

LM2904W, LM2904AW

Datasheet - production data

Low power dual operational amplifier

Features

- Frequency compensation implemented internally
- Large DC voltage gain: 100 dB
- Wide bandwidth (unity gain): 1.1 MHz (temperature compensated)
- Very low supply current/op (500 µA per channel)
- Low input bias current: 20 nA (temperature compensated)
- Low input offset current: 2 nA
- Input common-mode voltage range includes negative rail
- Differential input voltage range equal to the power supply voltage
- Large output voltage swing 0 V to (V_{CC}⁺ - 1.5 V)
- ESD internal protection: 2 kV
- Automotive qualification

Description

The LM2904W and LM2904AW circuits consist of two independent, high gain operational amplifiers which employ internal frequency compensation and are designed specifically for automotive and industrial control systems. They operate from a single power supply over a wide range of voltages. The low power supply drain is independent of the magnitude of the power supply voltage.

Application areas include transducer amplifiers, DC gain blocks, and all the conventional op-amp circuits which now can be more easily implemented in single power supply systems. For example, these circuits can be directly supplied from standard +5 V which is used in logic systems and easily provides the required interface electronics without requiring any additional power

supply. In linear mode, the input common mode voltage range includes ground. The output voltage can also swing to ground even though operated from a single power supply.

February 2013

Doc ID 9893 Rev 11

This is information on a product in full production.

1/21

Contents

1	Sche	ematic diagram	3
2	Abso	olute maximum ratings and operating conditions	1
3	Elec	trical characteristics	3
	Туріс	al single-supply applications	1
4	Масі	romodel	3
	4.1	Important note concerning this macromodel	3
	4.2	Macromodel code	
5	Pack	age information	5
	5.1	DIP8 package information	6
	5.2	SO-8 package information 17	7
	5.3	TSSOP8 package information 18	3
6	Orde	ering information)
7	Revi	sion history)
	C		
4	\sim		

1 Schematic diagram

Figure 1. Schematic diagram (1/2 LM2904W, LM2904AW)

2 Absolute maximum ratings and operating conditions

Symbol	Parameter	Value	Unit
V _{CC}	Supply voltage ⁽¹⁾	+32	7
V _{id}	Differential input voltage ⁽²⁾	-0.3 V to V _{CC} + 0.3	V
V _{in}	Input voltage	-0.3 V to V _{CC} + 0.3	
	Output short-circuit duration ⁽³⁾	Infinite	S
I _{in}	Input current ⁽⁴⁾	50	mA
T _{stg}	Storage temperature range	-65 to +150	°C
Тj	Maximum junction temperature	150	C
R _{thja}	Thermal resistance junction to ambient ⁽⁵⁾ DIP8 SO-8 TSSOP8	85 125 120	°0444
R _{thjc}	Thermal resistance junction to case ⁽⁵⁾ DIP8 SO-8 TSSOP8	41 40 37	°C/W
T _{stg}	Storage temperature range	-65 to +150	°C
ESD	HBM: human body model ⁽⁶⁾ MM: machine model ⁽⁷⁾ CDM: charged device model ⁽⁸⁾	2000 200 1500	V

Table 1. Absolute maximum ratings (AMR)

1. All voltage values, except differential voltage are with respect to network ground terminal.

2. Differential voltages are the non-inverting input terminal with respect to the inverting input terminal.

 Short-circuits from the output to V_{CC} can cause excessive heating if V_{CC}⁺ > 15 V. The maximum output current is approximately 40 mA, independent of the magnitude of V_{CC}. Destructive dissipation can result from simultaneous shortcircuits on all amplifiers.

- 4. This input current only exists when the voltage at any of the input leads is driven negative. It is due to the collector-base junction of the input PNP transistor becoming forward biased and thereby acting as input diode clamps. In addition to this diode action, there is also NPN parasitic action on the IC chip. This transistor action can cause the output voltages of the Op-amps to go to the V_{CC} voltage level (or to ground for a large overdrive) for the time during which an input is driven negative. This is not destructive and normal output is restored for input voltages above -0.3 V.
- 5. Short-circuits can cause excessive heating and destructive dissipation. R_{th} are typical values.

 Human body model: 100 pF discharged through a 1.5 kΩ resistor between two pins of the device, done for all couples of pin combinations with other pins floating.

- 7. Machine model: a 200 pF cap is charged to the specified voltage, then discharged directly between two pins of the device with no external series resistor (internal resistor < 5 Ω), done for all couples of pin combinations with other pins floating.
- 8. Charged device model: all pins plus package are charged together to the specified voltage and then discharged directly to the ground.

