ON Semiconductor

Is Now

Onsemi

To learn more about onsemi[™], please visit our website at <u>www.onsemi.com</u>

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product factures, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and asfety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or by customer's technical experts. onsemi products and actal performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiari

FDP8D5N10C / FDPF8D5N10C N-Channel Shielded Gate PowerTrench[®] MOSFET

100 V, 76 A, 8.5 mΩ

Features

- Max $r_{DS(on)}$ = 8.5 m Ω at V_{GS} = 10 V, I_D = 76 A
- Extremely Low Reverse Recovery Charge, Qrr
- 100% UIL Tested
- RoHS Compliant

General Description

This N-Channel MV MOSFET is produced using ON Semiconductor's advanced PowerTrench[®] process that incorporates Shielded Gate technology. This process has been optimized to minimize on-state resistance and yet maintain superior switching performance with best in class soft body diode.

Applications

- Synchronous Rectification for ATX / Server / Telecom PSU
- Motor drives and Uninterruptible Power Supplies
- Micro Solar Inverter

MOSFET Maximum Ratings T_C = 25 °C unless otherwise noted.

Param Drain to Source Voltage	lieter		FDP8D5N10C	FDPF8D5N10C	Units	
Drain to Source Voltage			•.•.••	FDFF0D3N10C	Units	
			100	100	V	
Gate to Source Voltage			±20	±20	V	
Drain Current -Continuous	T _C = 25°C	(Note 3)	76	76*	А	
-Continuous	T _C = 100°C	(Note 3)	54	54*		
-Pulsed	-	(Note 1)	304	304*		
Single Pulse Avalanche Energy		(Note 2)	181		mJ	
Power Dissipation	T _C = 25°C		107	35	W	
Power Dissipation	T _A = 25°C		2.4	2.4		
Operating and Storage Junction Temperature Range			-55 to +175	-55 to +175	°C	
:	Drain Current -Continuous -Continuous -Pulsed Single Pulse Avalanche Energy Power Dissipation Power Dissipation	Drain Current-Continuous $T_C = 25^{\circ}C$ -Continuous $T_C = 100^{\circ}C$ -PulsedSingle Pulse Avalanche EnergyPower Dissipation $T_C = 25^{\circ}C$ Power Dissipation $T_A = 25^{\circ}C$ Operating and Storage Junction Temperature Range	Drain Current-Continuous $T_C = 25^{\circ}C$ (Note 3)-Continuous $T_C = 100^{\circ}C$ (Note 3)-Pulsed(Note 1)Single Pulse Avalanche Energy(Note 2)Power Dissipation $T_C = 25^{\circ}C$ Power Dissipation $T_A = 25^{\circ}C$ Operating and Storage Junction Temperature Range	Drain Current-Continuous $T_C = 25^{\circ}C$ (Note 3)76-Continuous $T_C = 100^{\circ}C$ (Note 3)54-Pulsed(Note 1)304Single Pulse Avalanche Energy(Note 2)18Power Dissipation $T_C = 25^{\circ}C$ 107Power Dissipation $T_A = 25^{\circ}C$ 2.4Operating and Storage Junction Temperature Range-55 to +175	Drain Current -Continuous $T_C = 25^{\circ}C$ (Note 3) 76 76* -Continuous $T_C = 100^{\circ}C$ (Note 3) 54 54* -Pulsed (Note 1) 304 304* Single Pulse Avalanche Energy (Note 2) 181 Power Dissipation $T_C = 25^{\circ}C$ 107 35 Power Dissipation $T_A = 25^{\circ}C$ 2.4 2.4 Operating and Storage Junction Temperature Range -55 to +175 -55 to +175	

Thermal Characteristics

Symbol	Parameter	FDP8D5N10C	FDPF8D5N10C	Units	
$R_{\theta JC}$	Thermal Resistance, Junction to Case	1.4	4.2	°C AA/	
$R_{ ext{ heta}JA}$	Thermal Resistance, Junction to Ambient	62.5	62.5	°C/W	

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FDP8D5N10C	FDP8D5N10C	TO-220	-	-	50 units
FDPF8D5N10C	FDPF8D5N10C	TO-220F	-	-	50 units

