MWCT1x23 Data Sheet

168 MHz Wireless Power Microcontroller with FPU

The MWCT1x23 MCU family is a member of the Wireless Power parts family and provides a high-performance solution for wireless energy transfer. Built upon the Arm[®] Cortex[®]-M4 core operating at up to 168 MHz with DSP and floating point unit, features include; dual 12-bit analog-to-digital converters with 240ns conversion time, up to 30 PWM channels for support of multi-coil systems, eFlexPWM module with 312 ps resolution for high-speed power control applications, programmable delay block, memory protection unit, dual FlexCAN modules and 256 KB of flash memory.

Core

 Arm[®] Cortex[®]-M4 core up to 168 MHz with single precision Floating Point Unit (FPU)

Memories

- Up to 256 KB of program flash memory
- Up to 32 KB of RAM

System peripherals

- 16-channel DMA controller
- Low-leakage wakeup unit
- SWD interface and Micro Trace buffer
- Advanced independent clocked watchdog

Clocks

- 32 to 40 kHz or 3 to 32 MHz crystal oscillator
- Multipurpose clock generator (MCG) with frequencylocked loop and phase-locked loop referencing either internal or external reference clock

Operating Characteristics

- Voltage range: 1.71 to 3.6 V
- Temperature range: -40 to 105 °C

Human-machine interface

• General-purpose input/output

Communication interfaces

- Two Universal Asynchronous Receiver/Transmitter (UART) / FlexSCI modules with programmable 8or 9-bit data format
- One 16-bit SPI module
- One I2C module
- Two FlexCAN modules

Analog Modules

- Two 12-bit cyclic ADCs
- Four analog comparator (CMP) containing a 6-bit DAC and programmable reference input
- One 12-bit DAC

Timers

- One eFlexPWM with 4 sub-modules, providing 12
 PWM outputs
- Two 8-channel FlexTimers (FTM0 and FTM3)
- One 2-channel FlexTimers (FTM1)
- Four Periodic interrupt timers (PIT)
- Two Programmable Delay Blocks (PDB)
- Quadrature Encoder/Decoder (ENC)
- Ratio of timer input clock frequency vs. core frequency is 1:2 when core frequency is 168 Mhz, and 1:1 when core frequency is less than or equal to 100 Mhz

Security and integrity modules

- Hardware CRC module to support fast cyclic redundancy checks
- External Watchdog Monitor (EWM)

MWCT1023IFVLL MWCT1123FVLL

Orderable part numbers summary1

NXP part	CPU Pin		Total	SRA	A	DC	eFlex	PWM	PW	Fle	ex Time	ers	DA	Flex	CAN
number	freq uenc y (MHz)		flash memo ry (KB)	М (КВ)	ADC A	ADC B	PW MA PW MB	PW MX	M Nan o- Edg e	FTM 0	FTM 3	FTM 1	C	CA N0	CA N1
MWCT1123FVL L	168	100	256	32	18ch	20ch	1x8ch	1x4ch	Yes	1x8ch	1x8ch	1x2ch	1	1	1
MWCT1023IFVL L	168	100	256	32	18ch	20ch	1x8ch	1x4ch	Yes	1x8ch	1x8ch	1x2ch	1	1	1

1. To confirm current availability of ordererable part numbers, go to http://www.nxp.com and perform a part number search.

Device Revision Number

Device Mask Set Number	SIM_SDID[REVID]	JTAG ID Register[PRN]
1N72K	0001	0001

Related Resources

Туре	Description	Resource
Package drawing	Package dimensions are provided in package drawings.	 LQFP 100-pin: 98ASS23308W

Figure 1. MWCT1x23 block diagram

Table of Contents

1			Description	
2				
	2.1		al handling ratings	
	2.2		re handling ratings	
	2.3		andling ratings	
	2.4		e and current operating ratings	
3	2.5 Gor		te Maximum Ratings	
3	3.1		ctrical characteristics	
	3.2		ritching electrical specifications	
	0.2	3.2.1	Recommended Operating Conditions	
		3.2.2	LVD and POR operating requirements	
		3.2.2	Voltage and current operating behaviors	
		3.2.4	Power mode transition operating behaviors	
		3.2.4	Power consumption operating behaviors	
		3.2.6	EMC radiated emissions operating behaviors	
		3.2.0	Designing with radiated emissions in mind	
		3.2.7	Capacitance attributes	
	3.3		ing specifications	
	3.3	3.3.1	Typical device clock specifications	
		3.3.1		
	0.4		General switching specificationsal specifications	
	3.4		Thermal operating requirements	
		3.4.1	· · · · · · · · · · · · · · · · · · ·	
	Dest	3.4.2	Thermal attributes	
4			operating requirements and behaviors	
	4.1		NMD Flootnicele	
		4.1.1	SWD Electricals	
		4.1.2	Debug trace timing specifications	
		4.1.3	JTAG electricals	
	4.2		n modules	
	4.3		modules	
		4.3.1	MCG specifications	
		4.3.2	Oscillator electrical specifications	
	4.4		ries and memory interfaces	
		4.4.1	Flash electrical specifications	
	4.5		ty and integrity modules	
	4.6	Analog	J	33

		4.6.1	12-bit cyclic Analog-to-Digital Converter (ADC)	
			parameters	33
		4.6.2	CMP and 6-bit DAC electrical specifications	35
		4.6.3	12-bit DAC electrical characteristics	.37
	4.7	Timers	5	.40
	4.8	Enhan	ced NanoEdge PWM characteristics	.40
	4.9	Comm	unication interfaces	.41
		4.9.1	SPI (DSPI) switching specifications (limited	
			voltage range)	.41
		4.9.2	SPI (DSPI) switching specifications (full	
			voltage range)	.45
		4.9.3	I2C	. 48
		4.9.4	UART	.48
5	Dim	ensions	3	48
	5.1	Obtain	ing package dimensions	.49
6	Pino			
	6.1	MWCT	1x23 Signal Multiplexing and Pin Assignments.	. 49
	6.2	Pinout	diagrams	.53
7	Ord	ering pa	arts	54
	7.1	Detern	nining valid orderable parts	.55
8	Par	t identifi	cation	.55
	8.1	Descri	ption	.55
	8.2	Fields.		55
	8.3	Examp	ble	.57
9	Terr	ninolog	y and guidelines	57
	9.1		ion: Operating requirement	
	9.2	Definit	ion: Operating behavior	. 57
	9.3	Definit	ion: Attribute	58
	9.4	Definit	ion: Rating	58
	9.5	Result	of exceeding a rating	. 58
	9.6	Relation	onship between ratings and operating	
			ements	
	9.7	Guidel	ines for ratings and operating requirements	.59
	9.8		ion: Typical value	
	9.9	Typica	I Value Conditions	61
10	Rev	ision hi	story	.61

1 Application Description

The MWCT1x23 is a wireless power transmitter controller that integrates all required functions for 65 W consumer wireless power transfer system using the induction principle and in premium version also for WPC PC0 "Qi" compliant wireless power transmitter design. It is an intelligent device which uses periodically analog PING to detect a device for charging while gaining super low standby power. Once the device is detected, the MWCT1x23 controls the power transfer by adjusting the current and voltage of the power stage according to required operating point of power receiver.

The key characteristics and features of the system are:

- Enables single or multi-coil power transmitter topology
- Variable Z-gap range (vertical movement) from 4 mm to 35 mm depends on coils setup. This range is limited by the 65-W power transfer programable thresholds
- Modularity in design of power transmitter unit to extend the number of transmitter coils to form a larger active area, which requires:
 - Minor reconfiguration of software
 - Extension of the multiplexer hardware (coil switches and control signal multiplexer).
 - No major impact on the system topology
- Fast wireless power transfer start-up time below 2.5 s (applicable for up to seven transmitter coils).
- No power from powered device is needed for the power receiver unit to start-up.
- Support of one Power Class 1 (PC1) device with up to 65 W of PRU output. Premium version support also one Qi-certified Power Class 0 (PC0) device with support for 5-W and 15-W receivers.
- Peak power transfer efficiency (input of power transmitter unit to output of power receiver unit) of over 86 % at the best coil placement and 65 W of power receiver unit output.
- Power receiver unit output-integrated protections for over-power and over-current scenarios.
- SRun-time system resonant frequency tracking ranging from 100 kHz to 145 kHz to improve the power-transfer efficiency.
- The power receiver unit power output acts as a constant 19.5-V source, forming an alternative to standard 65-W (or lower) AC power adapters, and thus simplifying its integration into the target system. Output voltage is adjustable.
- Foreign Object Detection during and prior to the power transfer.

Ratings

- Interface for Bluetooth Low Energy (BLE) out-band communication between the power receiver unit and power transmitter unit for secured data and firmware update transfer towards the power transmitter unit.
- The power receiver unit is enabled with authentication devices to ensure that only safe and authentic devices initiate the power transfer in premium version.
- Compliance with the EMC regulation for commercial electronic devices.

Figure 2. Wireless charging system functional diagram

2 Ratings

2.1 Thermal handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
T _{STG}	Storage temperature	-55	150	°C	1
T _{SDR}	Solder temperature, lead-free		260	°C	2

1. Determined according to JEDEC Standard JESD22-A103, *High Temperature Storage Life*.

2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices.

2.2 Moisture handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
MSL	Moisture sensitivity level	_	3	_	1

1. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices.

2.3 ESD handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
V _{HBM}	Electrostatic discharge voltage, human-body model	-2000	+2000	V	1
V _{CDM}	Electrostatic discharge voltage, charged-device model	-500	+500	V	2
I _{LAT}	Latch-up current at ambient temperature of 105 °C	-100	+100	mA	3

1. Determined according to JEDEC Standard JESD22-A114, *Electrostatic Discharge (ESD) Sensitivity Testing Human Body Model (HBM)*.

2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components.

3. Determined according to JEDEC Standard JESD78, IC Latch-up Test.

2.4 Voltage and current operating ratings

Symbol	Description	Min.	Max.	Unit
V _{DD}	Digital supply voltage	-0.3	3.8	V
I _{DD}	Digital supply current	_	120	mA
V _{IO}	Digital pin input voltage (except open drain pins)	-0.3	VDD + 0.3 ¹	V
	Open drain pins (PTC6 and PTC7)	-0.3	5.5	V
Ι _D	Instantaneous maximum current single pin limit (applies to all port pins)	-25	25	mA
V _{DDA}	Analog supply voltage	V _{DD} – 0.3	V _{DD} + 0.3	V

1. Maximum value of V_{IO} (except open drain pins) must be 3.8 V.

General

2.5 Absolute Maximum Ratings

Absolute maximum ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Stress beyond the limits specified in Table 1 may affect device reliability or cause permanent damage to the device. For functional operating conditions, refer to the remaining tables in this section.

Symbol	Description	Notes ¹	Min	Max	Unit
V _{DD}	Supply Voltage Range		-0.3	4.0	V
V _{DDA}	Analog Supply Voltage Range		-0.3	4.0	V
V _{REFHx}	ADC High Voltage Reference		-0.3	4.0	V
V _{REFLx}	ADC Low Voltage Reference		-0.3	0.3	V
ΔV_{DD}	Voltage difference V_{DD} to V_{DDA}		-0.3	0.3	V
ΔV_{SS}	Voltage difference V_{SS} to V_{SSA}		-0.3	0.3	V
V _{IN}	Digital Input Voltage Range	Pin Groups 1, 2	-0.3	4.0	V
V _{OSC}	Oscillator Input Voltage Range	Pin Group 4	-0.4	4.0	V
V _{INA}	Analog Input Voltage Range	Pin Group 3	-0.3	4.0	V
I _{IC}	Input clamp current, per pin (V _{IN} < 0)		_	-20.0	mA
I _{OC}	Output clamp current, per pin $(V_0 < 0)^2$		_	-20.0	mA
V _{OUT}	Output Voltage Range (Normal Push-Pull mode)	Pin Group 1	-0.3	4.0	V
V _{OUTOD}	Output Voltage Range (Open Drain mode)	Pin Group 2	-0.3	5.5	V
V _{OUT_DAC}	DAC Output Voltage Range	Pin Group 5	-0.3	4.0	V
T _A	Ambient Temperature Industrial		-40	105	°C
T _{STG}	Storage Temperature Range (Extended Industrial)		-55	150	°C

Table 1. Absolute Maximum Ratings ($V_{SS} = 0 V$, $V_{SSA} = 0 V$)

1. Default Mode

- Pin Group 1: GPIO, TDI, TDO, TMS, TCK
- Pin Group 2: RESET, PORTC6, and PORTC7
- Pin Group 3: ADC and Comparator Analog Inputs
- Pin Group 4: XTAL, EXTAL
- Pin Group 5: DAC analog output

2. Continuous clamp current per pin is -2.0 mA

3 General

Electromagnetic compatibility (EMC) performance depends on the environment in which the MCU resides. Board design and layout, circuit topology choices, location, characteristics of external components, and MCU software operation play a significant role in EMC performance.

