

Function	Туре	Design	Description	Can be used with
Shock	Elastomer	shock absorbers		
absorber	DYEF-Y1	Cine and Cin	 Mechanical shock absorber with elastic rubber buffer Cushioning stroke cannot be adjusted No fixed stop Continuous mounting thread with internal hex 	Mini slide DGSL
	DYEF-Y1F	Sum Data	 Mechanical shock absorber with elastic rubber buffer Cushioning stroke can be adjusted With fixed stop Continuous mounting thread with internal hex 	Mini slide DGSL Semi-rotary drive DSM-B
	Adjustable			
	DYSR	COMP.	 Hydraulic shock absorber with spring return Adjustable cushioning hardness 	-
	Self-adjust	ing		
	YSR-C		 Hydraulic shock absorber with path-controlled flow control function Rapidly increasing cushioning force curve Short cushioning stroke Suitable for rotary drives Maintenance-free Continuous mounting thread 	 Linear drive DGPL Linear drive DGC Linear drive unit SLE
	DYSC		 Hydraulic shock absorber with path-controlled flow control function Rapidly increasing cushioning force curve Short cushioning stroke Suitable for rotary drives Maintenance-free Metal end position on the housing Continuous mounting thread with internal hex 	 Semi-rotary drive DSM-B Swivel/linear drive unit DSL-B Semi-rotary drive DRRD
	DYSD	5	 Hydraulic shock absorber with path-controlled flow control function Rapidly increasing cushioning force curve Short cushioning stroke Suitable for rotary drives Maintenance-free Continuous mounting thread With fixed stop on housing and internal hex for stroke adjustment Suitable for pressure chamber With additional return spring to compensate pressure chamber 	Semi-rotary drive DRRD
	YSRW	D.S.M.M.	Hydraulic shock absorber with path-controlled flow control function Slowly increasing cushioning force curve Long cushioning stroke Suitable for low-vibration operation Short cycle times possible Maintenance-free Continuous mounting thread with spanner flat	 Linear drive DGC Handling module HSP, HSW
	DYSS		Hydraulic shock absorber with path-controlled flow control function Rapidly increasing cushioning force curve Short cushioning stroke Suitable for low-vibration operation Not suitable for rotary drives Maintenance-free Metal end position on the housing Continuous mounting thread with internal hex	 Linear drive DLGF Mini slides DGST
	DYSW		 Hydraulic shock absorber with path-controlled flow control function Slowly increasing cushioning force curve Long cushioning stroke Suitable for low-vibration operation Short cycle times possible Maintenance-free Metal end position on the housing Continuous mounting thread with internal hex 	 Mini slide DGSL Handling module HSW

Size	Stroke	Energy absorption per stroke	Position sensing	→ Page/Internet
	[mm]	0		
Elastomer shock absorbers				
M4, M5, M6, M8, M10, M12, M14, M16	0.9; 1.0; 1.2; 1.3; 1.5	0.015 0.55	_	6
M4, M5, M6, M8, M10, M12, M14, M16, M22	1.7; 2.8; 3.1; 3.4; 3.7; 4.2; 5; 4.8; 7	0.005 1.2	_	10
Adjustable				
8, 12, 16, 20, 25, 32	8, 12, 20, 25, 40, 60	4 384	_	14
0, 12, 10, 20, 23, 52	0, 12, 20, 29, 40, 00	4		1.4
Self-adjusting				
4, 5, 7, 8, 10, 12, 16, 20, 25, 32	4, 5, 8, 10, 12, 20, 25, 40, 60	0.6 380	-	18
4, 5, 7, 8, 12, 16, 20, 25	4, 5, 8, 12, 18, 25	0.6 100		22
5, 7, 8, 12, 16, 20, 25, 32	5, 8, 12, 15, 16, 24, 25	2 8		26
5, 7, 8, 10, 12, 16, 20	8, 10, 14, 17, 20, 26, 34	1.3 70	_	30
2, 3, 4, 5, 7, 8, 10, 12	4, 5, 8, 10, 12	0.1 10	_	34
4, 5, 7, 8, 10, 12	6, 8, 10, 14, 17, 20	0.8 12	_	38

Function	Туре	Design	Description	Can be used with
Stop element	Self-adjustin	ng		
	YSRWJ	CTAR AND A	 Cushioning with self-adjusting, progressive hydraulic shock absorbers (YSRW) Slowly increasing cushioning force curve Adjustable cushioning stroke End-position sensing with proximity switch SME/SMT-8 Precision end-position adjustment Stop elements YSRWJ can be used for a wide variety of applications in handling and assembly technology. 	-
Hydraulic	Adjustable			
cushioning cylinder	DYHR		 Hydraulic cushioning cylinder for constant, slow braking speeds across the entire stroke Braking speed can be precisely adjusted A built-in compression spring returns the piston rod to the initial position Suitable for slow feed speeds in the range up to 0.1 m/s 	-

	Energy absorption	Position sensing	→ Page/Internet
8, 10, 14	13	•	42
20, 25, 40, 50, 60	32 384	_	46
	[mm] 8, 10, 14	[mm] [J] 8, 10, 14 1 3	[mm] [J] 8, 10, 14 1 3 •

Shock absorber DYEF- ... -Y1, no fixed stop

Type codes

001	Series	
DYEF	Shock absorber	
002	Design type	
	Standard	
S	Short	
003	Size	
M4	M4x0.5	
M5	M5x0.5	
M6	M6x0.5	
M8	M8x1	
M10	M10x1	
M12	M12x1	
M14	M14x1	
M16	M16x1	
004	Geometric characteristics	
Y1	Internal hex	

I

Data sheet

General technical data

General technical uata										
Size			M4	M5	M6	M8	M10	M12	M14	M16
Stroke		[mm]	0.9	1.5	1.5	1.3	1	1.2	1.2	1.3
Mode of operation			Elastomer cush	nioning without n	netal fixed stop					
Cushioning			Non-adjustable	e						
Cushioning length		[mm]	0.9	1.5	1.5	1.3	1	1.2	1.2	1.3
Type of mounting			With lock nut		·					
Max. impact velocity		[m/s]	0.8							
Mounting position			Any							
Product weight		[g]	2.1	3.6	6	14	23	45.5	82.5	106
	S	[g]	1.1	2	3	8.6	12	15	31	40
Ambient temperature		[°C]	0 +60		•	•	-	•		<u>.</u>
Corrosion resistance class CRC ¹⁾			2							

1) Corrosion resistance class CRC 2 to Festo standard FN 940070

Moderate corrosion stress. Indoor applications in which condensation can occur. External visible parts with primarily decorative surface requirements which are in direct contact with a normal industrial environment.

Energies [J]								
Size	M4	M5	M6	M8	M10	M12	M14	M16
Max. energy absorption per stroke	0.015	0.05	0.08	0.12	0.25	0.35	0.45	0.55
				-				
Mass range [kg]								
Size	M4	M5	M6	M8	M10	M12	M14	M16
Mass range up to	0.15	0.35	0.7	1	2	3	5	7

Shock absorber DYEF- ... -Y1, no fixed stop

Data sheet

Materials

Shock absorber	
Buffer	Nitrile rubber
Housing	High-alloy steel
Seals	Nitrile rubber
Note on materials	RoHS-compliant

Impact velocity v as a function of mass m DYEF-(S)-M4/M5-Y1

DYEF-(S)-M6/M8/M10-Y1

DYEF-(S)-M6-Y1 DYEF-(S)-M8-Y1

——— DYEF-(S)-M10-Y1

DYEF-(S)-M12/M14/M16-Y1

Download CAD data \rightarrow <u>www.festo.com</u>

Data sheet

Dimensions

DYEF-M-... – long design

DYEF-S-M-... – short design

Size	B1	D1	L1		L2	=©1	=©2	Max. tightening torque =C1
			DYEF-M DYEF-S-M		1			[Nm]
					+0.3			
M4	2.2	M4x0.5	22	12	0.9	7	1.5	0.5
M5	2.7	M5x0.5	26	14.5	1.8	8	1.5	0.8
M6	2.5	M6x0.5	30	15	1.8	8	2	1
M8	3	M8x1	38	23.5	2	10	2.5	2
M10	3.5	M10x1	41	21	1.8	13	3	3
M12	4	M12x1	54	20	2	15	4	5
M14	5	M14x1	72	28	2	17	4	8
M16	5	M16x1	75	31.5	2	19	5	20

Ordering data		
Size	Part no.	Туре
DYEF-M – lor	ıg design	
M4	1179810	DYEF-M4-Y1
M5	1179818	DYEF-M5-Y1
M6	1179831	DYEF-M6-Y1
M8	1179834	DYEF-M8-Y1
M10	1179837	DYEF-M10-Y1
M12	1179840	DYEF-M12-Y1
M14	1179863	DYEF-M14-Y1
M16	1179879	DYEF-M16-Y1
DYEF-S-M – s	hort design	
M4	1152500	DYEF-S-M4-Y1
M5	1152507	DYEF-S-M5-Y1
M6	1152524	DYEF-S-M6-Y1
M8	1152536	DYEF-S-M8-Y1
M10	1152959	DYEF-S-M10-Y1
M12	1153004	DYEF-S-M12-Y1
M14	1153017	DYEF-S-M14-Y1
M16	1153023	DYEF-S-M16-Y1

Shock absorber DYEF- \dots -Y1F, with fixed stop

Type codes

001	Series	
DYEF	Shock absorber	
003	Size	
M4	M4x0.5	
M5	M5x0.5	
M6	M6x0.5	
M8	M8x1	
M10	M10x1	
M12	M12x1	
M14	M14x1	
M16	M16x1	
M22	M22x1.5	
	· · ·	
004	Geometric characteristics	
Y1	Internal hex	

005	Stop	
	None	
F	With fixed stop	

Shock absorber DYEF- ... -Y1F, with fixed stop

Data sheet

General technical data

Size		M4	M5	M6	M8	M10	M12	M14	M16	M22
Stroke	[mm]	1.7	2.8	3.1	3.4	3.7	4.2	5	4.8	7
Mode of operation		Elastomer cı	ushioning with	metallic fixed	stop					
Cushioning		Adjustable								
Cushioning length	[mm]	1.7	2.8	3.1	3.4	3.7	4.2	5	4.8	7
Type of mounting		With lock nu	t	·						
Max. impact velocity	[m/s]	0.8								
Mounting position		Any								
Product weight	[g]	1.6	2.9	5.1	11.9	19.7	39.6	77.3	104	200
Ambient temperature	[°C]	0 +60		·						
Corrosion resistance class CRC ¹⁾		2								

1) Corrosion resistance class CRC 2 to Festo standard FN 940070

Moderate corrosion stress. Indoor applications in which condensation can occur. External visible parts with primarily decorative surface requirements which are in direct contact with a normal industrial environment.

Forces [N]										
Size	M4	M5	M6	M8	M10	M12	M14	M16	M22	
Min. insertion force ¹⁾	15	30	40	60	70	100	150	180	500	
I) This is the minimum force that must be applied so that the shock absorber is pushed precisely into the retracted end position. This value is reduced accordingly in the event of an extended external end position or a reduction in the cushioning stroke. Energies []]										
Size	M4	M5	M6	M8	M10	M12	M14	M16	M22	
Max. energy absorption per stroke	0.005	0.02	0.03	0.04	0.06	0.12	0.2	0.25	1.2	
Mass range [kg]	M4	M5	M6	М8	M10	M12	M14	M16	M22	
Size			-	-			M14	M16		
Mass range up to	0.15	0.25	0.4	0.6	1.2	1.8	3	5	15	

11

Shock absorber DYEF- ... -Y1F, with fixed stop

Data sheet

Materials

Shock absorber		
Buffer	Nitrile rubber	
Adjustable sleeve	High-alloy steel	
Setting piece	High-alloy steel	
Seals	Nitrile rubber	
Note on materials	RoHS-compliant	

Impact velocity v as a function of mass m DYEF-M4/M5-Y1F

------ DYEF-M5-Y1F

DYEF-M12/M14/M16-Y1F

DYEF-M12-Y1F ----- DYEF-M14-Y1F **———** DYEF-M16-Y1F

DYEF-M6/M8/M10-Y1F

DYEF-M6-Y1F DYEF-M8-Y1F ____ DYEF-M10-Y1F

DYEF-M22-Y1F

DYEF-M22-Y1F

Dimensions

Download CAD data \rightarrow <u>www.festo.com</u>

Size	B1	D1	L1	L2	=©1	=©2	= ©3	Max. tightening torque =℃1
				+0.3				[Nm]
M4	2.2	M4x0.5	22	1.7	7	1.3	2.5	0.5
M5	2.7	M5x0.5	26	2.8	8	1.5	3	0.8
M6	2.5	M6x0.5	30	3.1	8	2	4	1
M8	3	M8x1	38	3.4	10	2.5	5	2
M10	3.5	M10x1	41	3.7	13	3	6	3
M12	4	M12x1	54	4.2	15	4	8	5
M14	5	M14x1	72	5	17	4	8	8
M16	5	M16x1	75	4.8	19	5	10	20
M22	5	M22x1.5	78	7	27	5	10	35

÷

Ordering data		
Size	Part no.	Туре
M4	548370	DYEF-M4-Y1F ¹⁾
M5	548371	DYEF-M5-Y1F
M6	548372	DYEF-M6-Y1F
M8	548373	DYEF-M8-Y1F
M10	548374	DYEF-M10-Y1F
M12	548375	DYEF-M12-Y1F
M14	548376	DYEF-M14-Y1F
M16	548377	DYEF-M16-Y1F
M22	1113706	DYEF-M22-Y1F

1) With this size, the scope of delivery of the drive includes an Allen key.

