



RoHS

# **TSYS02S** Digital Temperature Sensor

### **SPECIFICATIONS**

- High Accuracy Temperature Sensor
- 16 bit Resolution
- High Speed, low Response Time
- Low Power Consumption
- SDM Output representing Analogue Voltage
- Small TDFN8 Package

The TSYS02S is a single chip, temperature sensor. It provides factory calibrated data corresponding to the measured temperature.

The data is provided via **SDM output**. SDM signal is a pulse sequence that may be converted into analogue voltage by an discrete low pass filter.

The temperature range is -40°C ... +125°C while the resolution is < 0.1°C.

The TDFN8 package provides smallest size and very fast time response

### FEATURES

High Accuracy  $\pm 0.2^{\circ}$ C @ Temp.:  $-5^{\circ}$ C ...  $\pm 50^{\circ}$ C Adjustment of high accuracy temperature range on request Low Supply Current <  $420\mu$ A (standby <  $0.14\mu$ A) SDM Output Small IC-Package TDFN8 2.5mm x 2.5mm Operating Temperature Range:  $-40^{\circ}$ C ...  $\pm 125^{\circ}$ C

### **APPLICATIONS**

Industrial Control Replacement of Precision RTDs, Thermistors and NTCs Heating / Cooling Systems HVAC

### ABSOLUTE MAXIMUM RATINGS

Absolute maximum ratings are limiting values of permitted operation and should never be exceeded under the worst possible conditions either initially or consequently. If exceeded by even the smallest amount, instantaneous catastrophic failure can occur. And even if the device continues to operate satisfactorily, its life may be considerably shortened.

| Parameter             | Symbol | Conditions                                           | Min  | Тур    | Max   | Unit |
|-----------------------|--------|------------------------------------------------------|------|--------|-------|------|
| Supply Voltage        | VDD    |                                                      | -0.3 |        | +3.6  | V    |
| Operating Temperature | Тор    |                                                      | -40  |        | +125  | °C   |
| Storage temperature   | Tstor  |                                                      | -55  |        | +150  | °C   |
| ESD rating            | ESD    | Human Body Model (HBM)<br>pin to pin incl. VDD & GND | -2   |        | +2    | kV   |
| Humidity              | Hum    |                                                      | Non  | conder | nsing |      |

# **OPERATING CONDITIONS**

| Parameter                | Symbol          | Conditions              | Min   | Тур | Max | Unit |
|--------------------------|-----------------|-------------------------|-------|-----|-----|------|
| Operating Supply Voltage | VDD             | stabilized              | 1.5   |     | 3.6 | V    |
| Supply Current           | IDD             | 2 sample per second     |       | 36  |     | μA   |
| Peak Supply Current      | I <sub>DD</sub> | During conversion       |       | 420 |     | μA   |
| Conversion Time          | TCONV           |                         |       | 43  |     | ms   |
| Measurement Frequency    | FMEAS           |                         |       | 2   |     | Hz   |
| SDM Frequency            | FSDM            |                         | 4     |     | 65  | kHz  |
| VDD Capacitor            |                 | Place close to the chip | 100nF |     |     |      |

# **OPERATIONAL CHARACTERISTICS**

#### If not otherwise noted, 3.3V supply voltage is applied.

| Parameter                         | Symbol            | Conditions                                          | Min  | Тур | Max  | Unit |
|-----------------------------------|-------------------|-----------------------------------------------------|------|-----|------|------|
| Temp. Measurement Range           | TRANG             |                                                     | -40  |     | 125  | °C   |
| Accuracy 1                        | T <sub>ACC1</sub> | -5°C < T < +50°C<br>V <sub>DD</sub> = 3.2V – 3.4V   | -0.2 |     | +0.2 | °C   |
| Accuracy 2                        | T <sub>ACC2</sub> | -20°C < T < +100°C<br>V <sub>DD</sub> = 3.2V - 3.4V | -0.5 |     | +0.5 | °C   |
| Accuracy 3                        | T <sub>ACC2</sub> | -40°C < T < +125°C<br>V <sub>DD</sub> = 3.2V - 3.4V | -1.0 |     | +1.0 | °C   |
| PSRR<br>Power Supply Reject Ratio |                   | V <sub>DD</sub> = 2.7 – 3.6<br>T = 25°C, C = 100nF  |      |     | 0.1  | °C   |
| Temperature Resolution            | TRES              |                                                     |      |     | 0.1  | °C   |
| Self Heating                      | SH₁               | 10 samples/s, 60s, still air                        |      |     | 0.1  | °C   |

# ACCURACY



#### ANALOGUE TO DIGITAL CONVERTER

| Parameter       | Symbol | Conditions | Min | Тур | Max | Unit |
|-----------------|--------|------------|-----|-----|-----|------|
| Resolution      |        |            |     | 16  |     | bit  |
| Conversion Time | tc     |            |     | 43  |     | ms   |

# DIGITAL OUTPUTS (SDM)

| Parameter           | Symbol          | Conditions | Min | Тур | Max | Unit |
|---------------------|-----------------|------------|-----|-----|-----|------|
| Output High Voltage | Vон             |            |     | VDD |     | V    |
| Output Low Voltage  | Vol             |            |     | 0   |     | V    |
| Output Sink Current | I <sub>OL</sub> |            |     |     | 40  | μA   |