See the following applications notes available on nxp.com for guidelines on optimizing EMC performance.

- AN2321: Designing for Board Level Electromagnetic Compatibility
- AN1050: Designing for Electromagnetic Compatibility (EMC) with HCMOS Microcontrollers
- AN1263: Designing for Electromagnetic Compatibility with Single-Chip Microcontrollers
- AN2764: Improving the Transient Immunity Performance of Microcontroller-Based Applications
- AN1259: System Design and Layout Techniques for Noise Reduction in MCU-Based Systems

3.1 AC electrical characteristics

Unless otherwise specified, propagation delays are measured from the 50% to the 50% point, and rise and fall times are measured at the 20% and 80% points, as shown in the following figure.

The midpoint is V_{IL} + (V_{IH} - V_{IL}) / 2

All digital I/O switching characteristics, unless otherwise specified, assume:

- 1. output pins
 - have $C_L=30$ pF loads,
 - are slew rate disabled, and
 - are normal drive strength

3.2 Nonswitching electrical specifications

General

3.2.1 Recommended Operating Conditions

This section includes information about recommended operating conditions.

NOTE

Recommended V_{DD} ramp rate is between 1 ms and 200 ms.

Table 2. Recommended Operating Conditions ($V_{REFLx}=0V, V_{SSA}=0V, V_{SS}=0V$)

Symbol	Description	Notes ¹	Min	Тур	Мах	Unit	
V _{DD}	Supply Voltage Digital	2, 3	1.71		3.6	V	
V _{DDA}	Supply voltage (analog)	2, 3	2.7	3.0	3.6	V	
V _{REFHx}	ADC (Cyclic) Reference Voltage High		2.7		V _{DDA}	V	
ΔVDD	Voltage difference V_{DD} to V_{DDA}		-0.1	0	0.1	V	
ΔVSS	Voltage difference V_{SS} to V_{SSA}		-0.1	0	0.1	V	
F_MCGOU T	Device Clock Frequency using internal RC oscillator		0.04		168	MHz	
	using external clock source		0		168		
V _{IH}	Input Voltage High (digital inputs)	Pin Groups 1, 2	0.7 x V _{DD}		3.6	V	
V _{IL}	Input Voltage Low (digital inputs)	Pin Groups 1, 2			0.35 x V _{DD}	V	
V _{IHOSC}	Oscillator Input Voltage High	Pin Group 4	2.0		V _{DD} + 0.3	V	
	XTAL driven by an external clock source						
VILOSC	Oscillator Input Voltage Low	Pin Group 4	-0.3		0.8	V	
C _{out}	DAC Output Current Drive Strength	Pin Group 5			1	mA	
T _A	Ambient Operating Temperature		-40		105	°C	

1. Default Mode

- Pin Group 1: GPIO, TDI, TDO, TMS, TCK
- Pin Group 2: RESET
- Pin Group 3: ADC and Comparator Analog Inputs
- Pin Group 4: XTAL, EXTAL
- Pin Group 5: DAC analog output
- Pin Group 6: PTB0, PTB1, PTD4, PTD5, PTD6, PTD7, PTC3, and PTC4. have high output current capability
- Pin Group 7: PTC6 and PTC7 are true open drain pins and have no P-chanl transistor. A external pull-up resistor is required when these pins are outputs.
- 2. If the ADC is enabled, minimum V_{DD} is 2.7 V and minimum V_{DDA} is 2.7 V. ADCA and ADCB are not guaranteed to operate below 2.7 V. All other analog modules besides the ADC and Nano-edge will operate down to 1.71 V.
- 3. If the Nano-edge is enabled, minimum V_{DD} is 3.0 V and minimum V_{DDA} is 3.0 V. Nano-edge is not guaranteed to operate below 3.0 V. All other analog modules besides the ADC and Nano-edge will operate down to 1.71 V.

3.2.2 LVD and POR operating requirements

Table 3. V_{DD} supply LVD and POR operating requirements

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{POR}	Falling V _{DD} POR detect voltage	0.8	1.1	1.5	V	

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V_{LVDH}	Falling low-voltage detect threshold — high range (LVDV=01)	2.48	2.56	2.64	V	
	Low-voltage warning thresholds — high range					1
V_{LVW1H}	Level 1 falling (LVWV=00)	2.62	2.70	2.78	V	
V_{LVW2H}	Level 2 falling (LVWV=01)	2.72	2.80	2.88	V	
V _{LVW3H}	Level 3 falling (LVWV=10)	2.82	2.90	2.98	V	
$V_{\rm LVW4H}$	Level 4 falling (LVWV=11)	2.92	3.00	3.08	V	
V _{HYSH}	Low-voltage inhibit reset/recover hysteresis — high range	_	±80	_	mV	
V _{LVDL}	Falling low-voltage detect threshold — low range (LVDV=00)	1.54	1.60	1.66	V	
	Low-voltage warning thresholds — low range					1
V_{LVW1L}	Level 1 falling (LVWV=00)	1.74	1.80	1.86	V	
V_{LVW2L}	Level 2 falling (LVWV=01)	1.84	1.90	1.96	V	
V _{LVW3L}	 Level 3 falling (LVWV=10) 	1.94	2.00	2.06	V	
V_{LVW4L}	Level 4 falling (LVWV=11)	2.04	2.10	2.16	V	
V _{HYSL}	Low-voltage inhibit reset/recover hysteresis — low range	—	±60	_	mV	
V_{BG}	Bandgap voltage reference	0.97	1.00	1.03	V	
t _{LPO}	Internal low power oscillator period — factory trimmed	900	1000	1100	μs	

Table 3.	V _{DD} supply LVD and POR	operating requirements	(continued)
			(

1. Rising thresholds are falling threshold + hysteresis voltage

3.2.3 Voltage and current operating behaviors Table 4. Voltage and current operating behaviors

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{OH}	Output high voltage — normal drive pad					
	• 2.7 V \leq V _{DD} \leq 3.6 V, I _{OH} = -10mA	V _{DD} – 0.5	—	_	V	
	• 1.71 V \leq V _{DD} \leq 2.7 V, I _{OH} = -5mA	V _{DD} – 0.5	—	_	V	
	Output high voltage — High drive pad					1
	• 2.7 V \leq V _{DD} \leq 3.6 V, I _{OH} = -20mA	V _{DD} – 0.5	—	_	V	
	• $1.71 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}, \text{ I}_{\text{OH}} = -10 \text{mA}$	V _{DD} – 0.5		_	v	
I _{OHT}	Output high current total for all ports	—		100	mA	
V _{OL}	Output low voltage — open drain pad	_		0.5	V	2

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
	• 2.7 V \leq V _{DD} \leq 3.6 V, I _{OH} = 3 mA	—	—	0.5	V	
	• 1.71 V \leq V _{DD} \leq 2.7 V, I _{OH} = 1 mA					
V _{OL}	Output low voltage — normal drive pad			0.5	v	
	• 2.7 V \leq V _{DD} \leq 3.6 V, I _{OL} = 10 mA	_	_	0.5	v	
	• 1.71 V \leq V _{DD} \leq 2.7 V, I _{OL} = 5 mA					
	Output low voltage — high drive pad			0.5	v	1
	• 2.7 V \leq V _{DD} \leq 3.6 V, I _{OL} = 20 mA	_	_	0.5	v	
	• 1.71 V \leq V _{DD} \leq 2.7 V, I _{OL} = 10 mA					
I _{OLT}	Output low current total for all ports	—	—	100	mA	
I _{IN}	Input leakage current, analog and digital pins • $V_{SS} \le V_{IN} \le V_{DD}$	_	0.002	0.5	μΑ	3
R _{PU}	Internal pullup resistors(except RTC_WAKEUP pins)	20	_	50	kΩ	4
R _{PD}	Internal pulldown resistors	20	—	50	kΩ	5

Table 4.	Voltage and	current o	perating	behaviors ((continued)

1. High drive pads are PTB0, PTB1, PTC3, PTC4, PTD4, PTD5, PTD6 and PTD7.

2. Open drain pads are PTC6 and PTC7.

3. Measured at VDD=3.6V

4. Measured at V_{DD} supply voltage = V_{DD} min and Vinput = V_{SS}

5. Measured at V_{DD} supply voltage = V_{DD} min and Vinput = V_{DD}

3.2.4 Power mode transition operating behaviors

All specifications except t_{POR} and VLLSx \rightarrow RUN recovery times in the following table assume this clock configuration:

- CPU and system clocks = 100 MHz
- Bus and flash clock = 25 MHz
- FEI clock mode

Table 5.	Power mode transition operating behaviors
----------	---

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
t _{POR}	After a POR event, amount of time from the point V_{DD} reaches 1.71 V to execution of the first instruction across the operating temperature range of the chip.	_		300	μs	
	• VLLS0 \rightarrow RUN	_		173	μs	

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
	• VLLS1 → RUN					
		_		172	μs	
	 VLLS2 → RUN 					
		_	_	96	μs	
	VLLS3 → RUN					
		_	—	96	μs	
	VLPS → RUN					
		_	—	5.4	μs	
	• STOP \rightarrow RUN					
		—	_	5.4	μs	

 Table 5. Power mode transition operating behaviors (continued)

3.2.5 Power consumption operating behaviors

NOTE

The maximum values represent characterized results equivalent to the mean plus three times the standard deviation (mean+ 3σ)

Table 6.	Power consumption	n operating behaviors	s (All IDDs are	Target values)
----------	-------------------	-----------------------	-----------------	----------------

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
I _{DD_RUN}	Run mode current — all peripheral clocks disabled, code executing from flash, excludes IDDA					Core frequency of 25 MHz.
	• @ 1.8V	_	6.8	17.2	mA	
	• @ 3.0V	—	6.9	17.4	mA	
I _{DD_RUN}	Run mode current — all peripheral clocks disabled, code executing from flash, excludes IDDA					Core frequency of 50 MHz.
	• @ 1.8V					
	• @ 3.0V					
		—	9.9	19.7	mA	
		—	10.0	19.8	mA	
I _{DD_RUN}	Run mode current — all peripheral clocks disabled, code executing from flash, excludes IDDA					Core frequency of 100 MHz.
	• @ 1.8V	—	17.0	25.9	mA	
	• @ 3.0V	—	17.2	26.1	mA	

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
I _{DD_HSRUN}	Run mode current — all peripheral clocks disabled, code executing from flash, excludes IDDA					Core frequenc of 168 MHz.
	• @ 1.8V	—	26.3	45.3	mA	
	• @ 3.0V	—	26.5	45.5	mA	
I _{DD_HSRUN}	Run mode current — all peripheral clocks enabled, code executing from flash,excludes IDDA					Core frequence of 168 MHz. Nanoedge
	• @ 3.0V					module at 84 MHz.
	• @ 25°C	_	34.0	45.5	mA	
	• @ 105°C	_	39.0	53.2	mA	
I _{DD_WAIT}	Wait mode high frequency current at 3.0 V — all peripheral clocks disabled	_	8.9		mA	
I _{DD_VLPR}	Very-low-power run mode current at 3.0 V — all peripheral clocks disabled	—	0.58		mA	Core frequence of 4 Mhz.
I _{DD_VLPR}	Very-low-power run mode current at 3.0 V — all peripheral clocks enabled	—	0.83	—	mA	Core frequend of 4 Mhz.
I _{DD_VLPW}	Very-low-power wait mode current at 3.0 V — all peripheral clocks disabled	—	0.34	_	mA	Bus frequence of 2 MHz.
I _{DD_STOP}	Stop mode current at 3.0 V					
	 @ -40 to 25°C 	—	0.43	2.03	mA	
	• @ 70°C	—	1.16	4.27	mA	
	• @ 105°C	—	3.05	10.13	mA	
I _{DD_VLPS}	Very-low-power stop mode current at 3.0 V					
	 @ −40 to 25°C 	_	58	218	μA	
	• @ 70°C		280	1340	μA	
	• @ 105°C		924	2870	μA	
I _{DD_VLLS3}	Very low-leakage stop mode 3 current at 3.0					
	V		2.8	5.3	μA	
	● @ -40 to 25°C		9.6	35.1	μA	
	• @ 70°C	_	37.4	134.8	μΑ	
	• @ 105°C					
I _{DD_VLLS2}	Very low-leakage stop mode 2 current at 3.0 V		2.7	3.3	μA	
	 @ -40 to 25°C 		6.6	12.2	μΑ	
	• @ 70°C	_	25.9	50.5	μΑ	
	• @ 105°C			00.0	P'''	