Peripherals overview and type codes

Peripherals overview

Accessories and special feature

Acce	ccessories and special feature									
	Туре	Brief description	→ Page/Internet							
[1]	Shock absorber DYSR	Hydraulic shock absorber with adjustable cushioning characteristic	14							
[2]	Mounting flange YSRF	Mounting option for shock absorber	50							
[3]	Buffer YSRP	For protecting the piston rod	52							
[4]	Wiper seal ¹⁾ ; hardened piston rod ²⁾	The wiper seal (prevents the ingress of dirt) and the hardened piston rod (protects against scratches) greatly increase the service life	-							

Size 12 and up
 Size 16 and up

Type codes

001	Series
DYSR	Shock absorber
002	Size
8	8
12	12
16	16
20	20
25	25
32	32

003	Stroke	
8	8	
12	12	
20	20	
25	25	
40	40	
60	60	
004	Geometric characteristics	I
Y5	Internal hex for adjusting cushioning	
005	Product features	
	Standard	
Т	Custom thread	

General technical data

Size		8	12	16	20	25	32
Stroke	[mm]	8	12	20	25	40	60
Mode of operation		Hydraulic shock absor	ber with spring return				
		Single-acting, pushing					
Cushioning		Adjustable, force-depe	ndent, hard characteris	tic curve			
Cushioning length	[mm]	8	12	20	25	40	60
Type of mounting		With lock nut					•
Impact velocity	[m/s]	0.1 3					
Mounting position		Any					
Product weight	[g]	60	105/120 ¹⁾	200/250 ¹⁾	355/425 ¹⁾	715	1355
Ambient temperature	[°C]	-10 +80					
Corrosion resistance class CRC ²⁾		2					

1) Applies to shock absorbers with special thread T

2) Corrosion resistance class CRC 2 to Festo standard FN 940070

Moderate corrosion stress. Indoor applications in which condensation can occur. External visible parts with primarily decorative surface requirements which are in direct contact with a normal industrial environment.

Reset time [s]

tree et time [e]						
Size	8	12	16	20	25	32
Reset time ¹⁾	≤ 0.2		≤0.3		≤0.4	≤0.6

1) The specified technical data refers to room temperature. At -10°C, the reset time can be up to 1 s for sizes 12 and 16, and up to 3 s for sizes 8, 20, 25 and 32.

Forces [N]										
Size	8	12	16	20	25	32				
Min. insertion force ¹⁾	18	38	66	110	155	175				
Max. stop force ²⁾ in the end positions	400	900	1600	2500	4000	6400				
Min. resetting force ³⁾	1.8	4.5	5.4	9	12.5	18				

1) This is the minimum force that must be applied so that the shock absorber is pushed precisely into the retracted end position. This value is reduced accordingly with an extended external end position.

2) If the maximum stop force is exceeded, a fixed stop (e.g. YSRA) must be fitted 0.5 mm before the end of stroke.

3) This is the maximum force that can act on the piston rod, allowing the shock absorber to fully extend (e.g. extended stud).

Energies [J]										
Size	8	12	16	20	25	32				
Max. energy absorption per stroke	4	10.8	32	62.5	160	384				
Max. energy consumption per hour	24000	60000	100000	135000	220000	330000				
Max. residual energy	0.01	0.05	0.16	0.32	0.8	2				

Shock absorber DYSR

Data sheet

Materials

1						Lee	Lee			
Size		8	12	16	20	25	32			
[1]	Piston rod	High-alloy steel		Hardened high-alloy steel						
[2]	Housing	High-alloy steel	Galvanised steel							
-	Buffer	Polyacetal	_							
-	Seals	Nitrile rubber								
	Note on materials	RoHS-compliant								

Selection graph for shock absorbers with infinitely adjustable cushioning DYSR Impact velocity v as a function of mass m

Three force curves are shown for each shock absorber. An average must be taken for intermediate values.

[1]	DYSR-8-8	[4]	DYSR-20-25
[2]	DYSR-12-12	[5]	DYSR-25-40
[3]	DYSR-16-20	[6]	DYSR-32-60

Shock absorber	Force	Force	Force
DYSR-8-8	0 N	100 N	200 N
DYSR-12-12	0 N	200 N	500 N
DYSR-16-20	0 N	500 N	800 N
DYSR-20-25	0 N	800 N	1200 N
DYSR-25-40	0 N	1200 N	2000 N
DYSR-32-60	0 N	2000 N	3000 N

Recommended max. drive force as a function of energy utilisation

 DYSR-8-8-Y5
 DYSR-12-12-Y5
 DYSR-16-20-Y5
 DYSR-20-25-Y5
 DYSR-25-40-Y5
 DYSR-32-60-Y5

Shock absorber DYSR

Data sheet

3		
Size	Part no.	Туре
8	1138641	DYSR-8-8-Y5
12	1138642	DYSR-12-12-Y5
	1138643	DYSR-12-12-Y5-T
16	1138644	DYSR-16-20-Y5
	1138645	DYSR-16-20-Y5-T
20	1138646	DYSR-20-25-Y5
	1138647	DYSR-20-25-Y5-T
25	1138648	DYSR-25-40-Y5
32	1138649	DYSR-32-60-Y5

Peripherals overview and type codes

Peripherals overview

Accessories

ACCE	essories		
	Туре	Brief description	→ Page/Internet
[1]	Shock absorber YSR-C	Hydraulic shock absorber with rapidly increasing cushioning force curve	18
[2]	Reducing sleeve DAYH	To improve cushioning characteristics at low load, the installed shock absorber can be replaced with the next size down shock absorber using the reducing sleeve.	53
[3]	Mounting flange YSRF	Mounting option for shock absorber	50
[4]	Mounting flange YSRF-S	Mounting option for shock absorber with integrated, attached stop sleeve and position sensing	51
[5]	End stop limiter YSRA	Stroke limiter for shock absorber	52
-	Inductive proximity switches SIEN	For mounting flange YSRF-S	54

Type codes

001	Series	003	Stroke
YSR	Shock absorber	4	4
	· · · · · · · · · · · · · · · · · · ·	5	5
002	Size	8	8
4	4	10	10
5	5	12	12
7	7	20	20
8	8	25	25
10	10	40	40
12	12	60	60
16	16		· · · · · · · · · · · · · · · · · · ·
20	20	004	Cushioning
25	25	C	Self-regulating
32	32		

General technical data

ocherut teenmeut autu													
Size		4	5	7	8	10	12	16	20	25	32		
Stroke	[mm]	4	5	5	8	10	12	20	25	40	60		
Mode of operation		Hydraulic sł	Hydraulic shock absorber with spring return										
		Single-acting, pushing											
Cushioning		Self-adjusti	ng, hard chara	cteristic curve									
Cushioning length	[mm]	4	5	5	8	10	12	20	25	40	60		
Type of mounting		With lock nu	ıt							· · ·			
Impact velocity	[m/s]	0.05 2		0.05 3									
Mounting position		Any											
Product weight	[g]	5	8	16	32	51	74	185	318	600	1220		
Ambient temperature	[°C]	-10 +80		·									
Corrosion resistance class CRC ¹⁾		2											

1) Corrosion resistance class CRC 2 to Festo standard FN 940070

Moderate corrosion stress. Indoor applications in which condensation can occur. External visible parts with primarily decorative surface requirements which are in direct contact with a normal industrial environment.

Reset time [s]										
Size	4	5	7	8	10	12	16	20	25	32
Reset time ¹⁾	≤0.2						≤0.3		≤0.4	≤0.5

1) The specified technical data refers to room temperature. At higher temperatures in the region of 80°C, the maximum mass and the cushioning energy must be reduced by approximately 50%. At -10°C, the reset time may be up to 1 second.

Forces [N]										
Size	4	5	7	8	10	12	16	20	25	32
Min. insertion force ¹⁾	6.5	7.5	10	18	25	35	60	100	140	160
Max. stop force ²⁾ in the end positions	100	200	300	500	700	1000	2000	3000	4000	6000
Min. resetting force ³⁾	0.7	0.9	1.2	2.5	3.5	5	6	10	14	20

1) This is the minimum force that must be applied so that the shock absorber is pushed precisely into the retracted end position. This value is reduced accordingly with an extended external end position.

2) If the maximum stop force is exceeded, a fixed stop (e.g. YSRA) must be fitted 0.5 mm before the end of stroke.

3) This is the maximum force that can act on the piston rod, allowing the shock absorber to fully extend (e.g. extended stud).

Energies [J]										
Size	4	5	7	8	10	12	16	20	25	32
Max. energy absorption per stroke	0.6	1	2	3	6	10	30	60	160	380
Max. energy consumption per hour	5600	8000	12000	18000	26000	36000	64000	92000	150000	220000
Max. residual energy	0.006	0.01		0.02	0.03	0.05	0.16	0.32	0.8	2
		-			-	-		-		
Mass range [kg]										
Size	4	5	7	8	10	12	16	20	25	32
Mass range up to	1.2	1.5	5	15	25	45	90	120	200	400

Materials

Size		4	5	7	8	10	12	16	20	25	32			
[1]	Housing	High-alloy ste	High-alloy steel					Galvanised steel						
[2]	Piston rod	High-alloy ste	High-alloy steel											
[3]	Buffer	Polyamide								Steel wit	h polyurethane			
-	Seals	Nitrile rubber	r, polyurethai	ne										
-	Note on materials	RoHS-complia	ant											

Selection graph for self-adjusting shock absorbers YSR-C Impact velocity v as a function of mass m

Three force curves are shown for each shock absorber. An average must be taken for intermediate values.

[1]	YSR-4-4-C	[6]	YSR-12-12-C
[2]	YSR-5-5-C	[7]	YSR-16-20-C
[3]	YSR-7-5-C	[8]	YSR-20-25-C
[4]	YSR-8-8-C	[9]	YSR-25-40-C
[5]	YSR-10-10-C	[10]	YSR-32-60-C

Shock absorber	Force	Force	Force
YSR-4-4-C	0 N	-	50 N
YSR-5-5-C	0 N	50 N	100 N
YSR-7-5-C	0 N	100 N	200 N
YSR-8-8-C	0 N	100 N	200 N
YSR-10-10-C	0 N	150 N	300 N
YSR-12-12-C	0 N	200 N	500 N
YSR-16-20-C	0 N	500 N	800 N
YSR-20-25-C	0 N	800 N	1200 N
YSR-25-40-C	0 N	1200 N	2500 N
YSR-32-60-C	0 N	2000 N	4000 N

Dimensions

Download CAD data \rightarrow <u>www.festo.com</u>

- 🏺 - Note

To increase the service life: Prevent dirt or liquids getting into the inner chamber of the piston via the piston rod (e.g. by using a cover).