Table 2.Operating conditions

Symbol	Parameter	Value	Unit
V _{CC}	Supply voltage	3 to 30	
V _{icm}	Common mode input voltage range $T_{min} \leq T_{amb} \leq T_{max}$	V _{CC} ⁺ - 1.5 V _{CC} ⁺ - 2	V
T _{oper}	Operating free-air temperature range	-40 to +125	°C

3 Electrical characteristics

Table 3. V_{CC}^+ = 5 V, V_{CC}^- = Ground, V_O = 1.4 V, T_{amb} = 25 °C (unless otherwise specified)

Symbol	Parameter	Min.	Тур.	Max.	Unit
V _{io}	Input offset voltage ⁽¹⁾ $T_{amb} = 25 \circ C LM2904W$ $T_{amb} = 25 \circ C LM2904AW$ $T_{min} \leq T_{amb} \leq T_{max} LM2904W$ $T_{min} \leq T_{amb} \leq T_{max} LM2904AW$	ć	2	7 2 9 4	mV
DV _{io}	Input offset voltage drift		7	30	µV/°C
l _{io}	Input offset current $T_{min} \le T_{amb} \le T_{max}$	X	2	30 40	nA
DI _{io}	Input offset current drift	ŕ	10	300	pA/°C
l _{ib}	Input bias current ⁽²⁾ $T_{min} \le T_{amb} \le T_{max}$		20	150 200	nA
A _{vd}	Large signal voltage gain V_{CC}^{+} = +15 V, R _L = 2 kΩ, V _o = 1.4 V to 11.4 V $T_{min} \le T_{amb} \le T_{max}$	50 25	100		V/mV
SVR	Supply voltage rejection ratio $ \begin{array}{c} R_S \leq 10 \ k\Omega \\ T_{min} \leq T_{amb} \leq T_{max} \end{array} $	65 65	100		dB
I _{CC}	Supply current, all Amp, no load $V_{CC} = +5 V$ $T_{min} \le T_{amb} \le T_{max}$, $V_{CC} = +30 V$		0.7	1.2 2	mA
CMR	$ \begin{array}{l} \mbox{Common-mode rejection ratio} \\ \mbox{R}_S = 10 \ \mbox{k}\Omega \\ \mbox{T}_{min} \leq \mbox{T}_{amb} \leq \mbox{T}_{max} \end{array} $	70 60	85		dB
I _{source}	Output short-circuit current V_{CC}^+ = +15 V, V _o = +2 V, V _{id} = +1 V	20	40	60	mA
l _{sink}	Output sink current $V_0 = 2 V, V_{CC}^+ = +5 V$ $V_0 = +0.2 V, V_{CC}^+ = +15 V$	10 12	20 50		mA μA
V _{OH}		26 26 27 27	27 28		V
V _{OL}	Low level output voltage $R_L = 10 \ k\Omega$ $T_{min} \le T_{amb} \le T_{max}$		5	20 20	mV

Symbol	Parameter	Min.	Тур.	Max.	Unit
SR	Slew rate V_{CC}^+ = 15 V, V_{in} = 0.5 to 3 V, R_L = 2 kΩ, C_L = 100 pF, unity gain $T_{min} \le T_{amb} \le T_{max}$	0.3 0.2	0.6		V/µs
GBP	Gain bandwidth product f = 100 kHz, V_{CC}^+ = 30 V, V_{in} = 10 mV, R_L = 2 k Ω , C_L = 100pF	0.7	1.1		MHz
THD	Total harmonic distortion f = 1 kHz, A _V = 20 dB, R _L = 2 k Ω , V _o = 2 V _{pp} , C _L = 100 pF, V _{CC} ⁺ = 30 V		0.02		%
e _n	Equivalent input noise voltage f = 1 kHz, $R_S = 100 \Omega$, $V_{CC}^+ = 30 V$		55		nV/√Hz
V ₀₁ /V ₀₂	Channel separation $^{(3)}$ 1 kHz \leq f \leq 20 kHz	A .	120		dB

V_{CC}^{+} = 5 V, V_{CC}^{-} = Ground, V_{O} = 1.4 V, T_{amb} = 25 °C (unless otherwise specified) (continued) Table 3.

1. $V_{O} = 1.4 \text{ V}, \text{ R}_{S} = 0 \Omega, 5 \text{ V} < V_{CC}^{+} < 30 \text{ V}, 0 \text{ V} < V_{ic} < V_{CC}^{+} - 1.5 \text{ V}$

2. The direction of the input current is out of the IC. This current is essentially constant, independent of the state of the output, so there is no change in the loading charge on the input lines.

3. Due to the proximity of external components, ensure that stray capacitance does not cause coupling between these external parts. Typically, this can be detected because this type of capacitance increases at higher frequencies.