Table 6. Power consumption operating behaviors (All IDDs are Target values) (continued)

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
I _{DD_VLLS1}	Very low-leakage stop mode 1 current at 3.0					
	V	_	740	1200	nA	
	• @ -40 to 25°C	—	2.5	10.6	μA	
	 @ 70°C @ 105°C 	—	11.1	26.5	μA	
I _{DD_VLLS0B}	Very low-leakage stop mode 0 current at 3.0 V with POR detect circuit enabled					
	• @ -40 to 25°C	_	420	832	nA	
	• @ 70°C	_	1.9	9.4	μA	
	• @ 105°C	—	10.8	26.3	μA	
I _{DD_VLLS0A}	Very low-leakage stop mode 0 current at 3.0 V with POR detect circuit disabled					
	• @ –40 to 25°C	_	200	599	nA	
	• @ 70°C	_	1.8	10.5	μA	
	• @ 105°C		10.8	26.3	μA	

Table 6. Power consumption operating behaviors (All IDDs are Target values) (continued)

Table 7. Low power mode peripheral adders — typical value

Symbol	Description	Temperature (°C)						Unit
		-40	25	50	70	85	105	1
I _{IREFSTEN4MHz}	4 MHz internal reference clock (IRC) adder. Measured by entering STOP or VLPS mode with 4 MHz IRC enabled.	56	56	56	56	56	56	μA
I _{IREFSTEN32KHz}	32 kHz internal reference clock (IRC) adder. Measured by entering STOP mode with the 32 kHz IRC enabled.	52	52	52	52	52	52	μA
I _{EREFSTEN4MHz}	External 4 MHz crystal clock adder. Measured by entering STOP or VLPS mode with the crystal enabled.	206	228	237	245	251	258	uA
IEREFSTEN32KHz	External 32 kHz crystal clock adder by means of the OSC0_CR[EREFSTEN and EREFSTEN] bits. Measured by entering all modes with the crystal enabled.							nA
	VLLS1							
	VLLS3	440	490	540	560	570	580	
	VLPS	440	490	540	560	570	580	
	STOP	510	560	560	560	610	680	
		510	560	560	560	610	680	
I _{CMP}	CMP peripheral adder measured by placing the device in VLLS1 mode with CMP	22	22	22	22	22	22	μA

Symbol	Description	Temperature (°C)						Unit
		-40	25	50	70	85	105	1
	enabled using the 6-bit DAC and a single external input for compare. Includes 6-bit DAC power consumption.							
I _{UART}	UART peripheral adder measured by placing the device in STOP or VLPS mode with selected clock source waiting for RX data at 115200 baud rate. Includes selected clock source power consumption.							μΑ
	MCGIRCLK (4 MHz internal reference clock) OSCERCLK (4 MHz external crystal)	66 214	66 234	66 246	66 254	66 260	66 268	
I _{BG}	Bandgap adder when BGEN bit is set and device is placed in VLPx or VLLSx mode.	45	45	45	45	45	45	μA

Table 7.	Low power I	mode peripheral a	adders — typical	value (continued)
----------	-------------	-------------------	------------------	-------------------

3.2.5.1 Diagram: Typical IDD_RUN operating behavior

The following data was measured under these conditions:

- MCG in FBE for run mode, and BLPE for VLPR mode
- No GPIOs toggled
- Code execution from flash with cache enabled
- For the ALLOFF curve, all peripheral clocks are disabled except FTFA

Figure 4. Run mode supply current vs. core frequency

General

Figure 5. VLPR mode current vs. core frequency

3.2.6 EMC radiated emissions operating behaviors

NOTE

EMC measurements to IC-level IEC standards are available from NXP on request.

Symbol	Description	Frequency band (MHz)	Тур.	Unit	Notes
V _{RE1}	Radiated emissions voltage, band 1	0.15–50	20	dBµV	1, 2
V _{RE2}	Radiated emissions voltage, band 2	50–150	18	dBµV	
V _{RE3}	Radiated emissions voltage, band 3	150–500	14	dBµV	
V _{RE4}	Radiated emissions voltage, band 4	500-1000	8	dBµV	
V _{RE_IEC}	IEC level	0.15–1000	L		2, 3

- Determined according to IEC Standard 61967-1, Integrated Circuits Measurement of Electromagnetic Emissions, 150 kHz to 1 GHz Part 1: General Conditions and Definitions and IEC Standard 61967-2, Integrated Circuits -Measurement of Electromagnetic Emissions, 150 kHz to 1 GHz Part 2: Measurement of Radiated Emissions – TEM Cell and Wideband TEM Cell Method. Measurements were made while the microcontroller was running basic application code. The reported emission level is the value of the maximum measured emission, rounded up to the next whole number, from among the measured orientations in each frequency range.
- 2. V_{DD} = 3.3 V, T_A = 25 °C, f_{OSC} = 10 MHz (crystal), f_{SYS} = 75 MHz, f_{BUS} = 25 MHz
- 3. Specified according to Annex D of IEC Standard 61967-2, Measurement of Radiated Emissions TEM Cell and Wideband TEM Cell Method

3.2.7 Designing with radiated emissions in mind

To find application notes that provide guidance on designing your system to minimize interference from radiated emissions:

- 1. Go to www.nxp.com.
- 2. Perform a keyword search for "EMC design."

3.2.8 Capacitance attributes

Table 9. Capacitance attributes

Symbol	Description	Min.	Max.	Unit
C _{IN_A}	Input capacitance: analog pins	—	7	pF
C _{IN_D}	Input capacitance: digital pins	—	7	pF

3.3 Switching specifications

3.3.1 Typical device clock specifications

Table 10. Typical device clock specifications

Symbol	Description	Min.	Max.	Unit	Notes
	High Speed RUN r	node			
f _{SYS}	System and core clock	_	168	MHz	
f _{BUS}	Bus and Flash clock	_	24	MHz	
f _{FPCK}	Fast peripheral clock	_	84	MHz	
f _{NANO}	Nano-edge clock	—	168	MHz	
	Normal run mo	de	•	•	
f _{SYS}	System and core clock	—	100	MHz	
f _{BUS}	Bus and Flash clock	—	25	MHz	

Symbol	Description	Min.	Max.	Unit	Notes			
f _{FPCK}	Fast peripheral clock	_	100	MHz				
f _{NANO}	Nano-edge clock	—	200	MHz				
	Low Speed RUN mode							
f _{SYS}	System and core clock	_	50	MHz				
f _{BUS}	Bus and Flash clock	—	25	MHz				
f _{FPCK}	Fast peripheral clock	—	100	MHz				
f _{NANO}	Nano-edge clock	—	200	MHz				

 Table 10. Typical device clock specifications (continued)

NOTE

When NaneEdge circuit is enabled, the following clock set must be followed:

- 1. NanoEdge clock source must be from the PLL output
- 2. NanoEdge clock must be 2x the fast peripheral clock
- 3. NanoEdge clock must in the range of 164 Mhz ~232 Mhz

3.3.2 General switching specifications

These general purpose specifications apply to all signals configured for GPIO, UART, and I²C signals.

Symbol	Description	Min.	Max.	Unit	Notes
	GPIO pin interrupt pulse width (digital glitch filter disabled) — Synchronous path	1.5	_	Bus clock cycles	1
	External RESET and NMI pin interrupt pulse width — Asynchronous path	100	_	ns	2
	GPIO pin interrupt pulse width — Asynchronous path	16	—	ns	2
	Port rise and fall time				3
	Fast slew rate				
	1.71≤ VDD ≤ 2.7 V	—	8	ns	
	2.7 ≤ VDD ≤ 3.6 V	—	7	ns	
	Port rise and fall time				
	Slow slew rate				
	1.71≤ VDD ≤ 2.7 V	_	25	ns	
	2.7 ≤ VDD ≤ 3.6 V	—	15	ns	

Table 11. General switching specifications

1. The greater synchronous and asynchronous timing must be met.

2. This is the shortest pulse that is guaranteed to be recognized.

3. For high drive pins with high drive enabled, load is 75pF; other pins load (low drive) is 25pF.

3.4 Thermal specifications

3.4.1 Thermal operating requirements

 Table 12.
 Thermal operating requirements

	Symbol	Description	Min.	Max.	Unit
Γ	TJ	Die junction temperature	-40	125	°C
	T _A	Ambient temperature	-40	105	°C

3.4.2 Thermal attributes

Board type	Symbol	Description	100 LQFP	Unit	Notes
Single-layer (1S)	R _{θJA}	Thermal resistance, junction to ambient (natural convection)	62	°C/W	1
Four-layer (2s2p)	R _{θJA}	Thermal resistance, junction to ambient (natural convection)	49	°C/W	
Single-layer (1S)	R _{θJMA}	Thermal resistance, junction to ambient (200 ft./min. air speed)	52	°C/W	
Four-layer (2s2p)	R _{θJMA}	Thermal resistance, junction to ambient (200 ft./min. air speed)	43	°C/W	
—	R _{θJB}	Thermal resistance, junction to board	35	°C/W	2
_	R _{θJC}	Thermal resistance, junction to case	17	°C/W	3
_	Ψ_{JT}	Thermal characterization parameter, junction to package top outside center (natural convection)	3	°C/W	4

 Table 13.
 Thermal attributes

- 1. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions—Natural Convection (Still Air), or EIA/JEDEC Standard JESD51-6, Integrated Circuit Thermal Test Method Environmental Conditions—Forced Convection (Moving Air).
- 2. Determined according to JEDEC Standard JESD51-8, Integrated Circuit Thermal Test Method Environmental Conditions—Junction-to-Board.
- 3. Determined according to Method 1012.1 of MIL-STD 883, *Test Method Standard, Microcircuits*, with the cold plate temperature used for the case temperature. The value includes the thermal resistance of the interface material between the top of the package and the cold plate.
- 4. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions—Natural Convection (Still Air).