100

5 3 M8x1 2.5 4.7 ±0.5 6.7 ±0.5 29 7 3.5 M10x1 3 6 ±0.1 8.6 ±0.05 34 8 4 M12x1 4 8±0.2 10.4 ±0.1 46 10 5 M14x1 5 10 ±0.2 12.4 ±0.1 55 12 5 M16x1 6 12 ±0.2 14.5 ±0.1 64 16 6 M22x1.5 8 16 ±0.2 19.6 ±0.1 86 20 8 M26x1.5 10 20 ±0.2 23.8 ±0.1 104 25 10 M30x1.5 12 25 ±0.2 27.8 ±0.1 152 32 12 M37x1.5 15 32 ±0.2 34.8 ±0.1 205 Size L2 L3 L4 L5 =©1 =©2 Max. tightening torque =©1 ± 0.3 10.8 ±0.6/±0.3 5.5 ±0.1 5.8 ±0.5/±0.25 10 7 23 12.3 ±0.7/±0.35 7 ±0.2 7.3 ±0.5/±0.25 13 3 3 16.3 ±0.7/±0.35 10 ±0.2 10.5 ±0.5/±0.25 17	Size	B1	D1		02 Ø		D3 Ø	D4 Ø	L1
5 3 M8x1 2.5 4.7 ±0.5 6.7 ±0.5 29 7 3.5 M10x1 3 6±0.1 8.6±0.05 34 8 4 M12x1 4 8±0.2 10.4±0.1 46 10 5 M14x1 5 10±0.2 12.4±0.1 55 12 5 M16x1 6 12±0.2 14.5±0.1 64 16 6 M22x1.5 8 16±0.2 19.6±0.1 86 20 8 M26x1.5 10 20±0.2 23.8±0.1 104 25 10 M30x1.5 12 25±0.2 27.8±0.1 152 32 12 M37x1.5 15 32±0.2 34.8±0.1 205 5ize L2 L3 L4 L5 =G1 =G2 Max.tightening torque =G1 [Nm] 44 18.5 8.3±0.6/-0.3 5.5±0.1 5.8±0.55/-0.25 10 - 2 7 23 12.									±0.1
7 3.5 M10x1 3 6 ± 0.1 8.6 ± 0.05 34 8 4 M12x1 4 8 ± 0.2 10.4 ± 0.1 46 10 5 M14x1 5 10 ± 0.2 12.4 ± 0.1 46 12 5 M16x1 6 12 ± 0.2 14.5 ± 0.1 64 16 6 M22x1.5 8 16 ± 0.2 19.6 ± 0.1 86 20 8 M26x1.5 10 20 ± 0.2 23.8 ± 0.1 104 25 10 M30x1.5 12 25 ± 0.2 27.8 ± 0.1 152 32 12 M37x1.5 15 32 ± 0.2 34.8 ± 0.1 205 Size L2 L3 L4 L5 $=61$ $=62$ Max.tightening torque = 61 $[Nm]$ $10.8 \pm 0.6/-0.3$ 5.5 ± 0.1 $5.8 \pm 0.55/-0.25$ 10 $ 2$ 4 18.5 $8.3 \pm 0.6/-0.3$ 5.5 ± 0.1 $5.8 \pm 0.55/-0.25$ 10 $ 2$ 1 7 23 $12.3 \pm 0.7/-0$	4	2.5	M6x0.5		2		3.5 ±0.05	5.3 ±0.05	28.5
38 4 $M12x1$ 4 $8 \cdot 02$ $10 \cdot 4 \cdot 01$ 46 10 5 $M14x1$ 5 $10 \cdot 0.2$ $12.4 \cdot 0.1$ 55 12 5 $M16x1$ 6 $12 \cdot 0.2$ $14.5 \cdot 0.1$ 64 16 6 $M22x1.5$ 8 $16 \cdot 0.2$ $19.6 \cdot 0.1$ 86 20 8 $M26x1.5$ 10 $20 \cdot 0.2$ $23.8 \cdot 0.1$ 104 25 10 $M30x1.5$ 12 $25 \cdot 0.2$ $27.8 \cdot 0.1$ 152 32 12 $M37x1.5$ 15 $32 \cdot 0.2$ $27.8 \cdot 0.1$ 152 32 12 $M37x1.5$ 15 $32 \cdot 0.2$ $27.8 \cdot 0.1$ 152 32 12 $M37x1.5$ 15 $32 \cdot 0.2$ $34.8 \cdot 0.1$ 205 5 10 $M30x1.5$ 12 $25 \cdot 0.2$ $27.8 \cdot 0.1$ 152 32 12 $M37x1.5$ 15 $32 \cdot 0.2$ $34.8 \cdot 0.1$ 205 $5ize$ $L2$ $L3$ $L4$ $L5$ $=C1$ $=C2$ Max. tightening torque $=C1$ [Nm] 4 18.5 $8.3 \cdot 0.6/-0.3$ $4 \cdot 0.1$ $4.3 \cdot 0.55/-0.25$ 10 $ 2$ 7 23 $12.3 \cdot 0.7/-0.35$ $7 \cdot 0.2$ $7.3 \cdot 0.55/-0.25$ 10 $ 3$ 7 23 $12.3 \cdot 0.7/-0.35$ $10 \cdot 0.2$ $10.5 \cdot 0.55/-0.25$ 15 5 10 42 $20.5 \cdot 0.7/-0.35$ $10 \cdot 0.2$ $10.5 \cdot 0.55/-0.25$ 15 20 12 51	5	3	M8x1	2	2.5		4.7 ±0.05	6.7 ±0.05	29
10 5 M14x1 5 10 ±0.2 12.4 ±0.1 55 12 5 M16x1 6 12 ±0.2 14.5 ±0.1 64 16 6 M22x1.5 8 16 ±0.2 19.6 ±0.1 86 20 8 M26x1.5 10 20 ±0.2 23.8 ±0.1 104 25 10 M30x1.5 12 25 ±0.2 27.8 ±0.1 152 32 12 M37x1.5 15 32 ±0.2 34.8 ±0.1 205 Size L2 L3 L4 L5 =C1 =C2 Max. tightening torque =C1 [Nm] ± 0.3 ± 0.3 L4 L5 =C1 =C2 Max.tightening torque =C1 [Nm] [Nm] ± 0.3 ± 0.3 $\pm 4.0.1$ $4.3 \div 0.57 - 0.25$ 8 2 1 4 18.5 $8.3 \div 0.6/-0.3$ 4 ± 0.1 $4.3 \div 0.57 - 0.25$ 10 - 2 7 23 12.3 \div 0.7/-0.35 7 \pm 0.2 $7.3 \div 0.57 - 0.25$ 13 3 3 3 3 5 5 5	7	3.5	M10x1		3		6 ±0.1	8.6 ±0.05	34
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	8	4	M12x1		4		8 ±0.2	10.4 ±0.1	46
16 6 M22x1.5 8 16 ± 0.2 19.6 ± 0.1 86 20 8 M26x1.5 10 20 ± 0.2 23.8 ± 0.1 104 25 10 M30x1.5 12 25 ± 0.2 27.8 ± 0.1 152 32 12 M37x1.5 15 32 ± 0.2 34.8 ± 0.1 20 ± 0.2 Size L2 L3 L4 L5 =©1 =©2 Max. tightening torque =©1 [Nm] ± 0.3 10.8 $\pm 0.6/ - 0.3$ 4 ± 0.1 4.3 $\pm 0.35/ - 0.25$ 8 2 1 4 18.5 8.3 $\pm 0.6/ - 0.3$ 5.5 ± 0.1 5.8 $\pm 0.55/ - 0.25$ 10 - 2 7 23 12.3 $\pm 0.7/ - 0.35$ 7 ± 0.2 7.3 $\pm 0.55/ - 0.25$ 13 - 3 - 3 - 3 - 3 - 3 - - 20 - 20 - 20 - 20 - 20 - 20 - 3 - - 20 - - 20 - - 20 -	10	5	M14x1		5		10 ±0.2	12.4 ±0.1	55
20 8 M26x1.5 10 20 ±0.2 23.8 ±0.1 104 25 10 M30x1.5 12 25 ±0.2 27.8 ±0.1 152 32 12 M37x1.5 15 32 ±0.2 34.8 ±0.1 205 Size L2 L3 L4 L5 $=C1$ $=C2$ Max. tightening torque =C1 [Nm] ±0.3 ±0.3 4.3 ±0.35/-0.25 8 2 1 4 18.5 8.3 ±0.6/-0.3 4 ±0.1 4.3 ±0.35/-0.25 8 2 1 55 19 10.8 ±0.6/-0.3 5.5 ±0.1 5.8 ±0.55/-0.25 10 - 2 7 23 12.3 ±0.7/-0.35 7 ±0.2 7.3 ±0.55/-0.25 13 3 3 3 5 5 1 3 3 5 5 15 5 15 5 1 3 3 3 16.3 ±0.7/-0.35 10 ±0.2 10.5 ±0.55/-0.25 17 8 5 5 5 10 20 35 20 35 35 35 5	12	5	M16x1		6		12 ±0.2	14.5 ±0.1	64
2510M30x1.51225 ±0.227.8 ±0.11523212M37x1.51532 ±0.234.8 ±0.1205SizeL2L3L4L5 $=C1$ $=C2$ Max. tightening torque =C1 [Nm]±0.3±0.3L4L5 $=C1$ $=C2$ Max. tightening torque =C1 [Nm]418.5 $8.3 \pm 0.6/-0.3$ 4 ± 0.1 $4.3 \pm 0.35/-0.25$ 82151910.8 \pm 0.6/-0.3 5.5 ± 0.1 $5.8 \pm 0.55/-0.25$ 10 $-$ 272312.3 \pm 0.7/-0.35 7 ± 0.2 $7.3 \pm 0.55/-0.25$ 13 $-$ 383316.3 \pm 0.7/-0.358 \pm 0.2 $8.3 \pm 0.55/-0.25$ 15 $ 3$ 104220.5 \pm 0.7/-0.3510 \pm 0.210.5 \pm 0.55/-0.2517 8 125124.5 \pm 0.7/-0.3512 \pm 0.212.5 \pm 0.55/-0.2519 20 166936.5 \pm 0.7/-0.3516 \pm 0.216.5 \pm 0.55/-0.253260	16	6	M22x1.5		8		16 ±0.2	19.6 ±0.1	86
32 12 M37x1.5 15 32 ±0.2 34.8 ±0.1 205 Size L2 L3 L4 L5 =C1 =C2 Max. tightening torque =C1 [Nm] ± 0.3 10.8 ± 0.3 L4 L5 =C1 =C2 Max. tightening torque =C1 [Nm] 4 18.5 8.3 ±0.6/-0.3 4 ±0.1 4.3 ±0.35/-0.25 8 2 1 5 19 10.8 ±0.6/-0.3 5.5 ±0.1 5.8 ±0.55/-0.25 10 - 2 33 6 33 16.3 ±0.7/-0.35 7 ±0.2 7.3 ±0.55/-0.25 13 - 3 - 3 8 33 16.3 ±0.7/-0.35 8 ±0.2 8.3 ±0.55/-0.25 15 - 3 - 3 - 3 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 -	20	8	M26x1.5		10		20 ±0.2	23.8 ±0.1	104
SizeL2L3L4L5=C1=C2Max. tightening torque =C1 [Nm] ± 0.3 ± 0.3 ± 0.3 4 ± 0.1 $4.3 \pm 0.35 / -0.25$ 821418.5 $8.3 \pm 0.6 / -0.3$ 4 ± 0.1 $4.3 \pm 0.35 / -0.25$ 82151910.8 \pm 0.6 / -0.3 5.5 ± 0.1 $5.8 \pm 0.55 / -0.25$ 10-272312.3 \pm 0.7 / -0.35 7 ± 0.2 $7.3 \pm 0.55 / -0.25$ 13383316.3 \pm 0.7 / -0.35 8 ± 0.2 $8.3 \pm 0.55 / -0.25$ 15310 42 20.5 \pm 0.7 / -0.3510 \pm 0.210.5 \pm 0.55 / -0.25178125124.5 \pm 0.7 / -0.3512 \pm 0.212.5 \pm 0.55 / -0.251920166936.5 \pm 0.7 / -0.3516 \pm 0.216.5 \pm 0.55 / -0.2532352087 $45.5 \pm 0.7 / -0.35$ 20 \pm 0.220.5 \pm 0.55 / -0.253260	25	10	M30x1.5		12		25 ±0.2	27.8 ±0.1	152
±0.3 ±0.3 ±0.3 ±0.1 4.3 ±0.35/-0.25 8 2 1 4 18.5 8.3 ±0.6/-0.3 4±0.1 4.3 ±0.35/-0.25 8 2 1 5 19 10.8 ±0.6/-0.3 5.5 ±0.1 5.8 ±0.55/-0.25 10 - 2 7 23 12.3 ±0.7/-0.35 7 ±0.2 7.3 ±0.55/-0.25 13 3 3 8 33 16.3 ±0.7/-0.35 8 ±0.2 8.3 ±0.55/-0.25 15 5 5 5 10 42 20.5 ±0.7/-0.35 10 ±0.2 10.5 ±0.55/-0.25 17 8 8 20 1 8 20 1 20 1 20 1 20 12 12 ±0.2 12.5 ±0.55/-0.25 19 10 20 35	32	12	M37x1.5		15		32 ±0.2	34.8 ±0.1	205
±0.3 ±0.3 ±0.3 ±0.1 4.3 ±0.35/-0.25 8 2 1 4 18.5 8.3 ±0.6/-0.3 4±0.1 4.3 ±0.35/-0.25 8 2 1 5 19 10.8 ±0.6/-0.3 5.5 ±0.1 5.8 ±0.55/-0.25 10 - 2 7 23 12.3 ±0.7/-0.35 7 ±0.2 7.3 ±0.55/-0.25 13 3 3 8 33 16.3 ±0.7/-0.35 8 ±0.2 8.3 ±0.55/-0.25 15 5 5 5 10 42 20.5 ±0.7/-0.35 10 ±0.2 10.5 ±0.55/-0.25 17 8 8 20 1 8 20 1 20 1 20 1 20 12 12 ±0.2 12.5 ±0.55/-0.25 19 10 20 35									
$\begin{array}{ c c c c c c c c c } \hline \pm 0.3 & \hline \\ \hline \pm 0.3 & \hline \\ \hline 18.5 & 8.3 + 0.6/ - 0.3 & 4 \pm 0.1 & 4.3 + 0.35/ - 0.25 & 8 & 2 & 1 \\ \hline 5 & 19 & 10.8 + 0.6/ - 0.3 & 5.5 \pm 0.1 & 5.8 + 0.55/ - 0.25 & 10 & \\ \hline 5 & 19 & 10.8 + 0.6/ - 0.3 & 5.5 \pm 0.1 & 5.8 + 0.55/ - 0.25 & 10 & \\ \hline 7 & 23 & 12.3 + 0.7/ - 0.35 & 7 \pm 0.2 & 7.3 + 0.55/ - 0.25 & 13 & \\ \hline 8 & 33 & 16.3 + 0.7/ - 0.35 & 8 \pm 0.2 & 8.3 + 0.55/ - 0.25 & 15 & \\ \hline 10 & 42 & 20.5 \pm 0.7/ - 0.35 & 10 \pm 0.2 & 10.5 \pm 0.55/ - 0.25 & 17 & \\ \hline 12 & 51 & 24.5 \pm 0.7/ - 0.35 & 12 \pm 0.2 & 12.5 \pm 0.55/ - 0.25 & 19 & \\ \hline 16 & 69 & 36.5 \pm 0.7/ - 0.35 & 16 \pm 0.2 & 16.5 \pm 0.55/ - 0.25 & 27 & \\ \hline 20 & 87 & 45.5 \pm 0.7/ - 0.35 & 20 \pm 0.2 & 20.5 \pm 0.55/ - 0.25 & 32 & \\ \hline \end{array}$	Size	L2	L3	L4	L5		=©1	=G2	Max. tightening torque =@1
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$									[Nm]
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		±0.3							
7 23 12.3 ± 0.7/-0.35 7 ± 0.2 7.3 ± 0.55/-0.25 13 8 33 16.3 ± 0.7/-0.35 8 ± 0.2 8.3 ± 0.55/-0.25 15 10 42 20.5 ± 0.7/-0.35 10 ± 0.2 10.5 ± 0.55/-0.25 17 12 51 24.5 ± 0.7/-0.35 12 ± 0.2 12.5 ± 0.55/-0.25 19 16 69 36.5 ± 0.7/-0.35 16 ± 0.2 16.5 ± 0.55/-0.25 27 20 87 45.5 ± 0.7/-0.35 20 ± 0.2 20.5 ± 0.55/-0.25 32	4	18.5	8.3 +0.6/-0.3	4 ±0.1	4.3 +0.35/-	0.25	8	2	1
8 33 16.3 ±0.7/-0.35 8 ±0.2 8.3 ±0.55/-0.25 15 10 42 20.5 ±0.7/-0.35 10 ±0.2 10.5 ±0.55/-0.25 17 12 51 24.5 ±0.7/-0.35 12 ±0.2 12.5 ±0.55/-0.25 19 16 69 36.5 ±0.7/-0.35 16 ±0.2 16.5 ±0.55/-0.25 27 20 87 45.5 ±0.7/-0.35 20 ±0.2 20.5 ±0.55/-0.25 32	5	19	10.8 +0.6/-0.3	5.5 ±0.1	5.8 +0.55/-	0.25	10	-	2
10 42 20.5 +0.7/-0.35 10 ±0.2 10.5 +0.55/-0.25 17 12 51 24.5 +0.7/-0.35 12 ±0.2 12.5 +0.55/-0.25 19 20 16 69 36.5 +0.7/-0.35 16 ±0.2 16.5 +0.55/-0.25 27 35 20 87 45.5 +0.7/-0.35 20 ±0.2 20.5 +0.55/-0.25 32 60	7	23	12.3 +0.7/-0.35	7 ±0.2	7.3 +0.55/-	0.25	13		3
12 51 24.5 ±0.7/-0.35 12 ±0.2 12.5 ±0.55/-0.25 19 20 16 69 36.5 ±0.7/-0.35 16 ±0.2 16.5 ±0.55/-0.25 27 35 20 87 45.5 ±0.7/-0.35 20 ±0.2 20.5 ±0.55/-0.25 32 60	8	33	16.3 +0.7/-0.35	8 ±0.2	8.3 +0.55/-	0.25	15		5
16 69 36.5 +0.7/-0.35 16 ±0.2 16.5 +0.55/-0.25 27 35 20 87 45.5 +0.7/-0.35 20 ±0.2 20.5 +0.55/-0.25 32 60	10	42	20.5 +0.7/-0.35	10 ±0.2	10.5 +0.55/-	-0.25	17		8
20 87 45.5 + 0.7/-0.35 20 ±0.2 20.5 + 0.55/-0.25 32 60	12	51	24.5 +0.7/-0.35	12 ±0.2	12.5 +0.55/-	-0.25	19		20
	16	69	36.5 +0.7/-0.35	16 ±0.2	16.5 +0.55/-	-0.25	27		35
25 125 61.5 +1.25/-0.75 20.5 ±0.4 21.5 +0.95/-0.55 36 80	20	87	45.5 +0.7/-0.35	20 ±0.2	20.5 +0.55/-	-0.25	32		60
					+				

