 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree and the Cree logo are registered trademarks of Cree, Inc. Other trademarks, product and company names are the property of their respective owners and do not imply specific product and/or vendor endorsement, sponsorship or association.

Cree, Inc. 4600 Silicon Drive Durham, North Carolina, USA 27703 USA Tel: +1.919.869.2733 Fax: +1.919.869.2733 Fax: +1.919.869.2733 www.cree.com/RF