# CONNECTION DIAGRAM



### **PIN FUNCTION TABLE**

| Pin   | Name    | Туре           | Function                       |
|-------|---------|----------------|--------------------------------|
| 1     | VDD     | Power          | Supply Voltage                 |
| 2     | /SDM_EN | Digital Input  | Enable SDM Output (0 = ON)     |
| 3     | SDM     | Digital Output | SDM Output                     |
| 4     | VSS     | Power          | Ground                         |
| 5 – 8 | NC      |                | Not connected / Do not connect |

# SDM OUTPUT



Sigma Delta Modulation output (SDM) is a bit-stream of pulses. The higher the pulse density is, the higher the measured temperature. The fundamental frequency of SDM is in the range of roughly 4 kHz and 65 kHz

#### START UP

After power-up (VDD between 1.8V and 3.6V) TSYS02S needs at most 150ms for reaching idle state. During that time SDM output is in undefined state. Afterwards, TSYS02S starts measuring and provides data on SDM output.

#### CONVERTING SMD TO ANALOG SIGNAL

An SDM signal normally is converted to an analog voltage signal by the addition of a low-pass filter.



Recommended component values for a RC low pass are R =  $100k\Omega$  and C = 220nF. The resulting output voltage V<sub>SDM</sub> represents the measured temperature with respect to V<sub>DD</sub>.

#### TEMPERATURE CALCULATION

#### **TEMPERATURE POLYNOMAL**

 $T / °C = V_{SDM} / V_{DD} x 175.72 - 46.85$ 

#### EXAMPLE

| V <sub>SDM</sub> : | 1.5V |  |
|--------------------|------|--|
| V <sub>DD</sub> :  | 3.3V |  |

T / °C = 1.5V / 3.3V x 175.72 - 46.85

T / °C = <u>33.02°C</u>

# DIMENSIONS

**TOP VIEW** 



#### **BOTTOM VIEW**



#### SIDE VIEW



#### MARKING

| Line | Description               | Example |
|------|---------------------------|---------|
| 1    | Product Name              | TSY2    |
| 2    | Pin 1 Dot, Date Code YYWW | 1244    |

#### ORDER INFORMATION

The TSYS02 temperature sensor family compromises currently three different solutions. Further customer specific adaptations are available on request. Please refer to the table below for part name, description and order information.

| Part Name | Description                                      | Order Number |
|-----------|--------------------------------------------------|--------------|
| TSYS02D   | Digital Temperature Sensor, TDFN8, I2C Interface | G-NIMO-003   |
| TSYS02P   | Digital Temperature Sensor, TDFN8, PWM Interface | G-NIMO-004   |
| TSYS02S   | Digital Temperature Sensor, TDFN8, SDM Interface | G-NIMO-005   |

#### EMC

Due to the use of these modules for OEM application no CE declaration is done. Especially line coupled disturbances like surge, burst, HF etc. cannot be removed by the module due to the small board area and low price feature. There is no protection circuit against reverse polarity or over voltage implemented. The module will be designed using capacitors for blocking and ground plane areas in order to prevent wireless coupled disturbances as good as possible.

#### **Definitions and Disclaimers**

- Application information Applications that are described herein for any of these products are for illustrative purpose only. MEAS Deutschland GmbH makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.
- Life support applications These products are not designed for use in life support appliances, devices, or systems where malfunctions of these products can reasonably be expected to result in personal injury. MEAS Deutschland GmbH customers using or selling this product for use in such applications do so at their own risk and agree to fully indemnify MEAS Deutschland GmbH for any damages resulting from such improper use or sale.

#### **NORTH AMERICA**

Measurement Specialties, Inc., a TE Connectivity Company 910 Turnpike Road Shrewsbury, MA 01545 Tel: 1-508-842-0516 Fax: 1-508-842-0342 Sales email: temperature.sales.amer@meas-spec.com

#### EUROPE

Measurement Specialties (Europe), Ltd., a TE Connectivity Company Deutschland GmbH Hauert 13 44277 Dortmund Tel: +49 (0) 231/9740-0 Fax: +49 (0) 231/9740-20 Sales email: info.de@meas-spec.com

#### ASIA

Measurement Specialties (China), Ltd., a TE Connectivity Company No. 26 Langshan Road Shenzhen High-Tech Park (North) Nanshan District, Shenzhen 518057 China Tel: +86 755 3330 5088 Fax: +86 755 3330 5099 Sales: temperature.sales.asia@measspec.com

#### TE.com/sensorsolutions

Measurement Specialties, Inc., a TE Connectivity company.

Measurement Specialties, TE Connectivity, TE Connectivity (logo) and EVERY CONNECTION COUNTS are trademarks. All other logos, products and/or company names referred to herein might be trademarks of their respective owners.

The information given herein, including drawings, illustrations and schematics which are intended for illustration purposes only, is believed to be reliable. However, TE Connectivity makes no warranties as to its accuracy or completeness and disclaims any liability in connection with its use. TE Connectivity's obligations shall only be as set forth in TE Connectivity's Standard Terms and Conditions of Sale for this product and in no case will TE Connectivity be liable for any incidental, indirect or consequential damages arising out of the sale, resale, use or misuse of the product. Users of TE Connectivity products should make their own evaluation to determine the suitability of each such product for the specific application.

© 2015 TE Connectivity Ltd. family of companies All Rights Reserved.