4 Peripheral operating requirements and behaviors

4.1 Core modules

4.1.1 SWD Electricals

Symbol	Description	Min.	Max.	Unit
	Operating voltage	1.71	3.6	V
J1	SWD_CLK frequency of operation			
	Serial wire debug	0	25	MHz
J2	SWD_CLK cycle period	1/J1	_	ns
J3	SWD_CLK clock pulse width			
	Serial wire debug	20	_	ns
J4	SWD_CLK rise and fall times		3	ns
J9	SWD_DIO input data setup time to SWD_CLK rise	10	_	ns
J10	SWD_DIO input data hold time after SWD_CLK rise	0	_	ns
J11	SWD_CLK high to SWD_DIO data valid	_	32	ns
J12	SWD_CLK high to SWD_DIO high-Z	5	_	ns

Table 14. SWD full voltage range electricals

Figure 6. Serial wire clock input timing

Figure 7. Serial wire data timing

4.1.2 Debug trace timing specifications Table 15. Debug trace operating behaviors

Symbol	Description	Min.	Max.	Unit
T _{cyc}	Clock period	Frequency	MHz	
T _{wl}	Low pulse width	2	—	ns
T _{wh}	High pulse width	2	—	ns
T _r	Clock and data rise time	_	3	ns
T _f	Clock and data fall time	—	3	ns
Ts	Data setup	3	1.5	ns
T _h	Data hold	2	1.0	ns

4.1.3 JTAG electricals

Symbol	Description	Min.	Max.	Unit
	Operating voltage	2.7	3.6	V
J1	TCLK frequency of operation			MHz
	Boundary Scan	0	10	
	JTAG and CJTAG	0	25	
	Serial Wire Debug	0	50	
J2	TCLK cycle period	1/J1	_	ns
JЗ	TCLK clock pulse width			
	Boundary Scan	50	_	ns
	JTAG and CJTAG	20	_	ns
	Serial Wire Debug	10	_	ns
J4	TCLK rise and fall times		3	ns
J5	Boundary scan input data setup time to TCLK rise	20	_	ns
J6	Boundary scan input data hold time after TCLK rise	2.0	_	ns
J7	TCLK low to boundary scan output data valid	_	28	ns
J8	TCLK low to boundary scan output high-Z	_	25	ns
J 9	TMS, TDI input data setup time to TCLK rise	8	—	ns
J10	TMS, TDI input data hold time after TCLK rise	1	_	ns

Symbol	Description	Min.	Max.	Unit
J11	TCLK low to TDO data valid	—	19	ns
J12	TCLK low to TDO high-Z	—	17	ns
J13	TRST assert time	100	_	ns
J14	TRST setup time (negation) to TCLK high	8	_	ns

Table 16. JTAG limited voltage range electricals (continued)

Symbol	Description	Min.	Max.	Unit
	Operating voltage	1.71	3.6	V
J1	TCLK frequency of operation			MHz
	Boundary Scan	0	10	
	JTAG and CJTAG	0	20	
	Serial Wire Debug	0	40	
J2	TCLK cycle period	1/J1		ns
J3	TCLK clock pulse width			
	Boundary Scan	50	—	ns
	JTAG and CJTAG	25	_	ns
	Serial Wire Debug	12.5	_	ns
J4	TCLK rise and fall times		3	ns
J5	Boundary scan input data setup time to TCLK rise	20	_	ns
J6	Boundary scan input data hold time after TCLK rise	2.0	_	ns
J7	TCLK low to boundary scan output data valid	_	30.6	ns
J8	TCLK low to boundary scan output high-Z	_	25	ns
J9	TMS, TDI input data setup time to TCLK rise	8	—	ns
J10	TMS, TDI input data hold time after TCLK rise	1.0		ns
J11	TCLK low to TDO data valid	—	19.0	ns
J12	TCLK low to TDO high-Z		17.0	ns
J13	TRST assert time	100		ns
J14	TRST setup time (negation) to TCLK high	8	—	ns

Table 17. JTAG full voltage range electricals

Figure 11. Boundary scan (JTAG) timing

Figure 12. Test Access Port timing

Figure 13. TRST timing

4.2 System modules

There are no specifications necessary for the device's system modules.

4.3 Clock modules

4.3.1 MCG specifications

Table 18.	MCG s	specifications
-----------	-------	----------------

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
f _{ints_ft}	Internal reference frequency (slow clock) — factory trimmed at nominal VDD and 25 °C	_	32.768		kHz	
f _{ints_t}	Internal reference frequency (slow clock) — user trimmed	31.25	_	39.0625	kHz	
$\Delta_{fdco_res_t}$	Resolution of trimmed average DCO output frequency at fixed voltage and temperature — using SCTRIM and SCFTRIM		± 0.3	± 0.6	%f _{dco}	1
$\Delta f_{dco_res_t}$	Resolution of trimmed average DCO output frequency at fixed voltage and temperature — using SCTRIM only	_	± 0.2	± 0.5	%f _{dco}	1
Δf_{dco_t}	Total deviation of trimmed average DCO output frequency over voltage and temperature	—	± 0.5	± 2	%f _{dco}	1
Δf_{dco_t}	Total deviation of trimmed average DCO output frequency over fixed voltage and temperature range of 0–70°C	_		± 1	%f _{dco}	1
f _{intf_ft}	Internal reference frequency (fast clock) — factory trimmed at nominal VDD and 25°C	—	4	_	MHz	
f _{intf_t}	Internal reference frequency (fast clock) — user trimmed at nominal VDD and 25 °C	3	_	5	MHz	
f _{loc_low}	Loss of external clock minimum frequency — RANGE = 00	(3/5) x f _{ints_t}	_	_	kHz	

Symbol	Description		Min.	Тур.	Max.	Unit	Notes
f _{loc_high}	Loss of external c RANGE = 01, 10,	lock minimum frequency — or 11	(16/5) x f _{ints_t}	_	-	kHz	
	ļ	F	LL		11		1
f _{fll_ref}	FLL reference free	quency range	31.25	_	39.0625	kHz	
f _{dco}	DCO output frequency range	Low range (DRS=00) 640 × f _{fll_ref}	20	20.97	25	MHz	2, 3
		Mid range (DRS=01)	40	41.94	50	MHz	-
		1280 × f _{fll_ref} Mid-high range (DRS=10)	60	62.91	75	MHz	-
		$1920 \times f_{fll_ref}$ High range (DRS=11) $2560 \times f_{fll_ref}$	80	83.89	100	MHz	
co_t_DMX3 2	DCO output frequency	Low range (DRS=00) 732 × f _{fll_ref}		23.99	_	MHz	4, 5
		Mid range (DRS=01) 1464 × f _{fll ref}	—	47.97	—	MHz	
		Mid-high range (DRS=10) 2197 × f _{fll ref}	—	71.99	-	MHz	
		High range (DRS=11) 2929 × f _{fll_ref}	-	95.98	-	MHz	
J _{cyc_fll}	FLL period jitter			100		ps	
-,	 f_{DCO} = 48 M f_{DCO} = 98 M 	IHz IHz	_	180 150	_		
t _{fll_acquire}		ncy acquisition time	_	_	1	ms	6
		P	LL		11		ļ
f _{pll_ref}	PLL reference fre	quency range	8	_	16	MHz	
vcoclk_2x	VCO output frequ		220	_	480	MHz	
f _{vcoclk}	PLL output freque	-	110	_	240	MHz	
vcoclk_90	PLL quadrature o	utput frequency	110	_	240	MHz	
I _{pll}	PLL operating cur • VCO @ 176 f _{pll_ref} = 8 M	rrent 5 MHz (f _{osc_hi_1} = 32 MHz, Hz, VDIV multiplier = 22)	_	2.8	-	mA	7
I _{pll}	PLL operating cur • VCO @ 360 f _{pll_ref} = 8 M	rrent) MHz (f _{osc_hi_1} = 32 MHz, Hz, VDIV multiplier = 45)	_	4.7	_	mA	7
J _{cyc_pll}	PLL period jitter (I • f _{vco} = 48 MH			120		ns	8
	• $f_{vco} = 48 \text{ M}$ • $f_{vco} = 120 \text{ N}$		_	75	_	ps ps	
J _{acc_pll}	PLL accumulated	jitter over 1µs (RMS)					8

 Table 18.
 MCG specifications (continued)

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
	• f _{vco} = 48 MHz	—	1350	—	ps	
	• f _{vco} = 120 MHz	—	600	-	ps	
D _{unl}	Lock exit frequency tolerance	± 4.47	—	± 5.97	%	
t _{pll_lock}	Lock detector detection time		_	150 × 10 ⁻⁶ + 1075(1/ f _{pll_ref})	S	9

Table 18. MCG specifications (continued)

- 1. This parameter is measured with the internal reference (slow clock) being used as a reference to the FLL (FEI clock mode).
- 2. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=0.
- The resulting system clock frequencies should not exceed their maximum specified values. The DCO frequency deviation (Δf_{dco_t}) over voltage and temperature should be considered.
- 4. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=1.
- 5. The resulting clock frequency must not exceed the maximum specified clock frequency of the device.
- 6. This specification applies to any time the FLL reference source or reference divider is changed, trim value is changed, DMX32 bit is changed, DRS bits are changed, or changing from FLL disabled (BLPE, BLPI) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.
- 7. Excludes any oscillator currents that are also consuming power while PLL is in operation.
- 8. This specification was obtained using a NXP developed PCB. PLL jitter is dependent on the noise characteristics of each PCB and results will vary.
- This specification applies to any time the PLL VCO divider or reference divider is changed, or changing from PLL disabled (BLPE, BLPI) to PLL enabled (PBE, PEE). If a crystal/resonator is being used as the reference, this specification assumes it is already running.

4.3.2 Oscillator electrical specifications

Symbol Description Min. Max. Unit Notes Тур. V_{DD} Supply voltage 1.71 ____ 3.6 v Supply current — low-power mode (HGO=0) 1 IDDOSC 500 32 kHz nA 4 MHz 200 μA 8 MHz 300 μA • 16 MHz 950 μΑ • 24 MHz 1.2 mΑ 32 MHz 1.5 mΑ Supply current — high gain mode (HGO=1) 1 Ipposc 4 MHz 400 μΑ

4.3.2.1 Oscillator DC electrical specifications Table 19. Oscillator DC electrical specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
	• 8 MHz		500	—	μA	
	• 16 MHz	—	2.5	_	mA	
	• 24 MHz	—	3	_	mA	
	• 32 MHz	—	4	_	mA	
C _x	EXTAL load capacitance			—		2, 3
Cy	XTAL load capacitance	_	_	—		2, 3
R _F	Feedback resistor — low-frequency, low-power mode (HGO=0)	_		—	MΩ	2, 4
	Feedback resistor — low-frequency, high-gain mode (HGO=1)	_	10	—	MΩ	
	Feedback resistor — high-frequency, low- power mode (HGO=0)	_	_	—	MΩ	
	Feedback resistor — high-frequency, high-gain mode (HGO=1)	_	1	—	MΩ	
R_S	Series resistor — low-frequency, low-power mode (HGO=0)	_		—	kΩ	
	Series resistor — low-frequency, high-gain mode (HGO=1)	_	200	—	kΩ	
	Series resistor — high-frequency, low-power mode (HGO=0)	—		—	kΩ	
	Series resistor — high-frequency, high-gain mode (HGO=1)					
		_	0	_	kΩ	
V _{pp} ⁵	Peak-to-peak amplitude of oscillation (oscillator mode) — low-frequency, low-power mode (HGO=0)	_	0.6	_	V	
	Peak-to-peak amplitude of oscillation (oscillator mode) — low-frequency, high-gain mode (HGO=1)	_	V _{DD}	_	V	
	Peak-to-peak amplitude of oscillation (oscillator mode) — high-frequency, low-power mode (HGO=0)	_	0.6	_	V	
	Peak-to-peak amplitude of oscillation (oscillator mode) — high-frequency, high-gain mode (HGO=1)	_	V _{DD}	_	V	

 Table 19. Oscillator DC electrical specifications (continued)

1. V_{DD}=3.3 V, Temperature =25 $^{\circ}$ C

2. See crystal or resonator manufacturer's recommendation

- 3. C_x, C_y can be provided by using the integrated capacitors when the low frequency oscillator (RANGE = 00) is used. For all other cases external capacitors must be used.
- 4. When low power mode is selected, R_F is integrated and must not be attached externally.
- 5. The EXTAL and XTAL pins should only be connected to required oscillator components and must not be connected to any other devices.

4.3.2.2 Oscillator frequency specifications Table 20. Oscillator frequency specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
f _{osc_lo}	Oscillator crystal or resonator frequency — low- frequency mode (MCG_C2[RANGE]=00)	32	—	40	kHz	
f _{ec_extal}	Input clock frequency (external clock mode)	—	—	48	MHz	1, 2
t _{dc_extal}	Input clock duty cycle (external clock mode)	40	50	60	%	
t _{cst}	Crystal startup time — 32 kHz low-frequency, low-power mode (HGO=0)	—	1000	_	ms	3, 4

1. Other frequency limits may apply when external clock is being used as a reference for the FLL or PLL.

- 2. When transitioning from FEI or FBI to FBE mode, restrict the frequency of the input clock so that, when it is divided by FRDIV, it remains within the limits of the DCO input clock frequency.
- 3. Proper PC board layout procedures must be followed to achieve specifications.
- 4. Crystal startup time is defined as the time between the oscillator being enabled and the OSCINIT bit in the MCG_S register being set.

NOTE

The 32 kHz oscillator works in low power mode by default and cannot be moved into high power/gain mode.