Ordering data		
Size	Part no.	Туре
4	540060	YSR-4-4-C
5	158981	YSR-5-5-C
7	160272	YSR-7-5-C
8	34571	YSR-8-8-C
10	191199	YSR-10-10-C
12	34572	YSR-12-12-C
16	34573	YSR-16-20-C
20	34574	YSR-20-25-C
25	160273	YSR-25-40-C
32	160274	YSR-32-60-C

27 +0.95/-0.55

46

32

179

87 +1.25/-0.75

26 ±0.4

Peripherals overview and type codes

Peripherals overview

	Туре	Brief description	→ Page/Internet							
[1]	Shock absorber DYSC	Hydraulic shock absorber with rapidly increasing cushioning force curve	22							
[2]	Reducing sleeve DAYH	To improve cushioning characteristics at low load, the installed shock absorber can be replaced with the next size down shock absorber using the reducing sleeve.	53							

Type codes

001	Series	003	Stroke
DYSC	Shock absorber	4	4
	· · · · · · · · · · · · · · · · · · ·	5	5
002	Size	8	8
4	4	12	12
5	5	18	18
7	7	25	25
8	8		
12	12	004	Geometric characteristics
16	16	Y1	Internal hex
20	20		
25	25	005	Stop
		F	With fixed stop

General technical data

Size		4	5	7	8	12	16	20	25
Stroke	[mm]	4	5	5	8	12	18	18	25
Mode of operation		Hydraulic shock	absorber with spr	ing return					
		Single-acting, pu	ishing		-				
Cushioning		Self-adjusting, h	ard characteristic	curve					
Cushioning length	[mm]	4	5	5	8	12	18	16	25
Type of mounting		With lock nut				·		•	
Impact velocity	[m/s]	0.05 2		0.05 3					
Mounting position		Any							
Product weight	[g]	5	9	17	36	81	210	370	575
Ambient temperature	[°C]	-10 +80	-						
Corrosion resistance class CRC ¹⁾		2							

1) Corrosion resistance class 2 to Festo standard 940 070

Components subject to moderate corrosion stress. External visible parts with primarily decorative surface requirements which are in direct contact with a normal industrial environment or media such as coolants or lubricating agents.

Reset time [s]								
Size	4	5	7	8	12	16	20	25
Reset time ¹⁾	≤0.2					≤0.3		

1) The specified technical data refers to room temperature. At higher temperatures in the region of 80°C, the maximum mass and the cushioning energy must be reduced by approximately 50%. At -10°C, the reset time may be up to 1 second.

Forces [N]								
Size	4	5	7	8	12	16	20	25
Min. insertion force ¹⁾	6.5	7.5	10	18	35	60	100	140
Max. stop force ²⁾ in the end positions	100	200	300	500	1000	2000	3000	4000
Min. resetting force ³⁾	0.7	0.9	1.2	2.5	5	6	10	14

1) This is the minimum force that must be applied so that the shock absorber is pushed precisely into the retracted end position. This value is reduced accordingly with an extended external end position.

2) If the maximum stop force is exceeded, a fixed stop (e.g. YSRA) must be fitted 0.5 mm before the end of stroke.

3) This is the maximum force that can act on the piston rod, allowing the shock absorber to fully extend (e.g. extended stud).

Energies [J]								
Size	4	5	7	8	12	16	20	25
Max. energy absorption per stroke	0.6	1	2	3	10	25	38	100
Max. energy consumption per hour	5600	8000	12000	18000	36000	50000	80000	140000
Max. residual energy	0.006	0.01		0.02	0.05	0.16	0.32	0.8
Mass range [kg]								
Size	4	5	7	8	12	16	20	25
Mass range up to	1.2	1.5	5	15	45	70	100	160

Shock absorber DYSC

Data sheet

Materials

mac										
		1		I	1	I	I.	1	1	
Size		4	5	7	8	12	16	20	25	
[1]	Buffer	POM								
[2]	Piston rod	High-alloy steel	High-alloy steel							
[3]	Housing	High-alloy steel	High-alloy steel Galvanised steel							
-	Seals	NBR								
	Note on materials	RoHS-compliant								

Selection graph for self-adjusting shock absorbers DYSC Impact velocity v as a function of mass m

Three force curves are shown for each	[1] DYSC-4-4-Y1F	[4] DYSC-8-8-Y1F	[7] DYSC-20-18-Y1F
shock absorber. An average must be	[2] DYSC-5-5-Y1F	[5] DYSC-12-12-Y1F	[8] DYSC-25-25-Y1F
taken for intermediate values.	[3] DYSC-7-5-Y1F	[6] DYSC-16-18-Y1F	
Shock absorber	Force	Force	Force
DYSC-4-4-Y1F	0 N	-	50 N
DYSC-5-5-Y1F	0 N	50 N	100 N
DYSC-7-5-Y1F	0 N	100 N	200 N
DYSC-8-8-Y1F	0 N	100 N	200 N
DYSC-12-12-Y1F	0 N	200 N	500 N
DYSC-16-18-Y1F	0 N	500 N	800 N
DYSC-20-18-Y1F	0 N	800 N	1200 N
DYSC-25-25-Y1F	0 N	1200 N	2500 N

Dimensions

Download CAD data → <u>www.festo.com</u>

- 🍦 - Note

To increase the service life: Prevent dirt or liquids getting into the inner chamber of the piston via the piston rod (e.g. by using a cover).

Size	B1	D1	D2 Ø	D3 Ø	D4 Ø	L1	L2
						+0.1	+0.3/-0.2
4	2.5	M6x0.5	2	3.5 ±0.05	5.35 ±0.05	35.5	25.5
5	3	M8x1	2.5	4.7 ±0.05	6.7 ±0.05	38.6	28.6
7	3.5	M10x1	3	6 ±0.1	8.6 ±0.05	45.15	34.15
8	4	M12x1	4	7 ±0.1	10.4 ±0.1	59.05	46.05
12	5	M16x1	6	11 ±0.1	14.5 ±0.1	82.5	69.5
16	6	M22x1.5	8	15 ±0.1	19.6 ±0.1	110	93
20	8	M26x1.5	10	18.8 ±0.1	23.8 ±0.1	122	105
25	10	M30x1.5	12	22.8 ±0.1	27.8 ±0.1	165	137

Size	L3 ¹⁾	L4	=G1	=G2	Max. tightening torque =G1
					[Nm]
4	4	4 +0.30/-0.24	8	2	1
5	5.5	5 +0.32/-0.28	10	2.5	2
7	7	5 +0.37/-0.28	13	3	3
8	8	8 +0.42/-0.33	15	4	5
12	12	12 +0.50/-0.35	19	5	20
16	18	18 +0.50/-0.35	27	5	35
20	20	18 +0.50/-0.35	32	6	60
25	22	25 +0.50/-0.35	36	8	80

1) Buffer length

Ordering data		
Size	Part no.	Туре
4	570506	DYSC-4-4-Y1F
5	548011	DYSC-5-5-Y1F
7	548012	DYSC-7-5-Y1F
8	548013	DYSC-8-8-Y1F
12	548014	DYSC-12-12-Y1F
16	553593	DYSC-16-18-Y1F
20	2479149	DYSC-20-18-Y1F
25	2480234	DYSC-25-25-Y1F

Shock absorber DYSD

Type codes

001	Series	005	Geon
DYSD	Shock absorber	Y1	Inter
002	Allocation	006	Stop
Q11	Version Q11	F	With
003	Size [mm]	007	Energ
5	5		Stan
7	7	L	Large
8	8	S	Light
12	12		
16	16	008	Cush
20	20	Y9	Stan
25	25	Y10	Hard
32	32	Y14	Soft

005	Geometric characteristics
Y1	Internal hex
006	Stop
F	With fixed stop
007	Energy absorption
	Standard
L	Large
S	Light
008	Cushioning characteristic
Y9	Standard
Y10	Hard
Y14	Soft

004	Stroke [mm]	
5	5	
8	8	
12	12	
15	15	
16	16	
24	24	
25	25	

NEW

Data sheet

chamber

General technical data

General technical data									
Size		5	7	8	12	16	20	25	32
Stroke	[mm]	5	5	8	12	15	16	24	25
Mode of operation		Single acting							
		Pushing						·	
Cushioning		Self-adjusting							
Cushioning length	[mm]	5	5	8	12	15	16	24	25
Type of mounting		With lock nut ¹⁾							
Position sensing		Without							
Impact velocity	[m/s]	1							
Mounting position		Any							
Product weight	[g]	10	20	40	95	220	385	635	1050
Ambient temperature	[°C]	0 +60							
Corrosion resistance class CRC ²⁾		2							

1) Corrosion resistance class CRC 2 to Festo standard FN 940070

Moderate corrosion stress. Indoor applications in which condensation can occur. External visible parts with primarily decorative surface requirements which are in direct contact with a normal industrial environment.

2) With sealing washer and washer to seal the pressure chamber.

Reset time [s]								
Size	5	7	8	12	16	20	25	32
Reset time ¹⁾	0.2	-	-	-	0.3	-	-	-

1) The specified technical data refers to room temperature. At higher temperatures in the region of 80°C, the maximum mass and the cushioning energy must be reduced by approximately 50%. At -10°C, the reset time can be up to 1 s.

Forces [N]								
Size	5	7	8	12	16	20	25	32
Min. insertion force ¹⁾	27	40	60	100	160	260	430	480
Max. stop force ²⁾ in the end positions	200	300	500	1000	2000	3000	4000	6000
Min. resetting force ³⁾	7	12	18	28	46	75	120	150

1) This is the minimum force that must be applied so that the shock absorber is pushed precisely into the retracted end position. This value is reduced accordingly with an extended external end position.