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units
Off Chara	cteristics					
BV _{DSS}	Drain to Source Breakdown Voltage	I _D = 250 μA, V _{GS} = 0 V	100			V
$\frac{\Delta BV_{DSS}}{\Delta T_J}$	Breakdown Voltage Temperature Coefficient	I_D = 250 µA, referenced to 25 °C		57		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 80 V, V _{GS} = 0 V			1	μA
		V _{DS} = 80 V, T _J = 150°C			500	μA
I _{GSS}	Gate to Source Leakage Current	V_{GS} = ±20 V, V_{DS} = 0 V			±100	nA
On Chara	cteristics					
V _{GS(th)}		V _{GS} = V _{DS} , I _D = 130 μA	2.0	3.0	4.0	V
r _{DS(on)}		$V_{GS} = 10 \text{ V}, \text{ I}_{D} = 76 \text{ A}$		7.4	8.5	mΩ
9 _{FS}	Forward Transconductance	V _{DS} = 5 V, I _D = 76 A		68		S
-	Characteristics			1765	2475	۶Ę
C _{iss}	Input Capacitance	− V _{DS} = 50 V, V _{GS} = 0 V, f = 1 MHz			2475	pF
C _{oss}	Output Capacitance			1010	1415	pF
C _{rss}	Reverse Transfer Capacitance		0.1	16	25 1.6	pF Ω
Rg	Gate Resistance		0.1	0.8	1.0	Ω
Switching	g Characteristics					
t _{d(on)}	Turn-On Delay Time			12	22	ns
t _r		V_{DD} = 50 V, I _D = 76 A, V _{GS} = 10 V, R _{GEN} = 6 Ω		11	20	ns
t _{d(off)}	Turn-Off Delay Time			18	28	ns
t _f	Fall Time	Ĩ		4	10	ns
Qg	Total Gate Charge	$V_{GS} = 0 V \text{ to } 10 V$ $V_{DD} = 50 V,$		25	34	nC
Q _{gs}	Gate to Source Gate Charge	V _{DD} = 50 V, I _D = 76 A		9		nC
Q _{gd}	Gate to Drain "Miller" Charge	10 - 70 A		5		nC
Q _{oss}	Output Charge	V _{DD} = 50 V, V _{GS} = 0 V		68		nC
Drain-Sou	urce Diode Characteristic					
I _S	Maximum Continuous Drain to Source Diode Forward Current			-	76	А
I _{SM}	Maximum Pulsed Drain to Source Diode Forward Current		-	-	304	Α
V _{SD}	Source to Drain Diode Forward Voltage	V _{GS} = 0 V, I _S = 76 A		1.0	1.3	V
t _{rr}		V _{GS} = 0 V, V _{DD} = 50 V, I _F = 76 A,		58	92	ns
Q _{rr}		$dI_F/dt = 100 \text{ A}/\mu\text{s}$		53	85	nC
••						

Q_{rr} Notes:

t_{rr}

1. Pulsed Id please refer to Figure 11 & Figure 12 "Forward Bias Safe Operating Area" for more details.

Reverse Recovery Charge

Reverse Recovery Time

2. E_{AS} of 181 mJ is based on starting T_J = 25 °C, L = 3 mH, I_{AS} = 11 A, V_{DD} = 100 V, V_{GS} = 10 V. 100% test at L = 0.3 mH, I_{AS} = 25 A.

3. Computed continuous current limited to Max Junction Temperature only, actual continuous current will be limited by thermal & electro-mechanical application board design.

 $dI_F/dt = 300 \text{ A}/\mu \text{s}$

 V_{GS} = 0 V, V_{DD} = 50 V, I_F = 76 A,

51

141

81

226

ns

nC

I_D, DRAIN CURRENT (A)

DRAIN TO SOURCE ON-RESISTANCE

I_D, DRAIN CURRENT (A)

NORMALIZED

FDP8D5N10C / FDPF8D5N10C N-Channel Shielded Gate PowerTrench[®] MOSFET

FDP8D5N10C / FDPF8D5N10C N-Channel Shielded Gate PowerTrench[®] MOSFET

ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor as sumicability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or inclental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual

ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.