4.4 Memories and memory interfaces

4.4.1 Flash electrical specifications

This section describes the electrical characteristics of the flash memory module.

4.4.1.1 Flash timing specifications — program and erase

The following specifications represent the amount of time the internal charge pumps are active and do not include command overhead.

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
t _{hvpgm4}	Longword Program high-voltage time	_	7.5	18	μs	—
t _{hversscr}	Sector Erase high-voltage time	—	13	113	ms	1
t _{hversall}	Erase All high-voltage time	—	208	1808	ms	1

 Table 21. NVM program/erase timing specifications

1. Maximum time based on expectations at cycling end-of-life.

4.4.1.2 Flash timing specifications — commands Table 22. Flash command timing specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
t _{rd1sec4k}	Read 1s Section execution time (flash sector)	_	—	60	μs	1
t _{pgmchk}	Program Check execution time	_	—	45	μs	1
t _{rdrsrc}	Read Resource execution time	_	—	30	μs	1
t _{pgm4}	Program Longword execution time	_	65	145	μs	_
t _{ersscr}	Erase Flash Sector execution time	_	14	114	ms	2
t _{rd1all}	Read 1s All Blocks execution time	_	—	0.9	ms	1
t _{rdonce}	Read Once execution time	_	—	25	μs	1
t _{pgmonce}	Program Once execution time	_	65	—	μs	_
t _{ersall}	Erase All Blocks execution time	_	280	2100	ms	2
t _{vfykey}	Verify Backdoor Access Key execution time	_	—	30	μs	1

1. Assumes 25 MHz flash clock frequency.

2. Maximum times for erase parameters based on expectations at cycling end-of-life.

4.4.1.3 Flash high voltage current behaviors Table 23. Flash high voltage current behaviors

Symbol	Description	Min.	Тур.	Max.	Unit
I _{DD_PGM}	Average current adder during high voltage flash programming operation	—	2.5	6.0	mA
I _{DD_ERS}	Average current adder during high voltage flash erase operation	—	1.5	4.0	mA

4.4.1.4 Reliability specifications

Table 24. NVM reliability specifications

Symbol	Description	Min.	Typ. ¹	Max.	Unit	Notes
	Program Flash					
t _{nvmretp10k}	Data retention after up to 10 K cycles	5	50	—	years	—
t _{nvmretp1k}	Data retention after up to 1 K cycles	20	100	_	years	—
n _{nvmcycp}	Cycling endurance	10 K	50 K		cycles	2

 Typical data retention values are based on measured response accelerated at high temperature and derated to a constant 25 °C use profile. Engineering Bulletin EB618 does not apply to this technology. Typical endurance defined in Engineering Bulletin EB619.

2. Cycling endurance represents number of program/erase cycles at -40 °C \leq T_j \leq 125 °C.

4.5 Security and integrity modules

There are no specifications necessary for the device's security and integrity modules.

4.6 Analog

4.6.1 12-bit cyclic Analog-to-Digital Converter (ADC) parameters NOTE

The maximum values represent characterized results equivalent to the mean plus three times the standard deviation (mean+ 3σ).

Characteristic	Symbol	Min	Тур	Max	Unit	
Recommended Operating Conditions						
Supply Voltage ¹	V _{DDA}	2.7	3.3	3.6	V	
V _{refh} Supply Voltage ^{, 2}	Vrefhx	2.7		V _{DDA}	V	
ADC Conversion Clock ³	f _{ADCCLK}	0.6		25	MHz	
Conversion Range	R _{AD}	V _{REFL}		V _{REFH}	V	
Input Voltage Range	V _{ADIN}				V	
External Reference		V _{REFL}		V _{REFH}		
Internal Reference		V_{SSA}		V _{DDA}		
Timing and Power	· · · · · ·					
Conversion Time	t _{ADC}		6		ADC Clock Cycles	
ADC Power-Up Time (from adc_pdn)	t _{ADPU}		13		ADC Clock Cycles	
ADC RUN Current (per ADC block)	I _{ADRUN}				mA	
• at 600 kHz ADC Clock, LP mode			1			
● ≤ 8.33 MHz ADC Clock, 00 mode			5.7			
 ≤ 12.5 MHz ADC Clock, 01 mode 			10.5			
 ≤ 16.67 MHz ADC Clock, 10 mode 			17.7			
 ≤ 20 MHz ADC Clock, 11 mode 			22.6			
• ≤ 25 MHz ADC Clock			27.5			
ADC Powerdown Current (adc_pdn enabled)	I _{ADPWRDWN}		0.02		μΑ	
V _{REFH} Current	I _{VREFH}		0.001		μΑ	
Accuracy (DC or Absolute)	· · · · · ·					
Integral non-Linearity ⁴	INL		+/- 3	+/- 5	LSB ⁵	
Differential non-Linearity ⁴	DNL		+/- 0.6	+/- 0.9	LSB ⁵	

Characteristic	Symbol	Min	Тур	Max	Unit
Monotonicity					
Offset ⁶	V _{OFFSET}				LSB ⁴
• 1x gain mode				+/- 25	
• 2x gain mode				+/- 20	
• 4x gain mode				+50, -10	
Gain Error	E _{GAIN}		0.0002		%
AC Specifications ⁷					
Signal to Noise Ratio	SNR		59		dB
Total Harmonic Distortion	THD		64		dB
Spurious Free Dynamic Range	SFDR		65		dB
Signal to Noise plus Distortion	SINAD		59		dB
Effective Number of Bits	ENOB		9.1		bits
ADC Inputs					
Input Leakage Current	l _{iN}		0	+/-2	μA
Input Injection Current ⁸	I _{INJ}			+/-3	mA
Input Capacitance	C _{ADI}		4.8		pF
Sampling Capacitor			1.0		

Table 25. 12-bit ADC electrical specifications (continued)

1. If the ADC's reference is from V_{DDA}: When V_{DDA} is below 2.7 V, then the ADC functions, but the ADC specifications are not guaranteed.

When the input is at the V_{refl} level, then the resulting output will be all zeros (hex 000), plus any error contribution due to offset and gain error. When the input is at the V_{refh} level, then the output will be all ones (hex FFF), minus any error contribution due to offset and gain error.

- 3. ADC clock duty cycle min/max is 45/55% .
- 4. D_{NL} and I_{NL} conversion accuracy is not guaranteed from V_{REFL} to V_{REFL} + 0025 and V_{REFH} to V_{REFH} -0025.

5. LSB = Least Significant Bit = 0.806 mV at 3.3 V VDDA, x1 Gain Setting

- 6. Offset over the conversion range of 0025 to 4070, with internal/external reference.
- 7. Measured when converting a 1 kHz input Full Scale sine wave.
- 8. The current that can be *injected into* or *sourced from* an unselected ADC input, without affecting the performance of the ADC.

4.6.1.1 Equivalent circuit for ADC inputs

The following figure shows the ADC input circuit during sample and hold. S1 and S2 are always opened/closed at non-overlapping phases, and both S1 and S2 operate at the ADC clock frequency. The following equation gives equivalent input impedance when the input is selected.

1 (ADC ClockRate) x 1.4x10¹² + 100*ohm* + 125*ohm*

- 1. Parasitic capacitance due to package, pin-to-pin and pin-to-package base coupling = 1.8pF
- 2. Parasitic capacitance due to the chip bond pad, ESD protection devices and signal routing = 2.04pF
- 3. Sampling capacitor at the sample and hold circuit. Capacitor C1 (4.8pF) is normally disconnected from the input, and is only connected to the input at sampling time.
- 4. S1 and S2 switch phases are non-overlapping and operate at the ADC clock frequency

Figure 14. Equivalent circuit for A/D loading

4.6.2 CMP and 6-bit DAC electrical specifications Table 26. Comparator and 6-bit DAC electrical specifications

Symbol	Description	Min.	Тур.	Max.	Unit
V _{DD}	Supply voltage	1.71	—	3.6	V
I _{DDHS}	Supply current, high-speed mode (EN = 1, PMODE = 1)	—	_	200	μA
I _{DDLS}	Supply current, low-speed mode (EN = 1, PMODE = 0)	—	_	20	μA
V _{AIN}	Analog input voltage	V _{SS}	—	V _{DD}	V
V _{AIO}	Analog input offset voltage	_	_	20	mV

Symbol	Description	Min.	Тур.	Max.	Unit
V _H	Analog comparator hysteresis ¹				
	• CR0[HYSTCTR] = 00	_	5	_	mV
	• CR0[HYSTCTR] = 01	_	10	_	mV
	• CR0[HYSTCTR] = 10	_	20	_	mV
	• CR0[HYSTCTR] = 11	_	30	_	mV
V _{CMPOh}	Output high	V _{DD} – 0.5	_	_	V
V _{CMPOI}	Output low	_	_	0.5	V
t _{DHS}	Propagation delay, high-speed mode (EN = 1, PMODE = 1)	20	50	200	ns
t _{DLS}	Propagation delay, low-speed mode (EN = 1, PMODE = 0)	80	250	600	ns
	Analog comparator initialization delay ²	_		40	μs
I _{DAC6b}	6-bit DAC current adder (enabled)	—	7	_	μA
INL	6-bit DAC integral non-linearity	-0.5	_	0.5	LSB ³
DNL	6-bit DAC differential non-linearity	-0.3	—	0.3	LSB

 Table 26.
 Comparator and 6-bit DAC electrical specifications (continued)

1. Typical hysteresis is measured with input voltage range limited to 0.7 to V_{DD} – 0.7 V.

2. Comparator initialization delay is defined as the time between software writes to change control inputs (writes to DACEN, VRSEL, PSEL, MSEL, VOSEL) and the comparator output settling to a stable level.

3. 1 LSB = V_{reference}/64

Figure 15. Typical hysteresis vs. Vin level ($V_{DD} = 3.3 V$, PMODE = 0)

Figure 16. Typical hysteresis vs. Vin level (V_{DD} = 3.3 V, PMODE = 1)

4.6.3 12-bit DAC electrical characteristics

4.6.3.1 12-bit DAC operating requirements Table 27. 12-bit DAC operating requirements

Symbol	Desciption	Min.	Max.	Unit	Notes
V _{DDA}	Supply voltage	1.71	3.6	V	
V _{DACR}	Reference voltage	1.13	3.6	V	1
CL	Output load capacitance	_	100	pF	2
١L	Output load current	—	1	mA	

1. The DAC reference can be selected to be V_{DDA} or $V_{\text{REF}_\text{OUT}}.$

2. A small load capacitance (47 pF) can improve the bandwidth performance of the DAC.

4.6.3.2 12-bit DAC operating behaviors Table 28. 12-bit DAC operating behaviors

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
I _{DDA_DACL}	Supply current — low-power mode	—	_	330	μΑ	
I _{DDA_DACH}	Supply current — high-speed mode	_	_	1200	μΑ	
	Full-scale settling time (0x080 to 0xF7F) — low-power mode	_	100	200	μs	1

Table continues on the next page...

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
t _{DACHP}	Full-scale settling time (0x080 to 0xF7F) — high-power mode		15	30	μs	1
t _{CCDACLP}	Code-to-code settling time (0xBF8 to 0xC08) • High-speed mode • Low speed mode	_	1	5	μs	1
V _{dacoutl}	DAC output voltage range low — high- speed mode, no load, DAC set to 0x000	_	—	100	mV	
V _{dacouth}	DAC output voltage range high — high- speed mode, no load, DAC set to 0xFFF	V _{DACR} -100	—	V _{DACR}	mV	
INL	Integral non-linearity error — high speed mode	_	-	±8	LSB	2
DNL	Differential non-linearity error — V _{DACR} > 2 V		—	±1	LSB	3
DNL	Differential non-linearity error — V _{DACR} = VREF_OUT	_	—	±1	LSB	4
V _{OFFSET}	Offset error	—	±0.4	±0.8	%FSR	5
E _G	Gain error	—	±0.1	±0.6	%FSR	5
PSRR	Power supply rejection ratio, $V_{DDA} \ge 2.4 \text{ V}$	60	—	90	dB	
T _{CO}	Temperature coefficient offset voltage	—	3.7	—	μV/C	6
T _{GE}	Temperature coefficient gain error	—	0.000421	—	%FSR/C	
Rop	Output resistance (load = $3 \text{ k}\Omega$)	—	—	250	Ω	
SR	Slew rate -80h \rightarrow F7Fh \rightarrow 80h				V/µs	
	 High power (SP_{HP}) 	1.2	1.7	_		
	 Low power (SP_{LP}) 	0.05	0.12	—		
BW	3dB bandwidth				kHz	
	• High power (SP _{HP})	550	_	_		
	• Low power (SP _{LP})	40	_	_		

1. Settling within ±1 LSB

2. The INL is measured for 0 + 100 mV to V_{DACR} -100 mV 3. The DNL is measured for 0 + 100 mV to V_{DACR} -100 mV 4. The DNL is measured for 0 + 100 mV to V_{DACR} -100 mV with V_{DDA} > 2.4 V

Calculated by a best fit curve from V_{SS} + 100 mV to V_{DACR} – 100 mV
 V_{DDA} = 3.0 V, reference select set for V_{DDA} (DACx_CO:DACRFS = 1), high power mode (DACx_CO:LPEN = 0), DAC set to 0x800, temperature range is across the full range of the device

Figure 17. Typical INL error vs. digital code

Figure 18. Offset at half scale vs. temperature

4.7 Timers

See General switching specifications.