2) If the maximum stop force is exceeded, a fixed stop (e.g. YSRA) must be fitted 0.5 mm before the end of stroke.

3) This is the maximum force that can act on the piston rod, allowing the shock absorber to fully extend (e.g. extended stud).

Energies [J]								
Size	5	7 8		8		12		
	[Y9]	[Y9]	[Y14]	[Y9]	[Y14]	[Y9]	[Y10]	[Y14]
Max. energy absorption per stroke	2	3	4	6	4	10	12	8
Max. energy consumption per hour	8000	12000		18000		36000		
Max. residual energy	0.01	0.01		0.02	0.05			

Energies [J]

Size	16		20				25		
	[Y9]	[Y14]	[Y9]	[Y10]	[Y14]	[Y9]	[Y10]	[Y9]	[Y10]
Max. energy absorption per stroke	40	30	70	90	50	140	180	220	270
Max. energy consumption per hour	64000		92000			150000		180000	
Max. residual energy	0.16		0.32			0.8		2	

Materials

Size	5	7	8	12	16	20	25	32	
Piston rod	High-alloy steel	gh-alloy steel							
Nut	Galvanised steel	Ivanised steel							
Housing	High-alloy steel			Galvanised stee	anised steel				
Seals	NBR								
PWIS conformity	VDMA24364-B2	VDMA24364-B2-L							
Note on materials	RoHS-compliant	-							

Dimensions

Size	B1	B2	D1	D2	D3	D4	L1	L2	
				Ø	ø -0.1	Ø	+0.1	+0.3/-0.2	
5	3	5.5	M8x1	2.5	-	6.7±0.05	43	34	
7	3.5	5.8	M10x1	3	-	8.6±0.05	49.1	38.1	
8	4	6.7	M12x1	4	10	10.4±0.1	65.4	52.4	
12	5	9	M16x1	6	14.2	14.5±0.1	89	76	
16	6	11	M22x1.5	8	19.4	19.6±0.1	111.8	94.8	
20	8	13.5	M26x1.5	10	23.6	23.8±0.1	137.5	116.5	
25	10	14.9	M30x1.5	12	27.5	27.8±0.1	174.5	146.5	
32	12	17.5	M37x1.5	15	34.4	34.8±0.1	177	149	
Size	L3	L4 ±0.2	T2	- ©1	- \$2	Ma	Max. tightening torque ∹G1 [Nm]		
5	5+0.32/-0.23	-	3	10	2.5		2		
7	5+0.32/-0.23	-	4.5	13	3		3		
8	8+0.35/-0.25	11	5.4	15	4		5		
12	12+0.35/-0.3	14	6.5	19	5		20		
16	15+0.45/-0.4	18	5	27	5		35		
20	15.5+0.45/-0.4	23	5	32	6		60		
25	24+0.5/-0.4	25	5	36	8		80		
32	25+0.5/-0.4	25	5	46	8		100		

C

Download CAD data → <u>www.festo.com</u>

NEW

Data sheet

Ordering data		
Size	Part no.	Туре
DYSDY9		
5	8161520	DYSD-Q11-5-5-Y1F-L-Y9
7	8161521	DYSD-Q11-7-5-Y1F-L-Y9
8	8161523	DYSD-Q11-8-8-Y1F-L-Y9
12	8161525	DYSD-Q11-12-12-Y1F-Y9
16	8161528	DYSD-Q11-16-15-Y1F-Y9
20	8161530	DYSD-Q11-20-16-Y1F-Y9
25	8161533	DYSD-Q11-25-24-Y1F-Y9
32	8161535	DYSD-Q11-32-25-Y1F-S-Y9
DYSDY10 – I	lard	
12	8161526	DYSD-Q11-12-12-Y1F-L-Y10
20	8161531	DYSD-Q11-20-16-Y1F-L-Y10
25	8161534	DYSD-Q11-25-24-Y1F-L-Y10
32	8161536	DYSD-Q11-32-25-Y1F-L-Y10
DYSDY14 - 9		
7	8161522	DYSD-Q11-7-5-Y1F-Y14
8	8161524	DYSD-Q11-8-8-Y1F-5-Y14
12	8161527	DYSD-Q11-12-12-Y1F-S-Y14
16	8161529	DYSD-Q11-16-15-Y1F-S-Y14
20	8161532	DYSD-Q11-20-16-Y1F-S-Y14

Peripherals overview and type codes

Peripherals overview

Acce	Accessories									
	Туре	Brief description	→ Page/Internet							
[1]	Shock absorber YSRW	Hydraulic shock absorber with progressive cushioning characteristic	30							
[2]	Mounting flange YSRF	Mounting option for shock absorber	50							
[3]	Mounting flange YSRF-S	Mounting option for shock absorber with integrated, attached stop sleeve and position sensing	51							
[4]	End stop limiter YSRA	Stroke limiter for shock absorber	52							
-	Inductive proximity switches SIEN	For mounting flange YSRF-S	54							

Type codes

001	Series	
YSRW	Shock absorber	
002	Size	
5	5	
7	7	
8	8	
10	10	
12	12	
16	16	
20	20	

003	Stroke	
8	8	
10	10	
14	14	
17	17	
20	20	
26	26	
34	34	

General technical data

Size		5	7	8	10	12	16	20
Stroke	[mm]	8	10	14	17	20	26	34
Mode of operation		Hydraulic shock ab	sorber with spring re	eturn		~		
		Single-acting, push	ing					
Cushioning Self-adjusting, soft characteristic curve								
Cushioning length	[mm]	8	10	14	17	20	26	34
Type of mounting		With lock nut						
Impact velocity	[m/s]	0.1 2	0.1 3					
Mounting position		Any	-					
Product weight	[g]	8	18	34	54	78	190	330
Ambient temperature	[°C]	-10+80						
Corrosion resistance class CRC ¹⁾	Corrosion resistance class CRC ¹⁾ 2							

1) Corrosion resistance class CRC 2 to Festo standard FN 940070

Moderate corrosion stress. Indoor applications in which condensation can occur. External visible parts with primarily decorative surface requirements which are in direct contact with a normal industrial environment.

Reset time [s]							
Size	5	7	8	10	12	16	20
Reset time ¹⁾	≤ 0.2				≤0.3		

1) The specified technical data refers to room temperature. At higher temperatures in the region of 80°C, the maximum mass and the cushioning energy must be reduced by approximately 50%. At -10°C, the reset time may be up to 1 second.

Forces [N]									
Size	5	7	8	10	12	16	20		
Min. insertion force ¹⁾	7.5	10	18	25	35	60	100		
Max. stop force ²⁾ in the end posi-	200	300	500	700	1000	2000	3000		
tions									
Min. resetting force ³⁾	0.9	1.2	2.5	3.5	5	6	10		

1) This is the minimum force that must be applied so that the shock absorber is pushed precisely into the retracted end position. This value is reduced accordingly with an extended external end position.

2) If the maximum stop force is exceeded, a fixed stop (e.g. YSRA) must be fitted 0.5 mm before the end of stroke.

3) This is the maximum force that can act on the piston rod, allowing the shock absorber to fully extend (e.g. extended stud).

Energies [J]									
Size	5	7	8	10	12	16	20		
Max. energy absorption per stroke	1.3	2.5	4	8	12	35	70		
Max. energy consumption per hour	10000	15000	21000	30000	41000	68000	100000		
Max. residual energy	0.01		0.02	0.03	0.05	0.16	0.32		
Mass range [kg]									
Size	5	7	8	10	12	16	20		
Mass range up to	2	5	10	20	30	50	80		

Shock absorber YSRW

Data sheet

Materials

Iviau	eridis								
Size		5	7	8	10	12	16	20	
[1]	Buffer	Polyamide							
[2]	Piston rod	High-alloy steel							
[3]	Housing	High-alloy steel			Galvanised steel				
-	Seals	Nitrile rubber							
	Note on materials	RoHS-compliant							

$\label{eq:selection} Selection \ graph \ for \ self-adjusting \ shock \ absorbers \ with \ progressive \ characteristics \ YSRW$

Impact velocity v as a function of mass m

Three force curves are shown for each	
shock absorber. An average must be	
taken for intermediate values.	

YSRW-5-8
 YSRW-7-10
 YSRW-8-14
 YSRW-10-17

[5] YSRW-12-20

[6] YSRW-16-26

[7] YSRW-20-34

Shock absorber	Force	Force	Force
YSRW-5-8	0 N	50 N	100 N
YSRW-7-10	0 N	75 N	150 N
YSRW-8-14	0 N	100 N	200 N
YSRW-10-17	0 N	150 N	300 N
YSRW-12-20	0 N	200 N	400 N
YSRW-16-26	0 N	500 N	800 N
YSRW-20-34	0 N	800 N	1200 N

Shock absorber YSRW

Data sheet

Dimensions

Download CAD data \rightarrow <u>www.festo.com</u>

- 🗍 - Note

To increase the service life: Prevent dirt or liquids getting into the inner chamber of the piston via the piston rod (e.g. by using a cover).

Size	B1	D1	D2 Ø	D3 Ø	D4 Ø	L1	L2	L3
			Q	Ø	Ø	±0.1	±0.3	
5	3	M8x1	2.5	4.7 ±0.05	6.7 ±0.05	33.5	22.5	13.8 +0.6/-0.25
7	3.5	M10x1	3	6 ±0.1	8.6 ±0.05	41	30	17.3 +0.7/-0.25
8	4	M12x1	4	8 ±0.2	10.4 ±0.1	53	40	22.3 +0.7/-0.25
10	5	M14x1	5	10 ±0.2	12.4 ±0.1	62	49	27.5 +0.7/-0.25
12	5	M16x1	6	12 ±0.2	14.5 ±0.1	72.5	59.5	32.5 +0.7/-0.25
16	6	M22x1.5	8	16 ±0.2	20 ±0.1	91	70	42.5 +0.7/-0.35
20	8	M26x1.5	10	18.8 ±0.2	24 ±0.1	112	91	54.5 +0.7/-0.35
Size	L4	L5	L6	L7	=©1	=©2	Max. tighte	ning torque =©1
			+0.5					[Nm]
5	5.5 ±0.1	5.8 +0.35/-0.25	5	3.5 ±0.25	10	7		2
7	7 ±0.2	7.3 +0.35/-0.25	6	4.3 ±0.25	13	9		3
8	8 ±0.2	8.3 +0.4/-0.25	8	5.3 +0.3/-0.25	15	11		5
10	10 ±0.2	10.5 +0.4/-0.25	10	6.5 +0.3/-0.25	17	13		8
12	12 ±0.2	12.5 +0.4/-0.25	12	7.5 +0.3/-0.25	19	15		20
16	16 ±0.2	16.5 +0.4/-0.25	12	9.5 +0.3/-0.25	27	20		35
20	20 ±0.2	20.5 +0.4/-0.25	12	11.5 +0.3/-0.25	32	24	1	60

Ordering data		
Size	Part no.	Туре
5	191192	YSRW-5-8
7	191193	YSRW-7-10
8	191194	YSRW-8-14
10	191195	YSRW-10-17
12	191196	YSRW-12-20
16	191197	YSRW-16-26
20	191198	YSRW-20-34

Shock absorber DYSS

Type codes

001	Series	003	Stroke
DYSS	Shock absorber	4	4
		5	5
002	Size	8	8
2	2	10	10
3	3	12	12
4	4		· · · · · · · · · · · · · · · · · · ·
5	5	004	Geometric characteristics
7	7	Y1	Internal hex
8	8		· · · · · · · · · · · · · · · · · · ·
10	10	005	Stop
12	12	F	With fixed stop

- 🌡 - Note

The following technical data also apply to the shock absorber DYSS-G8-... .

General technical data

	2	3	4	5	7	8	10	12	
[mm]	4	4	4	5	5	8	10	12	
	Hydraulic sho	ck absorber wit	h spring retur	'n					
	Single-acting	, pushing						·	
	Self-adjusting	g, soft character	ristic curve						
[mm]	4	4	4	5	5	8	10	12	
	With lock nut								
[m/s]	0.1 0.5	0.1 0.5 0.1 1			0.1 1.5	0.1 1.5			
	Any								
[g]	1	3	4.5	7	15	30	51	82	
[°C]	-10 +70	-10 +80						-5 +80	
	2								
	[mm] [m/s]	Hydraulic sho Single-acting, Self-adjusting [mm] With lock nut [m/s] 0.1 0.5 Any [g] 1	Hydraulic shock absorber wit Single-acting, pushing Self-adjusting, soft character [mm] 4 With lock nut [m/s] 0.1 0.5 0.1 0.5 0.1 1 Any [g] 1 3	[mm] 4 4 4 Hydraulic shock absorber with spring return Single-acting, pushing Single-acting, pushing Self-adjusting, soft characteristic curve Mith lock nut 4 4 With lock nut Uith lock nut 4 4 [m/s] 0.1 0.5 0.1 1 4 Any 3 4.5	[mm] 4 4 5 Hydraulic shock absorber with spring return Single-acting, pushing Self-adjusting, soft characteristic curve [mm] 4 4 5 With lock nut 4 5 5 [m/s] 0.1 0.5 0.1 1 5 Any 1 3 4.5 7	[mm] 4 4 4 5 5 Hydraulic shock absorber with spring return Single-acting, pushing Self-adjusting, soft characteristic curve [mm] 4 4 4 5 5 With lock nut 4 4 5 5 With lock nut 0.1 1 0.1 1.4 0.1 1.4 [m/s] 0.1 0.5 0.1 1 0.1 1.5 Any [g] 1 3 4.5 7 15	Imm 4 4 5 5 8 Hydraulic shock absorber with spring return Single-acting, pushing Self-adjusting, soft characteristic curve [mm] 4 4 5 5 8 With lock nut 5 5 8 8 [m/s] 0.1 0.5 0.1 1 0.1 1.5 0.1 1.5 Any [g] 1 3 4.5 7 15 30		

1) Weight without nut.

