
LITEON LITE-ON ELECTRONICS, INC.

Property of Lite-On Only

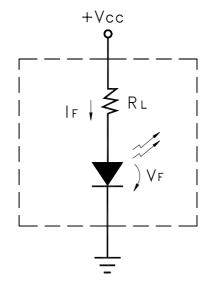
Features

- * Integral current limiting resistor LED.
- * Chip resistor built in, required with 12 volts supply.
- * Cost effective (save external resistor space and cost)

Package Dimensions

Part No.	Lens	Source Color		
LTL-4233-R2	Green Diffused	Green		

Notes:


- 1. All dimensions are in millimeters (inches).
- 2. Tolerance is \pm 0.25mm(.010") unless otherwise noted.
- 3. Protruded resin under flange is 1.0mm(.04") max.
- 4. Lead spacing is measured where the leads emerge from the package.
- 5. Specifications are subject to change without notice.

Part No.: LTL-4233-R2 Page: of 4

Absolute Maximum Ratings at TA=25℃

Parameter	Maximum Rating	Unit
DC Forward Voltage (TA=25°C)	15	V
Derating Linear From 50°C	0.086	V/°C
Reverse Voltage	5	V
Operating Temperature Range	-40°C to +85°C	
Storage Temperature Range	-55°C to + 100°C	
Lead Soldering Temperature [1.6mm(.063") From Body]	260°C for 5 Seconds	

Equivalent circuit:

$$Vcc = 12 Volts$$

(RL = 800 ohms±20%)

$$IF = \frac{Vcc - VF}{RL}$$

Part No.: LTL-4233-R2 Page: 2 of 4

LITEON LITE-ON ELECTRONICS, INC.

Property of Lite-On Only

Electrical / Optical Characteristics at TA=25°C

Parameter	Symbol	Min.	Тур.	Max.	Unit	Test Condition
Luminous Intensity	Iv	8.7	29		mcd	V _{CC} = 12V Note 1,4
Viewing Angle	2 θ _{1/2}		36		deg	Note 2 (Fig.5)
Peak Emission Wavelength	λР		565		nm	Measurement @Peak (Fig.1)
Dominant Wavelength	λd		569		nm	Note 3
Spectral Line Half-Width	Δλ		30		nm	
Forward Current	IF	8	12	16	mA	$V_{CC} = 12V$
Reverse Current	$I_{ m R}$			100	μ A	$V_R = 5V$

Note: 1. Luminous intensity is measured with a light sensor and filter combination that approximates the CIE (Commission International De L'Eclairage) eye-response curve.

- 2. $\theta_{1/2}$ is the off-axis angle at which the luminous intensity is half the axial luminous intensity.
- 3. The dominant wavelength, λ_d is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device.
- 4. The Iv guarantee should be added $\pm 15\%$.

Part No.: LTL-4233-R2 Page: 3 of 4

Typical Electrical / Optical Characteristics Curves

(25°C Ambient Temperature Unless Otherwise Noted)

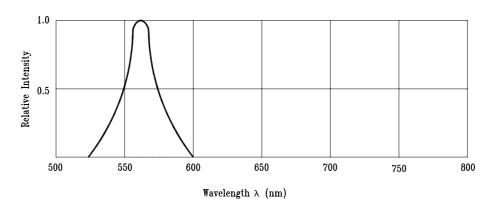
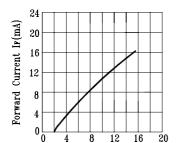



Fig.1 Relative Intensity vs. Wavelength

Applied Forward Voltage Vcc (V)

Fig.2 Forward Current vs. Applied Forward Voltage 12 Volts Devices

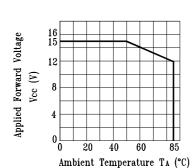


Fig4. Maximum Allowed Applied Forward Voltage vs. 12 Volts Devices

Forward Current (mA)

Fig.3 Relative Luminous Intensity vs. Applied Forward Voltage 12 Volts Devices

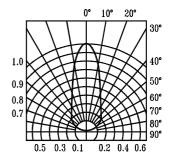


Fig.5 Spatial Distribution

Part No.: LTL-4233-R2 Page: 4 of 4