4.8 Enhanced NanoEdge PWM characteristics

Table 29.	NanoEdge PWM timing parameters -	- 100 Mhz operating frequency
		ree mini eperaning nequency

Characteristic	Symbol	Min.	Тур.	Max.	Unit
PWM clock frequency			100		MHz
NanoEdge Placement (NEP) Step Size ¹ , ²	pwmp		312		ps
Delay for fault input activating to PWM output deactivated		1			ns

Table continues on the next page...

Table 29. NanoEdge PWM timing parameters - 100 Mhz operating frequency (continued)

Characteristic	Symbol	Min.	Тур.	Max.	Unit
Power-up Time ³	t _{pu}		25		μs

1. Reference 100 MHz in NanoEdge Placement mode.

2. Temperature and voltage variations do not affect NanoEdge Placement step size.

3. Powerdown to NanoEdge mode transition.

Table 30. NanoEdge PWM timing parameters - 84 Mhz operating frequency

Characteristic	Symbol	Min.	Тур.	Max.	Unit
PWM clock frequency			84		MHz
NanoEdge Placement (NEP) Step Size ¹ , ²	pwmp		372		ps
Delay for fault input activating to PWM output deactivated		1			ns
Power-up Time ³	t _{pu}		30		μs

1. Reference 84 MHz in NanoEdge Placement mode.

2. Temperature and voltage variations do not affect NanoEdge Placement step size.

3. Powerdown to NanoEdge mode transition.

4.9 Communication interfaces

4.9.1 SPI (DSPI) switching specifications (limited voltage range)

The DMA Serial Peripheral Interface (DSPI) provides a synchronous serial bus with master and slave operations. Many of the transfer attributes are programmable. The tables below provide DSPI timing characteristics for classic SPI timing modes. Refer to the DSPI chapter of the Reference Manual for information on the modified transfer formats used for communicating with slower peripheral devices.

NOTE

Fast pads:

- SIN: PTE19
- SOUT: PTE18
- SCK: PTE17
- PCS: PTE16

Open drain pads:

- SIN: PTC7
- SOUT: PTC6

Table 31. Master mode DSPI timing for normal pads (limited voltage range)

Num	Description	Min.	Max.	Unit	Notes
	Operating voltage	2.7	3.6	V	
	Frequency of operation	—	25	MHz	
DS1	DSPI_SCK output cycle time	2 x t _{BUS}	—	ns	
DS2	DSPI_SCK output high/low time	(t _{SCK} /2) – 2	(t _{SCK} /2) + 2	ns	
DS3	DSPI_PCSn to DSPI_SCK output valid	(t _{BUS} x 2) – 2	_	ns	1
DS4	DSPI_SCK to DSPI_PCSn output hold	(t _{BUS} x 2) – 2	_	ns	2
DS5	DSPI_SCK to DSPI_SOUT valid	—	8.5	ns	
DS6	DSPI_SCK to DSPI_SOUT invalid	-2	_	ns	
DS7	DSPI_SIN to DSPI_SCK input setup	17	_	ns	
DS8	DSPI_SCK to DSPI_SIN input hold	0		ns	

1. The delay is programmable in SPIx_CTARn[PSSCK] and SPIx_CTARn[CSSCK].

2. The delay is programmable in SPIx_CTARn[PASC] and SPIx_CTARn[ASC].

Table 32. Master mode DSPI timing for fast pads (limited voltage range)

Num	Description	Min.	Max.	Unit	Notes
	Operating voltage	2.7	3.6	V	
	Frequency of operation	—	37.5	MHz	
DS1	DSPI_SCK output cycle time	2 x t _{BUS}	—	ns	
DS2	DSPI_SCK output high/low time	(t _{SCK} /2) – 2	(t _{SCK} /2) + 2	ns	
DS3	DSPI_PCSn to DSPI_SCK output valid	(t _{BUS} x 2) – 2	—	ns	1
DS4	DSPI_SCK to DSPI_PCSn output hold	(t _{BUS} x 2) – 2	_	ns	2
DS5	DSPI_SCK to DSPI_SOUT valid	—	8.5	ns	
DS6	DSPI_SCK to DSPI_SOUT invalid	-2	—	ns	
DS7	DSPI_SIN to DSPI_SCK input setup	13	—	ns	
DS8	DSPI_SCK to DSPI_SIN input hold	0	—	ns	

1. The delay is programmable in SPIx_CTARn[PSSCK] and SPIx_CTARn[CSSCK].

2. The delay is programmable in SPIx_CTARn[PASC] and SPIx_CTARn[ASC].

Table 33. Master mode DSPI timing for open drain pads (limited voltage range)

Num	Description	Min.	Max.	Unit	Notes
	Operating voltage	2.7	3.6	V	

Table continues on the next page...

Num	Description	Min.	Max.	Unit	Notes
	Frequency of operation	_	25	MHz	
DS1	DSPI_SCK output cycle time	2 x t _{BUS}	_	ns	
DS2	DSPI_SCK output high/low time	(t _{SCK} /2) – 2	(t _{SCK} /2) + 2	ns	
DS3	DSPI_PCSn to DSPI_SCK output valid	(t _{BUS} x 2) – 2	—	ns	1
DS4	DSPI_SCK to DSPI_PCSn output hold	(t _{BUS} x 2) – 2	_	ns	2
DS5	DSPI_SCK to DSPI_SOUT valid	_	15.5	ns	
DS6	DSPI_SCK to DSPI_SOUT invalid	-3	—	ns	
DS7	DSPI_SIN to DSPI_SCK input setup	17	—	ns	
DS8	DSPI_SCK to DSPI_SIN input hold	0	—	ns	

Table 33. Master mode DSPI timing for open drain pads (limited voltage range) (continued)

1. The delay is programmable in SPIx_CTARn[PSSCK] and SPIx_CTARn[CSSCK].

2. The delay is programmable in SPIx_CTARn[PASC] and SPIx_CTARn[ASC].

Figure 19. DSPI classic SPI timing — master mode

Table 34. Slave mode DSPI timing for normal pads (limited voltage range)

Num	Description	Min.	Max.	Unit
	Operating voltage	2.7	3.6	V
	Frequency of operation		12.5	MHz
DS9	DSPI_SCK input cycle time	4 x t _{BUS}	—	ns
DS10	DSPI_SCK input high/low time	(t _{SCK} /2) – 2	(t _{SCK} /2) + 2	ns
DS11	DSPI_SCK to DSPI_SOUT valid	_	21	ns
DS12	DSPI_SCK to DSPI_SOUT invalid	0	—	ns
DS13	DSPI_SIN to DSPI_SCK input setup	2	—	ns
DS14	DSPI_SCK to DSPI_SIN input hold	7	—	ns
DS15	DSPI_SS active to DSPI_SOUT driven	_	15	ns
DS16	DSPI_SS inactive to DSPI_SOUT not driven	_	15	ns

Num	Description	Min.	Max.	Unit
	Operating voltage	2.7	3.6	V
	Frequency of operation		25	MHz
DS9	DSPI_SCK input cycle time	4 x t _{BUS}	—	ns
DS10	DSPI_SCK input high/low time	(t _{SCK} /2) – 2	(t _{SCK} /2) + 2	ns
DS11	DSPI_SCK to DSPI_SOUT valid	_	17	ns
DS12	DSPI_SCK to DSPI_SOUT invalid	0	—	ns
DS13	DSPI_SIN to DSPI_SCK input setup	2	—	ns
DS14	DSPI_SCK to DSPI_SIN input hold	7	—	ns
DS15	DSPI_SS active to DSPI_SOUT driven	_	11	ns
DS16	DSPI_SS inactive to DSPI_SOUT not driven	—	11	ns

 Table 35.
 Slave mode DSPI timing for fast pads (limited voltage range)

Table 36. Slave mode DSPI timing for open drain pads (limited voltage range)

Num	Description	Min.	Max.	Unit
	Operating voltage	2.7	3.6	V
	Frequency of operation		12.5	MHz
DS9	DSPI_SCK input cycle time	4 x t _{BUS}		ns
DS10	DSPI_SCK input high/low time	(t _{SCK} /2) – 2	(t _{SCK} /2) + 2	ns
DS11	DSPI_SCK to DSPI_SOUT valid		28	ns
DS12	DSPI_SCK to DSPI_SOUT invalid	0		ns
DS13	DSPI_SIN to DSPI_SCK input setup	2	—	ns
DS14	DSPI_SCK to DSPI_SIN input hold	7	—	ns
DS15	DSPI_SS active to DSPI_SOUT driven	—	22	ns
DS16	DSPI_SS inactive to DSPI_SOUT not driven	_	22	ns

4.9.2 SPI (DSPI) switching specifications (full voltage range)

The DMA Serial Peripheral Interface (DSPI) provides a synchronous serial bus with master and slave operations. Many of the transfer attributes are programmable. The tables below provides DSPI timing characteristics for classic SPI timing modes. Refer to the DSPI chapter of the Reference Manual for information on the modified transfer formats used for communicating with slower peripheral devices.

NOTE

Fast pads:

- SIN: PTE19
- SOUT: PTE18
- SCK: PTE17
- PCS: PTE16

Open drain pads:

- SIN: PTC7
- SOUT: PTC6

Table 37. Master mode DSPI timing for normal pads (full voltage range)

Num	Description	Min.	Max.	Unit	Notes
	Operating voltage	1.71	3.6	V	1
	Frequency of operation	_	18.75	MHz	
DS1	DSPI_SCK output cycle time	4 x t _{BUS}	_	ns	
DS2	DSPI_SCK output high/low time	(t _{SCK} /2) - 4	(t _{SCK/2)} + 4	ns	
DS3	DSPI_PCSn valid to DSPI_SCK delay	(t _{BUS} x 2) – 4	_	ns	2
DS4	DSPI_SCK to DSPI_PCSn invalid delay	(t _{BUS} x 2) – 4	_	ns	3
DS5	DSPI_SCK to DSPI_SOUT valid	_	10	ns	
DS6	DSPI_SCK to DSPI_SOUT invalid	-7.8	—	ns	
DS7	DSPI_SIN to DSPI_SCK input setup	24	—	ns	
DS8	DSPI_SCK to DSPI_SIN input hold	0	—	ns	

1. The DSPI module can operate across the entire operating voltage for the processor, but to run across the full voltage range the maximum frequency of operation is reduced.

2. The delay is programmable in SPIx_CTARn[PSSCK] and SPIx_CTARn[CSSCK].

3. The delay is programmable in SPIx_CTARn[PASC] and SPIx_CTARn[ASC].

Num	Description	Min.	Max.	Unit	Notes
	Operating voltage	1.71	3.6	V	1
	Frequency of operation	_	25	MHz	
DS1	DSPI_SCK output cycle time	4 x t _{BUS}	—	ns	
DS2	DSPI_SCK output high/low time	(t _{SCK} /2) - 4	(t _{SCK/2)} + 4	ns	
DS3	DSPI_PCSn valid to DSPI_SCK delay	(t _{BUS} x 2) – 4	_	ns	2
DS4	DSPI_SCK to DSPI_PCSn invalid delay	(t _{BUS} x 2) – 4	_	ns	3
DS5	DSPI_SCK to DSPI_SOUT valid	-	10	ns	
DS6	DSPI_SCK to DSPI_SOUT invalid	-7.8	—	ns	
DS7	DSPI_SIN to DSPI_SCK input setup	17	—	ns	
DS8	DSPI_SCK to DSPI_SIN input hold	0	—	ns	

 Table 38. Master mode DSPI timing fast pads (full voltage range)

1. The DSPI module can operate across the entire operating voltage for the processor, but to run across the full voltage range the maximum frequency of operation is reduced.

