Solid State Relays Industrial, 2-Pole Zero Cross Switching Type RA2A..C

RA 2 A 23 D 40 C _

Product Description

This 2-pole industrial relay minimises the requirements in a control cabinet without compromising optimised design is free of performance. By applying an input voltage on control A, the corresponding output semiconductor is activated at pole ensures protection against the first zero crossing of the overvoltages.

line voltage. The same applies space to control B. LEDs indicate the control status of each pole. The moulding mass to reduce internal mechanical stress. The integrated varistor across each

- 2 Pole AC Solid State Relay
- Zero Cross
- Resistive AC loads • Direct copper bonding (DCB) technology
- LED indication
- Rated operational current: up to 2x 40 AACrms
- Rated operational voltage: up to 600 VACrms
- Input range: 4.5- 32 VDC
- Blocking voltage: Up to 1200 Vp
- Opto-isolation: 4000 VACrms
- Integrated overvoltage protection

Ordering Key

Solid State Relay	
Number of poles	
Zero switching	
Rated operational voltage	
Control voltage	
Rated operational current	
PIN connectors for control _	
Option	

Selection Guide

Rated operational voltage	Blocking voltage	Control voltage	Max. operational of 2 x 25 AACrms	current (with suitable heatsink) 2 x 40 AACrms
230 VACrms, ZC	650 V _p	4.5 - 32 VDC	RA2A23D25C	RA2A23D40C
600 VACrms, ZC	1200 V _p	4.5 - 32 VDC	RA2A60D25C	RA2A60D40C
ZC = Zero Cross Switching)			

Selection Guide - RA2A...H53 (RA2A mounted on heatsink RHS38)

Rated operational voltage	Blocking voltage	Control voltage	Rated operational current at 40°C 2 x 20 AACrms*
230 VACrms, ZC	650 V _p	4.5 - 32 VDC	
* Refer to Derating Curve for	or other ratings		

Selection Guide - RA2A...S18 (attached thermal pad)

Rated operational	Blocking voltage	Control voltage	Rated operational current (with suitable heatsink)	
voltage			2 x 25 AACrms	2 x 40 AACrms
230 VACrms, ZC	650 V _p	4.5 - 32 VDC	-	RA2A23D40CS18

General Specifications

	RA2A23	RA2A60	
Operational voltage range	24 to 265 VACrms	42 to 660 VACrms	
Blocking voltage	650 Vp	1200 Vp	
Rated isolation			
Input to Output	4 kVrms	4 kVrms	
Output to heatsink	4 kVrms	4 kVrms	
Operational frequency	45 to 65 Hz	45 to 65 Hz	
Power factor	>0.95 @ 230 VACrms	>0.95 @ 600 VACrms	
Zero voltage turn-on	<15 V	<15 V	
LED ON indication (x2)	Yes (green)	Yes (green)	
CE marking	Yes	Yes	
Approvals	UR, cUR, EAC	UR, cUR, EAC	

Output Specifications

	RA225	RA240	
Rated operational current AC 51	2 x 25 AACrms	2 x 40 AACrms	
Minimum operational current	150 mA	250 mA	
Non-rep. surge current t=10 ms	325 A _p	600 A _p	
Off-state leakage current	< 3 mA	< 3 mA	
I ² t for fusing t=10 ms	525 A ² s	1800 A ² s	
On-state voltage drop @ rated current	≤ 1.6 Vrms	≤ 1.6 Vrms	
Critical dV/dt off-state min.	1000 V/µs	1000 V/µs	
Zero crossing detection	Yes	Yes	

Input Specifications

Control voltage range ¹	4.5 - 32 VDC
Pick-up voltage	4.25 VDC
Drop-out voltage	2 VDC
Reverse Protection	32 VDC
Input current per pole @ max. input voltage	≤10m A
Response time pick-up @ 50 Hz	≤10 ms
Response time drop-out @ 50 Hz	≤10 ms

1. DC control to be supplied by class 2 power source

Housing Specifications

Control terminals ²	4 PIN connector 0.64 mm square pin with 2.54 mm centre distance
Power terminals	4 x Fastons; 6.35 x 0.8 mm
Baseplate	Aluminium
Weight	Approx. 85 g
Max. Pull out force for power terminals	130 N
Relay	
Mounting screws	M5
Mounting torque	1.5 - 2.0 Nm

2. Possible mating connector model CE100F22-4-D from MAS-CON

Functional Diagram

Dimensions

Output Power Dissipation

Heatsink Dimensions (load current versus ambient temperature)

Note: Add the currents of both poles and compare with datasheets for proper heatsink. Each pole can handle up to the maximum current specified. Example: Each pole of the RA2A23D40C can handle a maximum of 40 A.