2) Corrosion resistance class CRC 2 to Festo standard FN 940070

Moderate corrosion stress. Indoor applications in which condensation can occur. External visible parts with primarily decorative surface requirements which are in direct contact with a normal industrial environment.

Reset time [s]

Reset time [5]								
Size	2	3	4	5	7	8	10	12
Reset time ¹⁾	≤0.5	≤0.2						

1) The specified technical data refers to room temperature. At higher temperatures in the region of 80°C, the maximum mass and the cushioning energy must be reduced by approximately 50%. At -10°C, the reset time may be up to 1 second.

Increased reset times must be expected with longer dwell time in the end position.

Forces [N]

2	3	4	5	7	8	10	12
2.5	3.5	4.5	10	10	18	24	35
60	80	100	200	300	500	700	1000
0.8	0.5	0.8	0.9	1.2	2.5	4	4
	60	60 80	60 80 100	60 80 100 200	60 80 100 200 300	60 80 100 200 300 500	2.5 3.5 4.5 10 10 18 24 60 80 100 200 300 500 700

1) This is the minimum force that must be applied so that the shock absorber is pushed precisely into the retracted end position. This value is reduced accordingly with an extended external end position.

2) If the maximum stop force is exceeded, a fixed stop (e.g. YSRA) must be fitted 0.5 mm before the end of stroke.

3) This is the maximum force that can act on the piston rod, allowing the shock absorber to fully extend (e.g. extended stud).

Energies									
Size		2	3	4	5	7	8	10	12
Max. energy absorption per stroke at +20°C	[J]	0.1	0.4	0.8	1.4	2	3	6	10
Max. energy absorption per hour at +20°C	[kJ]	0.27	4.5	5.5	8	12	18	25	36
Max. operating frequency ¹⁾	[Cycles/ min]	50	80	80	80	70	50	50	50
Max. residual energy		0.003	0.004	0.006	0.01	0.01	0.02	0.03	0.05

1) For energy utilisation of 70% or above per stroke.

Mass range [kg]								
Size	2	3	4	5	7	8	10	12
Mass range up to	0.8	1	1.7	2.5	5.5	15	20	45

Materials

Shock absorber	
Buffer	РОМ
Piston rod	High-alloy steel
Housing	High-alloy steel
Seals	NBR
Note on materials	RoHS-compliant

Selection graph for self-adjusting shock absorbers with progressive characteristics DYSS

Impact velocity v as a function of mass m

 DYSS-7-5 (100 N)
 DYSS-7-5 (180 N)
 DYSS-8-8 (0 N)
 DYSS-8-8 (100 N)
 DYSS-8-8 (200 N)

 DYSS-4-4 (0 N)
 DYSS-4-4 (50 N)
 DYSS-4-4 (90 N)
 DYSS-5-5 (0 N)
 DYSS-5-5 (100 N)
 DYSS-5-5 (150 N)

NEW

Data sheet

DYSS-...

_ Note -

• To increase the service life: Prevent dirt or liquids getting into the inner chamber of the piston via the piston rod (e.g. by using a cover).

Download CAD data → <u>www.festo.com</u>

- The piston rod must not be pushed beyond the stop surface
- The piston rod must not be pulled
- The screws in the internal hexagon socket must not be removed

Size	B1	D1	D2 Ø	D3 Ø	D4 Ø	H1	L1	L2
			Ø	Ø	Ø		±0.2	±0.3
2	2.2	M4x0.5	1.2	-	3.2+0.1/-0.05	1	24.6	20.1
3	2.7	M5x0.5	1.5	-	4.3+0.1/-0.05	-	33.5	27.5
4	2.5	M6x0.5	1.8	-	5.3+0.1/-0.05	-	35.5	29.5
5	3	M8x1	2.5	5±0.1	6.7+0.1/-0.05	-	38.6	32.6
7	3.5	M10x1	3	6±0.1	8.6+0.1/-0.05	-	45.2	35.2
8	4	M12x1	3.5	8±0.2	10.4+0.15/-0.1	-	59	49
10	5	M14x1	4	10±0.2	12.5+0.15/-0.1	-	70	57
12	5	M16x1	5	12±0.2	14.5+0.15/-0.1	-	82.5	69.5

Size	L3	L4	T1	=G1	Max. tightening torque ∹©1 [Nm]	- ©2	Max. tightening torque ∹G2 for nut [Nm]
2	4 ^{+0.5}	1	-	-	0.1	7	0.5
3	4+0.6	-	1.5	2	0.5	8	1
4	4+0.6	-	1.5	2	0.6	8	1
5	5 ^{+0.6}	-	2	2.5	1	10	2
7	5 ^{+0.6}	-	2.2	3	3	13	3
8	8+0.6	-	2.5	4	5	15	5
10	10+0.8	-	3.5	5	10	17	8
12	12+0.8	-	3.5	5	16	19	20

Ordering data		
Size	Part no.	Туре
2	8081767	DYSS-2-4-Y1F
3	8111390	DYSS-3-4-Y1F-G2
4	8111391	DYSS-4-4-Y1F-G2
5	8081770	DYSS-5-5-Y1F
7	8069001	DYSS-7-5-Y1F
8	8069002	DYSS-8-8-Y1F
10	8069003	DYSS-10-10-Y1F
12	8069004	DYSS-12-12-Y1F

Peripherals overview and type codes

Acce			
	Туре	Brief description	→ Page/Internet
[1]	Shock absorber DYSW	Hydraulic shock absorber with slowly increasing cushioning force curve	38
[2]	Reducing sleeve DAYH	To improve cushioning characteristics at low load, the installed shock absorber can be replaced with the next size down shock absorber using the reducing sleeve.	53

Type codes

001	Series
DYSW	Shock absorber
002	Size
4	4
5	5
7	7
8	8
10	10
12	12

003	Stroke
6	6
8	8
10	10
14	14
17	17
20	20
004	Geometric characteristics
Y1	Internal hex
005	Stop
F	With fixed stop

General technical data

Size		4	5	7	8	10	12
Stroke	[mm]	6	8	10	14	17	20
Mode of operation		Hydraulic shock absor	per with spring return				~
		Single-acting, pushing					
Cushioning		Self-adjusting, soft cha	aracteristic curve				
Cushioning length	[mm]	6	8	10	14	17	20
Type of mounting		With lock nut					
Impact velocity	[m/s]	0.1 2		0.1 3			
Mounting position		Any					
Product weight	[g]	6	11	21	42	67	91
Ambient temperature	[°C]	-10+80					
Corrosion resistance class CRC ¹ 2							
		·					

1) Corrosion resistance class CRC 2 to Festo standard FN 940070

Moderate corrosion stress. Indoor applications in which condensation can occur. External visible parts with primarily decorative surface requirements which are in direct contact with a normal industrial environment.

Reset time [s]						
Size	4	5	7	8	10	12
Reset time ¹⁾	≤0.2					≤0.3

1) The specified technical data refers to room temperature. At higher temperatures in the region of 80°C, the maximum mass and the cushioning energy must be reduced by approximately 50%. At -10°C, the reset time may be up to 1 second.

Forces [N]						
Size	4	5	7	8	10	12
Min. insertion force ¹⁾	6.5	7.5	10	18	25	35
Max. stop force ²⁾ in end positions (housing)	100	200	300	500	700	1000
Min. resetting force ³⁾	0.7	0.9	1.2	2.5	3.5	5

1) This is the minimum force that must be applied so that the shock absorber is pushed precisely into the retracted end position. This value is reduced accordingly with an extended external end position.

2) If the maximum stop force is exceeded, a fixed stop (e.g. YSRA) must be fitted 0.5 mm before the end of stroke.

3) This is the maximum force that can act on the piston rod, allowing the shock absorber to fully extend (e.g. extended stud).

Energies [J]						
Size	4	5	7	8	10	12
Max. energy absorption per stroke	0.8	1.3	2.5	4	8	12
Max. energy consumption per hour	7000	10000	15000	21000	30000	41000
Max. residual energy	0.006	0.01	0.01	0.02	0.03	0.05
Mass range [kg]						
Size	4	5	7	8	10	12
Mass range up to	1.2	2	5	10	20	30

Shock absorber DYSW

Data sheet

Materials

Materials						
Size	4	5	7	8	10	12
Buffer	Polyacetal					
Piston rod	High-alloy steel					
Housing	High-alloy steel Galvanised steel					
Seals	Nitrile rubber				·	
Note on materials	RoHS-compliant					

З,0

[4] DYSW-8-14-Y1F

Selection graph for self-adjusting shock absorbers with progressive characteristics DYSW

Impact velocity v as a function of mass m

shock absorber. An average must be taken for intermediate values.	[2] DYSW-5-8-Y1F[3] DYSW-7-10-Y1F	[5] DYSW-10-17-Y1F[6] DYSW-12-20-Y1F	
Shock absorber	Force	Force	Force
DYSW-4-6-Y1F	0 N	-	50 N
DYSW-5-8-Y1F	0 N	50 N	100 N
DYSW-7-10-Y1F	0 N	75 N	150 N
DYSW-8-14-Y1F	0 N	100 N	200 N
DYSW-10-17-Y1F	0 N	150 N	300 N
DYSW-12-20-Y1F	0 N	200 N	400 N

Shock absorber DYSW

Data sheet

Dimensions

Download CAD data \rightarrow <u>www.festo.com</u>

- 🗍 - Note

To increase the service life: Prevent dirt or liquids getting into the inner chamber of the piston via the piston rod (e.g. by using a cover).

Size	B1	D	1	D2	D3	D	4	L1
				Ø	ø	Ø	5	+0.1
4	2.5	M6>	x0.5	2	3.5±0.05	5.35	±0.05	35.5
5	3	Ma	3x1	2.5	4.7±0.05	6.7±	0.05	43.1
7	3.5	M1	0x1	3	6±0.1	8.6±0.05		52.05
8	4	4 M12x1		4	7±0.1	10.4	±0.1	66.05
10	5	M1	4x1	5	9±0.1	12.4±0.1		77.55
12	5	M1	6x1	6	11±0.1	14.4	±0.1	90.75
	1	1	1	1	1			
Size	L2 +0.3 -0.2	L3	L4	≓©1	=©2		Max. t	ightening torque =©1 [Nm]
4	25.5	6+0.30/-0.24	4±0.05	8	2			1
5	33.1	8+0.32/-0.28	5.5±0.1	10	2.5			2
7	41.05	10+0.37/-0.28	7±0.2	13	3		3	
8	53.05	14+0.37/-0.28	8±0.2	15	4			5
10	64.55	17+0.37/-0.28	10±0.2	17	4		8	
12	77.75	20+0.45/-0.30	12±0.2	19	5			20

Ordering data

Ordering data	rdering data							
Size	Part no.	Туре						
4	548070	DYSW-4-6-Y1F						
5	548071	DYSW-5-8-Y1F						
7	548072	DYSW-7-10-Y1F						
8	548073	DYSW-8-14-Y1F						
10	548074	DYSW-10-17-Y1F						
12	548075	DYSW-12-20-Y1F						

Peripherals overview and type codes

Peripherals overview

Accessories

	Туре	Brief description	→ Page/Internet
[1	Stop element YSRWJ	Hydraulic shock absorber with progressive cushioning characteristic. The cushioning length is adjustable	42
[2	Proximity switch SME-/SMT-8	Sensing option for end positions	53

Type codes

001	01 Series		003	Stroke	
YSRWJ	Shock absorber		8	8	
			10	10	
002	Size		14	14	
5	5			· · ·	
7	7		004	Position sensing	
8	8		Α	For proximity sensor	

General technical data

Size		5	7	8	
Stroke	[mm]	8	10	14	
Mode of operation		A piston rod in front of the shock absorber trar	nsfers the force to the shock absorber. The pisto	n rod acts as an end stop and actuates the	
		proximity switch via a magnet mounted on it			
		Single-acting, pushing			
Cushioning		Self-adjusting, soft characteristic curve			
Cushioning length	[mm]	8	10	14	
Type of mounting		With lock nut			
Position sensing		Via proximity switch			
Impact velocity	[m/s]	0.05 2	0.05 3		
Repetition accuracy	[mm]	0.02	-		
Mounting position		Any			
Product weight	[g]	45	75	110	
Ambient temperature	[°C]	0+60			
Corrosion resistance class CRC ¹⁾		2			

1) Corrosion resistance class CRC 2 to Festo standard FN 940070

Moderate corrosion stress. Indoor applications in which condensation can occur. External visible parts with primarily decorative surface requirements which are in direct contact with a normal industrial environment.

Reset time [s]						
Size	5	7	8			
Reset time ¹⁾	≤0.2					

1) The specified technical data refers to room temperature. At higher temperatures in the region of 80°C, the maximum mass and the cushioning energy must be reduced by approximately 50%. At 0°C, the reset time may be up to 1 second.