Figure 4. Voltage follower pulse response (Vcc = 15 V)

Figure 7. (Vcc+ - Vout) vs output source current

Doc ID 9893 Rev 11

Doc ID 9893 Rev 11

Typical single-supply applications

Figure 19. AC coupled non-inverting amplifier

Figure 20. Non-inverting DC gain

Figure 23. Using symmetrical amplifiers to reduce input current

Figure 21. DC summing amplifier

Figure 24. Low drift peak detector

4 Macromodel

4.1 Important note concerning this macromodel

Please consider the following remarks before using these macromodels.

- All models are a trade-off between accuracy and complexity (i.e. simulation time).
- Macromodels are not a substitute to breadboarding; rather, they confirm the validity of a design approach and help to select surrounding component values.
- A macromodel emulates the nominal performance of a typical device within specified operating conditions (for example, temperature, supply voltage). Thus the macromodel is often not as exhaustive as the datasheet, its purpose is to illustrate the main parameters of the product.

Data derived from macromodels used outside of the specified conditions (for example, V_{CC} , temperature) or even worse, outside of the device operating conditions (for example, V_{CC} , V_{icm}), are not reliable in any way.

4.2 Macromodel code

```
** Standard Linear Ics Macromodels,
                                   1993.
** ESD diodes added to the initial macromodel (2007).
** CONNECTIONS :
* 1 INVERTING INPUT
* 2 NON-INVERTING INPUT
* 3 OUTPUT
* 4 POSITIVE POWER SUPPLY
* 5 NEGATIVE POWER SUPPLY
.SUBCKT LM2904W 1 2 3 4 5
.MODEL MDTH D IS=1E-8 KF=3.104131E-15 CJO=10F
D1A 1 4 MDTH 400E-12
D1B 5 1 MDTH 400E-12
D2A 2 4 MDTH 400E-12
D2B 5 2 MDTH 400E-12
* INPUT STAGE
CIP 2 5 1.00000E-12
CIN 1 5 1.00000E-12
EIP 10 5 2 5 1
EIN 16 5 1 5 1
RIP 10 11 2.600000E+01
RIN 15 16 2.600000E+01
RIS 11 15 2.003862E+02
DIP 11 12 MDTH 400E-12
DIN 15 14 MDTH 400E-12
VOFP 12 13 DC 0
VOFN 13 14 DC 0
IPOL 13 5 1.000000E-05
CPS 11 15 3.783376E-09
DINN 17 13 MDTH 400E-12
VIN 17 5 0.000000e+00
```


DINR 15 18 MDTH 400E-12 VIP 4 18 2.000000E+00 FCP 4 5 VOFP 3.400000E+01 FCN 5 4 VOFN 3.400000E+01 FIBP 2 5 VOFN 2.000000E-03 FIBN 5 1 VOFP 2.000000E-03 * AMPLIFYING STAGE FIP 5 19 VOFP 3.600000E+02 FIN 5 19 VOFN 3.600000E+02 RG1 19 5 3.652997E+06 RG2 19 4 3.652997E+06 CC 19 5 6.00000E-09 DOPM 19 22 MDTH 400E-12 DONM 21 19 MDTH 400E-12 HOPM 22 28 VOUT 7.500000E+03 VIPM 28 4 1.50000E+02 HONM 21 27 VOUT 7.500000E+03 VINM 5 27 1.500000E+02 EOUT 26 23 19 5 1 VOUT 23 5 0 ROUT 26 3 20 COUT 3 5 1.00000E-12 DOP 19 25 MDTH 400E-12 VOP 4 25 2.242230E+00 DON 24 19 MDTH 400E-12 VON 24 5 7.922301E-01 .ENDS

5 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

5.1 DIP8 package information

Figure 26. DIP8 package mechanical drawing

Table 4. DIP8 package mechanical data

			Dime	nsions		
Ref.		Millimeters			Inches	
	Min.	Тур.	Max.	Min.	Тур.	Max.
А			5.33			0.210
A1	0.38			0.015		
A2	2.92	3.30	4.95	0.115	0.130	0.195
b	0.36	0.46	0.56	0.014	0.018	0.022
b2	1.14	1.52	1.78	0.045	0.060	0.070
c	0.20	0.25	0.36	0.008	0.010	0.014
D	9.02	9.27	10.16	0.355	0.365	0.400
E	7.62	7.87	8.26	0.300	0.310	0.325
E1	6.10	6.35	7.11	0.240	0.250	0.280
е		2.54			0.100	
eA		7.62			0.300	
eB			10.92			0.430
L	2.92	3.30	3.81	0.115	0.130	0.150