2. The delay is programmable in SPIx_CTARn[PSSCK] and SPIx_CTARn[CSSCK].

3. The delay is programmable in SPIx_CTARn[PASC] and SPIx_CTARn[ASC].

Table 39. Master mode DSPI timing open drain pads (full voltage range)

Num	Description	Min.	Max.	Unit	Notes
	Operating voltage	1.71	3.6	V	1
	Frequency of operation	—	18.75	MHz	
DS1	DSPI_SCK output cycle time	4 x t _{BUS}	—	ns	
DS2	DSPI_SCK output high/low time	(t _{SCK} /2) - 4	(t _{SCK/2)} + 4	ns	
DS3	DSPI_PCSn valid to DSPI_SCK delay	(t _{BUS} x 2) – 4	_	ns	2
DS4	DSPI_SCK to DSPI_PCSn invalid delay	(t _{BUS} x 2) – 4	_	ns	3
DS5	DSPI_SCK to DSPI_SOUT valid	—	26	ns	
DS6	DSPI_SCK to DSPI_SOUT invalid	-7.8	—	ns	
DS7	DSPI_SIN to DSPI_SCK input setup	24	—	ns	
DS8	DSPI_SCK to DSPI_SIN input hold	0	—	ns	

1. The DSPI module can operate across the entire operating voltage for the processor, but to run across the full voltage range the maximum frequency of operation is reduced.

2. The delay is programmable in SPIx_CTARn[PSSCK] and SPIx_CTARn[CSSCK].

3. The delay is programmable in SPIx_CTARn[PASC] and SPIx_CTARn[ASC].

Figure 21. DSPI classic SPI timing — master mode

Num	Description	Min.	Max.	Unit
	Operating voltage	1.71	3.6	V
	Frequency of operation	—	12.5	MHz
DS9	DSPI_SCK input cycle time	8 x t _{BUS}	_	ns
DS10	DSPI_SCK input high/low time	(t _{SCK} /2) - 4	(t _{SCK/2)} + 4	ns
DS11	DSPI_SCK to DSPI_SOUT valid	—	27.5	ns
DS12	DSPI_SCK to DSPI_SOUT invalid	0	_	ns
DS13	DSPI_SIN to DSPI_SCK input setup	2.5	_	ns
DS14	DSPI_SCK to DSPI_SIN input hold	7	—	ns
DS15	DSPI_SS active to DSPI_SOUT driven	—	22	ns
DS16	DSPI_SS inactive to DSPI_SOUT not driven	—	22	ns

Table 40. Slave mode DSPI timing for normal pads (full voltage range)

Table 41. Slave mode DSPI timing for fast pads (full voltage range)

Num	Description	Min.	Max.	Unit
	Operating voltage	1.71	3.6	V
	Frequency of operation	—	18.75	MHz
DS9	DSPI_SCK input cycle time	8 x t _{BUS}	—	ns
DS10	DSPI_SCK input high/low time	(t _{SCK} /2) - 4	(t _{SCK/2)} + 4	ns
DS11	DSPI_SCK to DSPI_SOUT valid	—	20.5	ns
DS12	DSPI_SCK to DSPI_SOUT invalid	0	—	ns
DS13	DSPI_SIN to DSPI_SCK input setup	2.5	—	ns
DS14	DSPI_SCK to DSPI_SIN input hold	7	—	ns
DS15	DSPI_SS active to DSPI_SOUT driven	—	15	ns
DS16	DSPI_SS inactive to DSPI_SOUT not driven	_	15	ns

Num	Description	Min.	Max.	Unit
	Operating voltage	1.71	3.6	V
	Frequency of operation	—	9.375	MHz
DS9	DSPI_SCK input cycle time	8 x t _{BUS}	—	ns
DS10	DSPI_SCK input high/low time	(t _{SCK} /2) - 4	(t _{SCK/2)} + 4	ns
DS11	DSPI_SCK to DSPI_SOUT valid	_	43.5	ns
DS12	DSPI_SCK to DSPI_SOUT invalid	0	—	ns
DS13	DSPI_SIN to DSPI_SCK input setup	2.5	—	ns
DS14	DSPI_SCK to DSPI_SIN input hold	7	—	ns
DS15	DSPI_SS active to DSPI_SOUT driven	_	38	ns
DS16	DSPI_SS inactive to DSPI_SOUT not driven	—	38	ns

 Table 42.
 Slave mode DSPI timing for open drain pads (full voltage range)

Figure 22. DSPI classic SPI timing — slave mode

4.9.3 I²C

See General switching specifications.

4.9.4 UART

See General switching specifications.

5 Dimensions

5.1 Obtaining package dimensions

Package dimensions are provided in package drawings.

To find a package drawing, go to www.nxp.com and perform a keyword search for the drawing's document number:

If you want the drawing for this package	Then use this document number
100-pin LQFP	98ASS23308W

6 Pinout

6.1 MWCT1x23 Signal Multiplexing and Pin Assignments

The following table shows the signals available on each pin and the locations of these pins on the devices supported by this document. The Port Control Module is responsible for selecting which ALT functionality is available on each pin.

100 LQFP	Pin Name	Default	ALT0	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7
1	PTE0/ CLKOUT32K	ADCB_CH6f	ADCB_CH6f	PTE0/ CLKOUT32K		UART1_TX	XBAR0_OUT10	XBAR0_IN11		
2	PTE1/ LLWU_P0	ADCB_CH7f	ADCB_CH7f	PTE1/ LLWU_P0		UART1_RX	XBAR0_OUT11	XBAR0_IN7		
3	PTE2/ LLWU_P1	ADCB_CH6g	ADCB_CH6g	PTE2/ LLWU_P1		UART1_CTS_b				
4	PTE3	ADCB_CH7g	ADCB_CH7g	PTE3		UART1_RTS_b				
5	PTE4/ LLWU_P2	DISABLED		PTE4/ LLWU_P2						
6	PTE5	DISABLED		PTE5					FTM3_CH0	
7	PTE6/ LLWU_P16	DISABLED		PTE6/ LLWU_P16					FTM3_CH1	
8	VDD	VDD	VDD							
9	VSS	VSS	VSS							
10	PTE16	ADCA_CH0	ADCA_CH0	PTE16	SPI0_PCS0	UART1_TX	FTM_CLKIN0		FTM0_FLT3	
11	PTE17/ LLWU_P19	ADCA_CH1	ADCA_CH1	PTE17/ LLWU_P19	SPI0_SCK	UART1_RX	FTM_CLKIN1		LPTMR0_ALT3	
12	PTE18/ LLWU_P20	ADCB_CH0	ADCB_CH0	PTE18/ LLWU_P20	SPI0_SOUT	UART1_CTS_b	I2C0_SDA			

100 LQFP	Pin Name	Default	ALT0	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7
13	PTE19	ADCB_CH1	ADCB_CH1	PTE19	SPI0_SIN	UART1_RTS_b	I2C0_SCL		CMP3_OUT	
14	ADCA_CH6a	ADCA_CH6a	ADCA_CH6a							
15	ADCA_CH7a	ADCA_CH7a	ADCA_CH7a							
16	PTE20	ADCA_CH6b	ADCA_CH6b	PTE20		FTM1_CH0	UART0_TX			
17	PTE21	ADCA_CH7b	ADCA_CH7b	PTE21		FTM1_CH1	UART0_RX			
18	ADCA_CH2	ADCA_CH2	ADCA_CH2							
19	ADCA_CH3	ADCA_CH3	ADCA_CH3							
20	ADCA_CH6c	ADCA_CH6c	ADCA_CH6c							
21	ADCA_CH7c	ADCA_CH7c	ADCA_CH7c							
22	VDDA	VDDA	VDDA							
23	VREFH	VREFH	VREFH							
24	VREFL	VREFL	VREFL							
25	VSSA	VSSA	VSSA							
26	PTE29	ADCA_CH4/ CMP1_IN5/ CMP0_IN5	ADCA_CH4/ CMP1_IN5/ CMP0_IN5	PTE29		FTM0_CH2		FTM_CLKIN0		
27	PTE30	DAC0_OUT/ CMP1_IN3/ ADCA_CH5	DAC0_OUT/ CMP1_IN3/ ADCA_CH5	PTE30		FTM0_CH3		FTM_CLKIN1		
28	ADCA_CH6d/ CMP0_IN4/ CMP2_IN3	ADCA_CH6d/ CMP0_IN4/ CMP2_IN3	ADCA_CH6d/ CMP0_IN4/ CMP2_IN3							
29	VSS	VSS	VSS							
30	VDD	VDD	VDD							
31	PTE24	ADCB_CH4	ADCB_CH4	PTE24	CAN1_TX	FTM0_CH0	XBAR0_IN2	I2C0_SCL	EWM_OUT_b	XBAR0_OUT4
32	PTE25/ LLWU_P21	ADCB_CH5	ADCB_CH5	PTE25/ LLWU_P21	CAN1_RX	FTM0_CH1	XBAR0_IN3	I2C0_SDA	EWM_IN	XBAR0_OUT5
33	PTE26	DISABLED		PTE26						
34	PTA0	JTAG_TCLK/ SWD_CLK		PTA0	UART0_CTS_ b/ UART0_COL_b	FTM0_CH5	XBAR0_IN4	EWM_IN		JTAG_TCLK/ SWD_CLK
35	PTA1	JTAG_TDI		PTA1	UART0_RX	FTM0_CH6	CMP0_OUT		FTM1_CH1	JTAG_TDI
36	PTA2	JTAG_TDO/ TRACE_SWO		PTA2	UART0_TX	FTM0_CH7	CMP1_OUT		FTM1_CH0	JTAG_TDO/ TRACE_SWO
37	PTA3	JTAG_TMS/ SWD_DIO		PTA3	UART0_RTS_b	FTM0_CH0	XBAR0_IN9	EWM_OUT_b	FLEXPWMA_ A0	JTAG_TMS/ SWD_DIO
38	PTA4/ LLWU_P3	NMI_b		PTA4/ LLWU_P3		FTM0_CH1	XBAR0_IN10	FTM0_FLT3	FLEXPWMA_ B0	NMI_b
39	PTA5	DISABLED		PTA5		FTM0_CH2		CMP2_OUT		JTAG_TRST_b
40	VDD	VDD	VDD							
41	VSS	VSS	VSS							
42	PTA12	CMP2_IN0	CMP2_IN0	PTA12	CAN0_TX	FTM1_CH0				FTM1_QD_ PHA