Forces [N]

Size	5	7	8
Min. insertion force ¹⁾	5	18	80
Max. stop force ²⁾ in the end positions	200	300	500
Min. resetting force ³⁾	1.5	2	3.5

1) This is the minimum force that must be applied so that the shock absorber is pushed precisely into the retracted end position.

2) The max. stop force must not be exceeded.

3) This is the maximum force that can act on the piston rod, allowing the shock absorber to fully extend.

Energies [J]	inergies [J]						
Size	5	7	8				
Max. energy absorption per stroke	1	2	3				
Max. energy consumption per hour	10000	15000	21000				
Max. residual energy	0.01	0.01					
Mass range [kg]	Mass range [kg]						
Size	5	7	8				
Mass range up to	2	5	10				

Stop elements YSRWJ

Data sheet

Materials

Stop element	
Limit plunger	Reinforced stainless steel
Stop sleeve	Galvanised steel
Threaded barrel	Nickel-plated brass
Note on materials	RoHS-compliant

Selection graphs for stop elements with shock absorber YSRWJ

Impact velocity v as a function of mass m

YSRWJ-5-8-A

- [1] Without additional force
- [2] With additional force A = 50 N
- [3] With additional force A = 100 N

YSRWJ-8-14-A

[1] Without additional force

- [2] With additional force A = 100 N
- [3] With additional force A = 150 N

YSRWJ-7-10-A

[1] Without additional force

- [2] With additional force A = 75 N
- [3] With additional force A = 150 N

Mode of operation

- [1] Soft cushioning characteristics. Cushioning stroke is adjustable
- [2] End-position sensing via proximity switch SME-/SMT-8 that can be integrated
- [3] Precision end-position adjustment
- [4] Precise end position using internal metallic end position

Dimensions

[1] Rubber buffer, only for sizes: YSRWJ-7-10-A and YSRWJ-8-14-A

Download CAD data \rightarrow <u>www.festo.com</u>

[2] Precision end-position adjustment

[3] Slot for proximity switch SME/SMT-8

Size	B1	B2	D1	D2	D3	D4	D5	H1	L1	L2
		+0.4			+0.1		+0.1	+0.3	+0.3/-0.1	+0.4
5	3	8.1	M8x1	4	12	6.7 ±0.05	2	16.5	97.4	32.5
7	3.5	8.5	M10x1	6	14	8.6 ±0.05	2.4	18.3	144.8	40
8	4	8.5	M12x1	8	16	10.4 ±0.1	2.4	20.75	133.3	40
Size	L3	L4 +0.45/-0.1	L5 +0.5	L6 +0.1/-0.55	L7 +0.3	=G1	=©2	M	Max. tightening torque ∹©1 [Nm]	
-	8 +0.7/-0.55	21.6	5	4.4	0.5	10	7		7	
5		-							9	
5 7	10 +0.8/-0.55	21.1	6	4	0.5	13	9		9	

Underling data							
Size	Part no.	Туре					
5	192968	YSRWJ-5-8-A					
7	192967	YSRWJ-7-10-A					
8	192966	YSRWJ-8-14-A					

Peripherals overview and type codes

Peripherals overview

Accessories and special feature

ALLE								
	Туре	Brief description	→ Page/Internet					
[1]	Hydraulic cushioning cylinder DYHR	Hydraulic cushioning cylinder with spring return for slow feed speeds	46					
[2]	Mounting flange YSRF	Mounting option for hydraulic cushioning cylinder	50					
[3]	Buffer YSRP	For protecting the piston rod	52					
[4]	Wiper seal; hardened piston rod	The wiper seal (prevents the ingress of dirt) and the hardened piston rod (protects against scratches) greatly increase the service life	-					

Type codes

Series	003		Stroke	
Hydraulic cushioning cylinder	20		20	
	25		25	
Size	40		40	
16	50		50	
20	60		60	
25				
32	004		Geometric characteristics	
	Y5		Internal hex for adjusting cushioning	
-	Hydraulic cushioning cylinder Size 16 20 25	Hydraulic cushioning cylinder 20 Size 25 16 50 20 60 25 32	Hydraulic cushioning cylinder 20 Size 25 16 50 20 60 25 32	Hydraulic cushioning cylinder 20 Size 25 16 40 20 50 25 60 32 004

General technical data

Size		16		20		25	32
Stroke	[mm]	20	40	25	50	40	60
Mode of operation		Hydraulic cushi	oning cylinder wi	th spring return			
		Single-acting, p	ushing				
Braking speed		Adjustable					
Type of mounting		With lock nut					
Max. impact velocity	[m/s]	0.3					
Mounting position		Any					
Feed speed	[mm/s]	0.2 100					
Product weight	[g]	190	255	360	440	720	1380
Ambient temperature	[°C]	0 +80					
Corrosion resistance class CRC ¹⁾		1					

1) Corrosion resistance class CRC 1 to Festo standard FN 940070

Low corrosion stress. Dry indoor application or transport and storage protection. Also applies to parts behind covers, in the non-visible interior area, and parts which are covered in the application (e.g. drive trunnions).

16	20	25	32	
≤ 0.4	≤0.5	≤0.8	≤1.2	
≤0.8	≤1	-	-	
	≤0.4	≤ 0.4 ≤ 0.5	≤ 0.4 ≤ 0.5 ≤ 0.8	≤ 0.4 ≤ 0.5 ≤ 0.8 ≤ 1.2

1) Increased reset times must be expected at low temperatures (0°C). Up to 5 s for sizes 12 and 16, and up to 12 s for sizes 25 and 32.

Forces [N]				
Size	16	20	25	32
Min. feed force ¹⁾	160	250	400	640
Max. feed force ²⁾	1600	2500	4000	6400
Resetting force ³⁾	5.4	9	12.5	18

1) Minimum force required for constant and accurately reproducible braking speed

2) Corresponds to max. force in the end position

3) With piston rod extended

Energies [J]

16		20		25	32
] 20	40	25	50	40	60
32	64	62.5	125	160	384
100000	150000	135000 200000		220000	330000
0.16		0.32		0.8	2
] 20 32 100000	20 40 32 64 100000 150000	20 40 25 32 64 62.5 100000 150000 135000	20 40 25 50 32 64 62.5 125 100000 150000 135000 200000	20 40 25 50 40 32 64 62.5 125 160 100000 150000 135000 200000 220000

Hydraulic cushioning cylinder DYHR

Data sheet

Materials

Hydraulic cushioning cylind

Hy	ydraulic cushioning cylinder									
[1]	Piston rod	Hardened high-alloy steel								
[2]	Housing	Galvanised steel								
-	Seals	Nitrile rubber								
	Note on materials	RoHS-compliant								

Braking speed v as a function of drive force F and flow control valve setting DYHR-16

Flow control valve open

------ Flow control valve closed

Hydraulic cushioning cylinder DYHR

Data sheet

Dimensions

Download CAD data \rightarrow <u>www.festo.com</u>

[1] Speed control

Size	Stroke	B1	D1	D2	D3	D4	L1
				ø	ø	ø	
	[mm]				+0.15/-0.1	+0.15	
16	20	6	M20x1.25	8	20	-	115±0.1
	40	1					150±0.1
20	25	8	M24x1.25	10	24	-	138±0.1
	50	1					181±0.1
25	40	10	M30x1.5	12	30	28.8	178±0.1
32	60	12	M37x1.5	15	37	34.8	230±0.15
Size	Stroke	L2	L3	L4	L5	=©1	=©2
	[mm]	±0.1			±0.2		
16	20	53	28.5+0.4/-0.3	8.5+0.45/-0.4	-	24	5
	40	1	48.5+0.4/-0.3	1			
20	25	60	35.6+0.4/-0.3	10.6+0.45/-0.4	-	30	5
	50	1	60.6+0.4/-0.3	1			
	1	80	52.8+0.4/-0.3	12.8+0.45/-0.4	28	36	6
25	40	00	5210.011/ 015				

1

Ordering data

Ordering data			
Size	Stroke	Part no.	Туре
	[mm]		
16	20	1155690	DYHR-16-20-Y5
	40	1155691	DYHR-16-40-Y5
20	25	1155692	DYHR-20-25-Y5
	50	1155693	DYHR-20-50-Y5
25	40	1155694	DYHR-25-40-Y5
32	60	1155696	DYHR-32-60-Y5

Accessories for cushioning components

Data sheet

Mounting flange YSRF/YSRF-C

Material: Steel

Combination options						
Cushioning components	DYSR		YSR-C	YSRW	DYHR	
Mounting flange	ng flange Y5 Y5-T					
YSRF						
YSRF-8	-	-	■ ¹⁾	1)	-	
YSRF-12		-	-	-	-	
YSRF-16		-	-	-		
YSRF-20		-	-	-		
YSRF-25		-	•	-		
YSRF-32		-		-		
YSRF-C						
YSRF-8-C	-	-	•		-	
YSRF-12-C	-				-	
YSRF-16-C	-	•			-	
YSRF-20-C	-	•			-	

1) For shock absorber size Ø 7

Dimensions and ordering data

YSRF For size [mm]	B1	B2	D1	D2	D3	H1	L1	L2	CRC ¹⁾	Weight [g]	Part no.	Туре
8	16	5.5	10	5.5	10.2	16	25	38	2	50	11681	YSRF-8
12	25	6.8	11	6.6	15.2	25	36	50	2	175	11682	YSRF-12
16	30	9	15	9	20.2	30	45	63	2	300	11683	YSRF-16
20	36	11	18	11	24.2	36	56	78	2	535	11684	YSRF-20
25	45	13	20	13.5	30.2	45	63	86	2	895	11685	YSRF-25
32	55	15	24	15.5	37.2	55	80	108	2	1730	11686	YSRF-32

1) Corrosion resistance class CRC 2 to Festo standard FN 940070

Moderate corrosion stress. Indoor applications in which condensation can occur. External visible parts with primarily decorative surface requirements which are in direct contact with a normal industrial environment.

YSRF-C												
For size	B1	B2	D1	D2	D3	H1	L1	L2	CRC ¹⁾	Weight	Part no.	Туре
[mm]										[g]		
8	20	5.5	10	5.5	12.2	20	28	41	2	90	34575	YSRF-8-C
12	25	6.8	11	6.6	16.2	25	36	50	2	180	34576	YSRF-12-C
16	32	9	15	9	22.2	32	45	63	2	330	34577	YSRF-16-C
20	40	11	18	11	26.2	40	56	78	2	700	34578	YSRF-20-C

1) Corrosion resistance class CRC 2 to Festo standard FN 940070

Moderate corrosion stress. Indoor applications in which condensation can occur. External visible parts with primarily decorative surface requirements which are in direct contact with a normal industrial environment.

1

Data sheet

Mounting flange YSRF-S-C

Material: Aluminium, steel

[1] Sensor

£

- [2] Min. distance between sensor and
 - stop
- [3] End position of shock absorber

0,

Combination options

Computation options		
Cushioning components	YSR-C	YSRW
Mounting flange		
YSRF-S-8-C		
YSRF-S-12-C		
YSRF-S-16-C		
YSRF-S-20-C		

Dimensions and ordering data

Dimensions and ord	cring auto	•												
For size	B1	D1	D2	H1	H2	H3	H4	L1	L2	L3	T1	Weight	Part no.	Туре
			ø											
[mm]												[g]		
8	20	M12x1	5.5	35	25	9.5	16	32	45	4	2	12	34579	YSRF-S-8-C
12	25	M16x1	6.6	42	32	12.5	20	36	50	3	4	130	34580	YSRF-S-12-C
16	30	M22x1.5	9	48	38	16.5	22	45	60	8	4	180	34581	YSRF-S-16-C
20	30	M26x1.5	11	52	42	19	23.5	56	80	11.5	4	250	34582	YSRF-S-20-C

-- Note

Inductive sensors for position sensing → page 54

Accessories for cushioning components

Data sheet

Buffer YSRP

Material: Steel, polyurethane

Polyurethane insert Buffer

Dimensions and ordering data

For size [mm] D3 D4 L7 L8 =© 2 CRC ¹ Weight [g] Part no. Type 8 8 M2 6.7 4 0.9 2 4 539638 YSRP-8 12 12 M4 10 6 2 2 7 11133 YSRP-12 16 16 M5 13.5 8 2.5 2 15 11134 YSRP-16 20 20 M6 17 10 3 2 27 11135 YSRP-20 25 25 M8 20.5 12 4 2 52 1136 YSRP-25 32 32 M8 26 15 4 2 110 1137 YSRP-32	Dimensione and									
8 M2 6.7 4 0.9 2 4 539638 YSRP-8 12 12 M4 10 6 2 2 7 1133 YSRP-12 16 16 M5 13.5 8 2.5 2 15 1134 YSRP-16 20 20 M6 17 100 3 2 27 1135 YSRP-20 25 M8 20.5 12 4 2 52 1136 YSRP-25	For size	D3	D4	L7	L8	=© 2	CRC ¹⁾	Weight	Part no.	Туре
12 M4 10 6 2 2 7 11133 YSRP-12 16 16 M5 13.5 8 2.5 2 15 1134 YSRP-16 20 20 M6 17 10 3 2 27 11135 YSRP-20 25 25 M8 20.5 12 4 2 52 1136 YSRP-25	[mm]							[g]		
16 M5 13.5 8 2.5 2 15 11134 YSRP-16 20 20 M6 17 10 3 2 27 11135 YSRP-20 25 25 M8 20.5 12 4 2 52 1136 YSRP-25	8	8	M2	6.7	4	0.9	2	4	539638	YSRP-8
20 M6 17 10 3 2 27 1135 YSRP-20 25 25 M8 20.5 12 4 2 52 1136 YSRP-25		12	M4	10	6	2	2	7	11133	YSRP-12
25 25 M8 20.5 12 4 2 52 11136 YSRP-25	16	16	M5	13.5	8	2.5	2	15	11134	YSRP-16
	20	20	M6	17	10	3	2	27	11135	YSRP-20
32 32 M8 26 15 4 2 110 11137 YSRP-32	25	25	M8	20.5	12	4	2	52	11136	YSRP-25
	32	32	M8	26	15	4	2	110	11137	YSRP-32

1) Corrosion resistance class CRC 2 to Festo standard FN 940070

Moderate corrosion stress. Indoor applications in which condensation can occur. External visible parts with primarily decorative surface requirements which are in direct contact with a normal industrial environment.