5.2 SO-8 package information

Table 5. SO-8 package mechanical data

			\bigcirc	Dime	nsions			
	Ref.		Millimeters			Inches		
		Min.	Тур.	Max.	Min.	Тур.	Max.	
	А			1.75			0.069	
	A1	0.10		0.25	0.004		0.010	
	A2	1.25			0.049			
	b	0.28		0.48	0.011		0.019	
	С	0.17		0.23	0.007		0.010	
	D	4.80	4.90	5.00	0.189	0.193	0.197	
	E	5.80	6.00	6.20	0.228	0.236	0.244	
	E1	3.80	3.90	4.00	0.150	0.154	0.157	
	е		1.27			0.050		
	h	0.25		0.50	0.010		0.020	
\sim	L	0.40		1.27	0.016		0.050	
	L1		1.04			0.040		
	k	1°		8°	1°		8°	
	CCC			0.10			0.004	

5.3 TSSOP8 package information

Figure 28. TSSOP8 package mechanical drawing

Table 6. TSSOP8 package mechanical data

			()	Dime	nsions				
	Ref.		Millimeters			Inches			
		Min.	Тур.	Max.	Min.	Тур.	Max.		
	А			1.20			0.047		
	A1	0.05	-	0.15	0.002		0.006		
	A2	0.80	1.00	1.05	0.031	0.039	0.041		
	b	0.19		0.30	0.007		0.012		
	С	0.09		0.20	0.004		0.008		
	D	2.90	3.00	3.10	0.114	0.118	0.122		
	E	6.20	6.40	6.60	0.244	0.252	0.260		
	E1	4.30	4.40	4.50	0.169	0.173	0.177		
	е		0.65			0.0256			
	k	0°		8°	0°		8°		
$\mathbf{\nabla}$	L	0.45	0.60	0.75	0.018	0.024	0.030		
	L1		1.00			0.039			
	aaa			0.10			0.004		

Ordering information 6

Table 7. **Order codes**

Order code	Temperature range	Package	Packing	Marking
LM2904WN		DIP8	Tube	LM2904W
LM2904WD LM2904WDT		SO-8	Tube or tape & reel	2904W
LM2904WPT		TSSOP8	Tape & reel	2904W
LM2904WYDT ⁽¹⁾	40 C, +125 C	SO-8 (automotive grade level)	Tube or tape & reel	2904WY
LM2904WYPT ⁽²⁾		TSSOP8		K04WY
LM2904AWYPT	7	(automotive grade level)	Tape & reel	K05WY

Qualified and characterized according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC Q001 & Q 002 or equivalent. 1.

Qualification and characterization according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC Q001 & Q 002 or equivalent are on-going. 2.

7 Revision history

Date	Revision	Changes
1-Sep-2003	1	Initial release.
1-Jul-2005	2	 PPAP references inserted in the datasheet see Section 6: Ordering information on page 19. ESD protection inserted in Table 1: Absolute maximum ratings (AMR) on page 4.
1-Oct-2005	3	Correction of error in AVD min. value see <i>Table 3 on page 6</i> .
1-Dec-2005	4	LM2904WYPT PPAP reference added in Section 6: Ordering information on page 19. Information added in Table 1: Absolute maximum ratings (AMR) on page 4.
2-May-2006	5	Minimum value of slew rate at 25°C and in temperature added in <i>Table 3 on page 6</i> .
20-Jul-2007	6	 Power dissipation value corrected in <i>Table 1: Absolute maximum ratings</i> (<i>AMR</i>). ESD tolerance for HBM model improved to 2kV in <i>Table 3 on page 6</i>. Equivalent input noise voltage parameter added in <i>Table 3</i>. Electrical characteristics curves updated. Added <i>Figure 17: Phase margin vs capacitive load on page 10</i>. <i>Section 5: Package information</i> updated. <i>Section 4: Macromodel</i> added.
18-Dec-2007	7	Reformatted electrical characteristics table, <i>Table 3</i> . Deleted V _{opp} parameter in <i>Table 3</i> . Corrected footnotes for automotive grade order codes in <i>Table 7</i> .
21-Feb-2008	8	Corrected SO-8 package mechanical data. Dimension E in drawing was marked H in table. Corrected revision history.
24-Feb-2011	9	Corrected x-axis in <i>Figure 5</i> .
04-Jul-2012	10	Removed commercial type LM2904WYD. Updated <i>Table 7: Order codes</i> .
12-Feb-2013	11	Added part number LM2904AW. Added "automotive qualification to <i>Features</i> . <i>Table 3: VCC+ = 5 V, VCC- = Ground, V_O = 1.4 V, T_{amb} = 25 °C (unless otherwise specified)</i> : Updated V _{io} Added order code LM2904AWYPT to <i>Table 7: Order codes</i>

Table 8.Document revision history

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2013 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

Doc ID 9893 Rev 11