100 LQFP	Pin Name	Default	ALT0	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7
43	PTA13/ LLWU_P4	CMP2_IN1	CMP2_IN1	PTA13/ LLWU_P4	CAN0_RX	FTM1_CH1				FTM1_QD_ PHB
44	PTA14	CMP3_IN0	CMP3_IN0	PTA14	SPI0_PCS0	UART0_TX				
45	PTA15	CMP3_IN1	CMP3_IN1	PTA15	SPI0_SCK	UART0_RX				
46	PTA16	CMP3_IN2	CMP3_IN2	PTA16	SPI0_SOUT	UART0_CTS_				
						UART0_COL_b				
47	PTA17	ADCA_CH7e	ADCA_CH7e	PTA17	SPI0_SIN	UART0_RTS_b				
48	VDD	VDD	VDD							
49	VSS	VSS	VSS							
50	PTA18	EXTAL0	EXTAL0	PTA18	XBAR0_IN7	FTM0_FLT2	FTM_CLKIN0	XBAR0_OUT8	FTM3_CH2	
51	PTA19	XTAL0	XTAL0	PTA19	XBAR0_IN8	FTM1_FLT0	FTM_CLKIN1	XBAR0_OUT9	LPTMR0_ALT1	
52	RESET_b	RESET_b	RESET_b							
53	PTB0/ LLWU_P5	ADCB_CH2	ADCB_CH2	PTB0/ LLWU_P5	I2C0_SCL	FTM1_CH0			FTM1_QD_ PHA	UART0_RX
54	PTB1	ADCB_CH3	ADCB_CH3	PTB1	I2C0_SDA	FTM1_CH1	FTM0_FLT2	EWM_IN	FTM1_QD_ PHB	UART0_TX
55	PTB2	ADCA_CH6e/ CMP2_IN2	ADCA_CH6e/ CMP2_IN2	PTB2	I2C0_SCL	UART0_RTS_b	FTM0_FLT1		FTM0_FLT3	
56	PTB3	ADCB_CH7e/ CMP3_IN5	ADCB_CH7e/ CMP3_IN5	PTB3	I2C0_SDA	UART0_CTS_ b/ UART0_COL_b			FTM0_FLT0	
57	PTB9	DISABLED		PTB9						
58	PTB10	ADCB_CH6a	ADCB_CH6a	PTB10					FTM0_FLT1	
59	PTB11	ADCB_CH7a	ADCB_CH7a	PTB11					FTM0_FLT2	
60	VSS	VSS	VSS						_	
61	VDD	VDD	VDD							
62	PTB16	DISABLED		PTB16		UART0_RX	FTM_CLKIN2	CAN0_TX	EWM_IN	XBAR0_IN5
63	PTB17	DISABLED		PTB17		UARTO_TX	FTM_CLKIN1	CAN0_RX	EWM_OUT_b	
64	PTB18	DISABLED		PTB18	CAN0_TX		FTM3_CH2	_		
65	PTB19	DISABLED		PTB19	CAN0_RX		FTM3_CH3			
66	PTB20	DISABLED		PTB20			_	FLEXPWMA_ X0	CMP0_OUT	
67	PTB21	DISABLED		PTB21				FLEXPWMA_ X1	CMP1_OUT	
68	PTB22	DISABLED		PTB22				FLEXPWMA_ X2	CMP2_OUT	
69	PTB23	DISABLED		PTB23		SPI0_PCS5		FLEXPWMA_ X3	CMP3_OUT	
70	PTC0	ADCB_CH6b	ADCB_CH6b	PTC0	SPI0_PCS4	PDB0_EXTRG			FTM0_FLT1	SPI0_PCS0
71	PTC1/ LLWU_P6	ADCB_CH7b	ADCB_CH7b	PTC1/ LLWU_P6	SPI0_PCS3	UART1_RTS_b	FTM0_CH0	FLEXPWMA_ A3	XBAR0_IN11	
72	PTC2	ADCB_CH6c/ CMP1_IN0	ADCB_CH6c/ CMP1_IN0	PTC2	SPI0_PCS2	UART1_CTS_b	FTM0_CH1	FLEXPWMA_ B3	XBAR0_IN6	

100 LQFP	Pin Name	Default	ALT0	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7
73	PTC3/ LLWU_P7	CMP1_IN1	CMP1_IN1	PTC3/ LLWU_P7	SPI0_PCS1	UART1_RX	FTM0_CH2	CLKOUT	FTM3_FLT0	
74	VSS	VSS	VSS							
75	VDD	VDD	VDD							
76	PTC4/ LLWU_P8	DISABLED		PTC4/ LLWU_P8	SPI0_PCS0	UART1_TX	FTM0_CH3		CMP1_OUT	
77	PTC5/ LLWU_P9	DISABLED		PTC5/ LLWU_P9	SPI0_SCK	LPTMR0_ALT2	XBAR0_IN2		CMP0_OUT	FTM0_CH2
78	PTC6/ LLWU_P10	CMP2_IN4/ CMP0_IN0	CMP2_IN4/ CMP0_IN0	PTC6/ LLWU_P10	SPI0_SOUT	PDB0_EXTRG	XBAR0_IN3	UART0_RX	XBAR0_OUT6	I2C0_SCL
79	PTC7	CMP3_IN4/ CMP0_IN1	CMP3_IN4/ CMP0_IN1	PTC7	SPI0_SIN		XBAR0_IN4	UART0_TX	XBAR0_OUT7	I2C0_SDA
80	PTC8	ADCB_CH7c/ CMP0_IN2	ADCB_CH7c/ CMP0_IN2	PTC8		FTM3_CH4				
81	PTC9	ADCB_CH6d/ CMP0_IN3	ADCB_CH6d/ CMP0_IN3	PTC9		FTM3_CH5				
82	PTC10	ADCB_CH7d	ADCB_CH7d	PTC10		FTM3_CH6				
83	PTC11/ LLWU_P11	ADCB_CH6e	ADCB_CH6e	PTC11/ LLWU_P11		FTM3_CH7				
84	PTC12	DISABLED		PTC12			FTM_CLKIN0		FTM3_FLT0	
85	PTC13	DISABLED		PTC13			FTM_CLKIN1			
86	PTC14	DISABLED		PTC14		I2C0_SCL				
87	PTC15	DISABLED		PTC15		I2C0_SDA				
88	VSS	VSS	VSS							
89	VDD	VDD	VDD							
90	PTC16	DISABLED		PTC16	CAN1_RX					
91	PTC17	DISABLED		PTC17	CAN1_TX					
92	PTC18	DISABLED		PTC18						
93	PTD0/ LLWU_P12	DISABLED		PTD0/ LLWU_P12	SPI0_PCS0		FTM3_CH0	FTM0_CH0	FLEXPWMA_ A0	
94	PTD1	ADCA_CH7f	ADCA_CH7f	PTD1	SPI0_SCK		FTM3_CH1	FTM0_CH1	FLEXPWMA_ B0	
95	PTD2/ LLWU_P13	DISABLED		PTD2/ LLWU_P13	SPI0_SOUT		FTM3_CH2	FTM0_CH2	FLEXPWMA_ A1	I2C0_SCL
96	PTD3	DISABLED		PTD3	SPI0_SIN		FTM3_CH3	FTM0_CH3	FLEXPWMA_ B1	I2C0_SDA
97	PTD4/ LLWU_P14	DISABLED		PTD4/ LLWU_P14	SPI0_PCS1	UART0_RTS_b	FTM0_CH4	FLEXPWMA_ A2	EWM_IN	SPI0_PCS0
98	PTD5	ADCA_CH6g	ADCA_CH6g	PTD5	SPI0_PCS2	UART0_CTS_ b/ UART0_COL_b	FTM0_CH5	FLEXPWMA_ B2	EWM_OUT_b	SPI0_SCK
99	PTD6/ LLWU_P15	ADCA_CH7g	ADCA_CH7g	PTD6/ LLWU_P15	SPI0_PCS3	UART0_RX	FTM0_CH6	FTM1_CH0	FTM0_FLT0	SPI0_SOUT
100	PTD7	DISABLED		PTD7		UART0_TX	FTM0_CH7	FTM1_CH1	FTM0_FLT1	SPI0_SIN

6.2 Pinout diagrams

The following diagrams show pinouts for the packages. For each pin, the diagrams show the default function. However, many signals may be multiplexed onto a single pin.

7 Ordering parts

7.1 Determining valid orderable parts

Valid orderable part numbers are provided on the web. To determine the orderable part numbers for this device, go to www.nxp.com and perform a part number search for the MWCT1x23 device numbers.

8 Part identification

8.1 Description

Part numbers for the chip have fields that identify the specific part. You can use the values of these fields to determine the specific part you have received.

8.2 Fields

MW

Device Type

CT: Transmitter PR: Receiver

Generation

1: 1st product Gen 2: 2nd product Gen

Config

0 = Standard 1 = Premium 2 = Multidevice charging R = Radio

Power Class

0 = 5 W 1 = 15- 30 W 2 = 30-100 W 3 =100+ W

Memory size (Flash)

	4	5	6	
M4F	512 K	1 M	2 M	

Application Blank =Customer A = Auto/IndustrS = A + AUTOSARI = not Qi

Core platform Blank = DSC

Z: CM0+ F: CM4

Temperature

C: -40C to 85C V: -40C to 105C

Figure 24. Ordering information

Package AL: 36 WLCSP FM: 32 QFN LH: 64 LQFP LL: 100LQFP LQ: 144 LQFP MH: 100BGA HT: 48 QFN

8.3 Example

This is an example part number:

MWCT1123FVLL

9 Terminology and guidelines

9.1 Definition: Operating requirement

An *operating requirement* is a specified value or range of values for a technical characteristic that you must guarantee during operation to avoid incorrect operation and possibly decreasing the useful life of the chip.

9.1.1 Example

This is an example of an operating requirement:

Symbol	Description	Min.	Max.	Unit
V _{DD}	1.0 V core supply voltage	0.9	1.1	V

9.2 Definition: Operating behavior

Unless otherwise specified, an *operating behavior* is a specified value or range of values for a technical characteristic that are guaranteed during operation if you meet the operating requirements and any other specified conditions.

9.2.1 Example

This is an example of an operating behavior:

Symbol	Description	Min.	Max.	Unit
	Digital I/O weak pullup/ pulldown current	10	130	μA

9.3 Definition: Attribute

An *attribute* is a specified value or range of values for a technical characteristic that are guaranteed, regardless of whether you meet the operating requirements.

9.3.1 Example

This is an example of an attribute:

Symbol	Description	Min.	Max.	Unit
CIN_D	Input capacitance: digital pins	—	7	pF

9.4 Definition: Rating

A *rating* is a minimum or maximum value of a technical characteristic that, if exceeded, may cause permanent chip failure:

- Operating ratings apply during operation of the chip.
- *Handling ratings* apply when the chip is not powered.

9.4.1 Example

This is an example of an operating rating:

Symbol	Description	Min.	Max.	Unit
V _{DD}	1.0 V core supply voltage	-0.3	1.2	V

9.5 Result of exceeding a rating

9.6 Relationship between ratings and operating requirements

9.7 Guidelines for ratings and operating requirements

Follow these guidelines for ratings and operating requirements:

- Never exceed any of the chip's ratings.
- During normal operation, don't exceed any of the chip's operating requirements.
- If you must exceed an operating requirement at times other than during normal operation (for example, during power sequencing), limit the duration as much as possible.

9.8 Definition: Typical value

A *typical value* is a specified value for a technical characteristic that:

- Lies within the range of values specified by the operating behavior
- Given the typical manufacturing process, is representative of that characteristic during operation when you meet the typical-value conditions or other specified conditions

Typical values are provided as design guidelines and are neither tested nor guaranteed.

9.8.1 Example 1

This is an example of an operating behavior that includes a typical value:

Symbol	Description	Min.	Тур.	Max.	Unit
I _{WP}	Digital I/O weak pullup/pulldown current	10	70	130	μA

9.8.2 Example 2

This is an example of a chart that shows typical values for various voltage and temperature conditions:

9.9 Typical Value Conditions

Typical values assume you meet the following conditions (or other conditions as specified):

Symbol	Description	Value	Unit
T _A	Ambient temperature	25	C°
V _{DD}	3.3 V supply voltage	3.3	V

10 Revision history

The following table provides a revision history for this document.

Table 43. Revision history

Rev. No.	Date	Substantial Changes
0	04/2019	Initial release.

How to Reach Us:

Home Page: nxp.com

Web Support: nxp.com/support Information in this document is provided solely to enable system and software implementers to use NXP products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. NXP reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at the following address: nxp.com/SalesTermsandConditions.

While NXP has implemented advanced security features, all products may be subject to unidentified vulnerabilities. Customers are responsible for the design and operation of their applications and products to reduce the effect of these vulnerabilities on customer's applications and products, and NXP accepts no liability for any vulnerability that is discovered. Customers should implement appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP. the NXP logo. NXP SECURE CONNECTIONS FOR A SMARTER WORLD. COOLFLUX. EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET, TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C-5, CodeTEST, CodeWarrior, ColdFire, ColdFire+, C-Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, Ready Play, SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower, TurboLink, and UMEMS are trademarks of NXP B.V. All other product or service names are the property of their respective owners. AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro, µVision, Versatile are trademarks or registered trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. The related technology may be protected by any or all of patents, copyrights, designs and trade secrets. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks licensed by Power.org.

© 2019 NXP B.V.

Document Number MWCT1123FVLL Revision 0, 04/2019