End stop limiter YSRA-C

Material: Steel

Dimensions and ordering data

Dimensions and ord									
For size	D	L	=œ	Weight	Part no.	Туре			
[mm]				[g]					
7	M10x1	14.5	13	12	150932	YSRA-7-C			
8	M12x1	18	15	28	150933	YSRA-8-C			
12	M16x1	24.5	19	48	150934	YSRA-12-C			

Reducing sleeve DAYH

Material: Niro steel

To improve cushioning characteristics at low load, the installed shock absorber can be replaced with the next size down shock absorber using the reducing sleeve.

Installed shock absorber	Part no.	Reducing sleeve	Part no.	Next size down shock absorber
YSRC				
YSR-5-5-C	1165476	DAYH-4	540060	YSR-4-4-C
DYSC				
DYSC-8-8-Y1F	1165484	DAYH-7	548012	DYSC-7-5-Y1F
DYSC-7-5-Y1F	1165480	DAYH-5	548011	DYSC-5-5-Y1F
DYSW				
DYSW-12-20-Y1F	1165491	DAYH-10	548074	DYSW-10-17-Y1F
DYSW-10-17-Y1F	1165488	DAYH-8	548073	DYSW-8-14-Y1F
DYSW-8-14-Y1F	1165484	DAYH-7	548072	DYSW-7-10-Y1F
DYSW-7-10-Y1F	1165480	DAYH-5	548071	DYSW-5-8-Y1F
DYSW-5-8-Y1F	1165476	DAYH-4	548070	DYSW-4-6-Y1F

Ordering data	 Proximity switch for T-slot, magneto-re 	sistive				Data sheets → Internet: sn
	Type of mounting	Switching output	Electrical connection	Cable length [m]	Part no.	Туре
N/O contact						
	Inserted in the slot from above,	PNP	Cable, 3-wire	2.5	574335	SMT-8M-A-PS-24V-E-2.5-OE
BIS BIT A	flush with the cylinder profile,		Plug M8x1, 3-pin	0.3	574334	SMT-8M-A-PS-24V-E-0.3-M8D
\checkmark	short design		Plug M12x1, 3-pin	0.3	574337	SMT-8M-A-PS-24V-E-0.3-M12
		NPN	Cable, 3-wire	2.5	574338	SMT-8M-A-NS-24V-E-2.5-0E
			Plug M8x1, 3-pin	0.3	574339	SMT-8M-A-NS-24V-E-0.3-M8D
N/C contact						
Care and a second	Inserted in the slot from above, flush with the cylinder profile, short design	PNP	Cable, 3-wire	7.5	574340	SMT-8M-A-PO-24V-E-7.5-OE

Ordering data –	Proximity switch for T-slot, magnetic reed					Data sheets → Internet: sme
	Type of mounting	Switching	Electrical connection	Cable length	Part no.	Туре
		output		[m]		
N/O contact						
a la	Inserted in the slot from above, flush with the	Contacting	Cable, 3-wire	2.5	543862	SME-8M-DS-24V-K-2.5-OE
E BA	cylinder profile		Plug M8x1, 3-pin	0.3	543861	SME-8M-DS-24V-K-0.3-M8D
	Inserted in the slot lengthwise, flush with the	Contacting	Cable, 3-wire	2.5	150855	SME-8-K-LED-24
C.S.	cylinder profile		Plug M8x1, 3-pin	0.3	150857	SME-8-S-LED-24
N/C contact						
C.S.	Inserted in the slot lengthwise, flush with the cylinder profile	Contacting	Cable, 3-wire	7.5	160251	SME-8-O-K-LED-24

Accessories for cushioning components

Data sheet

Ordering data	– Inductive sensors	M8, for mounting flange	YSRF-S-C				Data sheets → Internet: sien
	Electrical connect Cable	ion Plug M8	Switching output	LED	Cable length	Part no.	Туре
N/O combo at	Cable	Flug Mo	σαιραι		[m]		
N/O contact		i	DND			150001	
- THE	3-wire	-	PNP	-	2.5	150386	SIEN-M8B-PS-K-L
	-	3-pin	PNP	•	-	150387	SIEN-M8B-PS-S-L
N/C contact							
	3-wire	-	PNP	-	2.5	150390	SIEN-M8B-PO-K-L
Company of the second s	_	3-pin	PNP	•	-	150391	SIEN-M8B-PO-S-L
Ordering data	– Connecting cables	5					Data sheets → Internet: nebi
	Electrical connect	ion, left	Electrical connectio	n, right	Cable length [m]	Part no.	Туре
	Straight socket, N	18x1,3-pin	Cable, open end, 3	wire	2.5	541333	NEBU-M8G3-K-2.5-LE3
<u> </u>					5	541334	NEBU-M8G3-K-5-LE3
	Angled socket, Ma	8x1, 3-pin	Cable, open end, 3	wire	2.5	541338	NEBU-M8W3-K-2.5-LE3
S.					5	541341	NEBU-M8W3-K-5-LE3

Calculation aid for cushioning components

Data sheet

This selection aid helps you determine the right shock absorber for every application.

When choosing the correct shock absorber, we recommend that you proceed as follows:

When selecting a shock absorber for your application, you must ensure that the following values are not exceeded:

_

А

F

G

α

The (angular) speed used in the formulas is the speed on impact with the shock absorber. This depends on the dynamic performance of the drive component and can thus only be determined with difficulty.

It is better to determine the average speed (v_m = s/t or $\omega_m = \phi/t$).

The following formulas are required for the calculation:

The following applies in addition for rotary motion:

The following abbreviations are used:

- 1. Determine the following at the moment of impact: - Force (A) - Equivalent mass m_{equiv} - Impact velocity (v) Permissible energy utilisation per stroke: $W_{min.} = 25\%$ $W_{\text{max.}}$ = 100% Recommended energy utilisation per stroke: W_{opt} = 50% ... 100% To prevent damage to the drive, for safety reasons the following values should be used for calculation: v = 1.25 ... 2 v_m $\omega = 1.25 \dots 2 \omega_m$ Typical values for linear movements: Factor of 2 for strokes < 50 mm, Factor of 1.5 for strokes > 50 mm and <100 mm, Factor of 1.25 for strokes > 100 mm. A = F + G $A = F + m x g x sin \alpha$ $W_{total} = 1/2 \times m \times v^2 + A \times s < W_{max.}$ $W_h = W_{total} x \text{ strokes / hour } W_{hmax}$ $m_{equiv.} = 1/R^2$ $v = w \times R$ $A = M/R + m x g x \sin \alpha x a/R$ = Additional force = F + G [N] v = Cylinder force minus frictional force [N] g = Weight force $= m x g x sin \alpha$ S α Special cases: = 0°: Horizontal movement G = 0
- = 90°: Downward movement α G = m x g
- α = 90°: Upward movement G = -m x g

- 2. Select the shock absorber from the graphs on the following pages.
- 3. Check the selected shock absorber using the max. cushioning energy (W_{max})
- Max. energy absorption per hour
- Max. residual energy
- Max. stop force in the end position

As the (angular) speed is squared in the calculation, the expected error increases considerably. The calculation can therefore only be taken into consideration as an approximate figure. However, the safety factor ensures that it is not possible to select a shock absorber that is too small.

= Impact velocity [m/s]

m_{equiv.}= Equivalent mass [kg]

- = Acceleration due to gravity 9.81 [m/s²]
- = Shock absorber stroke [m]
- = Impact angle [°]
- W_{total} = Cushioning work/stroke [J]
- W_h = Cushioning work/hour [J]
- Т = Mass moment of inertia $[kg x m^2]$
- R = Distance between the pivot point of mass and shock absorber [m]
- ω = Angular speed [rad/s]
- = Drive torque [Nm] Μ
- = Distance between the centre of а gravity of mass and the pivot point

55

Calculation aid for cushioning components

Data sheet

Sizing example for linear motion

The procedure for selecting a shock absorber is illustrated using the adjacent diagram an example:

А $= F + m x g x \sin \alpha$ $= 190 \text{ N} + 50 \text{ x} 9.81 \text{ x} \sin \alpha$ = 537 N $m_{equiv.} = m = 50 \text{ kg}$

= 50 kg m = 1.5 m/s = 45° α = 190 N

(\emptyset 20 mm for p = 6 bar, 1800 strokes per hour)

When selecting the shock absorbers from the graphs (see data sheets), the curve immediately to the right of the point of intersection of the equivalent mass (m_{equiv.}) and the impact velocity (v) determines the force (A). The curves move to the left as the additional force increases.

Three force curves are shown for each shock absorber. An average must be taken for intermediate values. As the graphs show (solid line), shock absorbers DYSR-25-40 and YSR-25-40-C can be considered here.

It is yet to be determined whether the permissible cushioning work (W_{max}) and the cushioning work per hour (W_{hmax}) have been exceeded. The max. permissible values and the stroke length (s) can be found in the tables (below the graphs).

Test:	
W _{total}	$= 1/2 \text{ x m x v}^2 + \text{A x s}$
	= (1/2 x 50 x 1.5 ² +
	537 x 0.04) Nm = 78

J

- = W_{total} x strokes/h W_{h} = 78 Nm x 1 800
 - = 140 000 J

Both shock absorbers are suitable for the above application. Additional selection criteria include possibility of adjustment, and size.

Result		
	DYSR-25-40	YSR-25-40-C
W _{total}	78 J	78 J
W _h	140000 J	140000 J
W _{max} . ¹⁾	160 J > W _{total}	160 J > W _{total}
W _{hmax.}	220000 > W _{max.}	150000 > W _{max.}

1) In both cases, utilisation is 49%.

Calculation aid for cushioning components

 $= 2 \text{ kg m}^2$

= 4 rad/s

= 0.5 m

= 20 Nm

900 strokes per hour

ω

R

М

Data sheet

Sizing example for rotary motion

Example for rotary motion: $m_{equiv.} = J/R^2 = 8 \text{ kg}$ v $= \omega x R$ = M/R = 40 NА

When selecting the shock absorbers from the graphs (see data sheets), the curve immediately to the right of the point of intersection of the equivalent mass $(\rm m_{equiv})$ and the impact velocity (v) determines the force (A). The curves move to the left as the additional force increases. Three force curves are shown for each shock absorber. An average must be taken for intermediate values. As the graphs show (dashed line), shock absorbers DYSR-16-20 and YSR-16-20-C are can be considered.

It is yet to be determined whether the permissible cushioning work (W_{max}) and the cushioning work per hour (W_{hmax}) have been exceeded. The max. permissible values and the stroke length (s) can be found in the tables (below the graphs). Comment: For rotary applications, the impact angle must be taken into account.

Test:		Both shock absorbers are suitable for
W _{total}	$= 1/2 \times m \times v^{2} + A \times s$	the above application.
	$= (1/2 \times 8 \times 2^2 +$	Additional selection criteria include
	40 x 0.02) J = 17 J	possibility of adjustment, and size.
W _h	= W _{total} x strokes/h	
	= 17 J x 900	
	= 15 300 J	

Result		
	DYSR-16-20 ³)	YSR-16-20-C
W _{total}	17]	17 J
W _h	15 300 J	15 300 J
W _{max} .	$32 J > W_{total}^{1}$	$30 \text{ J} > \text{W}_{\text{total}}^{2)}$
W _{hmax.}	100000 > W _{max.}	64000 > W _{max.}

1) Utilisation is 53%.

2) Utilisation is 57%.

3) Operated without buffer.

Festo - Your Partner in Automation

1 Festo Inc.

5300 Explorer Drive Mississauga, ON L4W 5G4 Canada

Festo Customer Interaction Center Tel: 18774633786 Fax: 18773933786 Email: customer.service.ca@festo.com ventas.mexico@festo.com

2 Festo Pneumatic

Av. Ceylán 3, Col. Tequesquináhuac 54020 Tlalnepantla, Estado de México

Multinational Contact Center 01 800 337 8669

3 Festo Corporation 1377 Motor Parkway Suite 310 Islandia, NY 11749

4 **Regional Service Center** 7777 Columbia Road Mason, OH 45040

Festo Customer Interaction Center 1 800 993 3786 1 800 963 3786 customer.service.us@festo.com

Subject to change

f 🗾 in 🛗 www.festo.com/socialmedia

Connect with us

www.festo.com