RA 2....25

Load currei	nt [A]		Thermal resistance [°C/W]				
50	1.11	0.94	0.78	0.62	0.46	0.29	
45	1.36	1.17	0.99	0.80	0.61	0.43	
40	1.68	1.47	1.25	1.03	0.81	0.60	
35	2.06	1.80	1.54	1.29	1.03	0.77	
30	2.5	2.2	1.87	1.56	1.25	0.94	
25	3.1	2.7	2.3	1.9	1.6	1.7	
20	4.0	3.5	3.0	2.5	2.0	1.52	
15	6	5	4	3.5	2.8	2.1	
10	9	8	7	6	4	3.3	
5	18	16	14	12	9	7	
	20	30	40	50	60	70	Ta
					Ambi	ent temp.	[°C]

Load currer	nt [A]		Thermal resistance [°C/W]				
80	0.68	0.56	0.44	0.32	0.19	0.07	
72	0.87	0.73	0.59	0.45	0.31	0.17	
64	1.10	0.94	0.78	0.62	0.45	0.29	
56	1.41	1.22	1.03	0.83	0.64	0.45	
48	1.8	1.6	1.36	1.13	0.90	0.67	
40	2.3	2.0	1.7	1.4	1.1	0.86	
32	3.0	2.6	2.2	1.9	1.5	1.11	
24	4	4	3	2.6	2.0	1.5	
16	6	6	5	4	3	2.4	
8	13	12	10	8	7	5	
	20	30	40	50	60	70	- Ta
	Ambient temp. [°C						

Note: The thermal resistance values indicated above are applicable if a fine layer of thermal paste, HTS02S, is applied between heatsink and SSR.

RA 2....25...S18

Load curre	nt [A]	Thermal resistance [°C/W]			9		
							_
50	0.61	0.44	0.28	0.12			
45	0.86	0.67	0.49	0.30	0.11		
40	1.18	0.97	0.75	0.53	0.31	0.10	
35	1.60	1.35	1.09	0.83	0.57	0.32	
30	2.17	1.86	1.55	1.24	0.93	0.61	
25	2.98	2.59	2.20	1.81	1.43	1.04	
20	4.04	3.54	3.03	2.53	2.02	1.52	
15	5.62	4.92	4.22	3.51	2.81	2.11	
10	9	8	7	6	4.40	3.30	
5	18	16	14	12	9	7	
	20	30	40	50	60	70	- T_
					Ambi	ent temp.	[°C]

RA 2....40...S18

RA 2....40

Load	oad Thermal resistance urrent [A] [°C/W])					
							_		
80	0.18	0.06							
72	0.37	0.23	0.09						
64	0.60	0.44	0.28	0.12					
56	0.91	0.72	0.53	0.33	0.14				
48	1.32	1.09	0.86	0.63	0.40				
40	1.90	1.62	1.33	1.05	0.76	0.47			
32	2.79	3.42	2.05	1.68	1.31	0.94			
24	4.09	3.58	3.07	2.56	2.05	1.54			
16	6	6	5	3.98	3.19	2.39			
8	13	12	10	8	7	5			
	20	30	40	50	60	70	TA		
		Ambient temp. [°C]							

Note: The thermal resistance values indicated above are applicable for models which have an attached thermal pad, KK071CUT. Refer to Accessories section.

RHS..

Heatsink Selection

Heatsink Range Overview: http://www.productselection.net/PDF/UK/ssr_accessories.pdf

Heatsink Selector Tool: http://www.productselection.net/heatsink/heatsinkselector.php?LANG=UK

Applications

Thermal stress will reduce the lifetime of the SSR. Care must be taken to ensure proper heatsinking when the relay is to be used at high sustained currents. Ade-quate electrical connection between relay terminals and cable must be ensured.

Thermal characteristics

The thermal design of Solid State Relays is very important. It is essential that the user makes sure that cooling is adequate and that the maximum junction temperature of the relay is not exceeded.

If the heatsink is placed in a small closed room, control panel or the like, the power dissipation can cause the ambient temperature to rise. The heatsink is to be calculated on the basis of the ambient temperature and the increase in temperature.

Ordering Key

Heatsinks and fans

• 5.40°C/W to 0.12°C/W thermal resistance

DIN, panel or thru wall mountingSingle or multiple SSR mounting

Thermal Specifications

Operating temperature	-20° to 70°C (-4°F to +158°F)
Storage temperature	-20° to 80°C (-4°F to +176°F)
Junction temperature	≤ 125°C
R _{th} junction to case	
1 pole	1°C/W
2 pole	0.5°C/W
R _{th} junction to ambient	≤ 20°C/W

Environmental Specifications

Pollution degree	2 (non-conductive pollution with possibilites of condensation)
EU RoHS compliant	Yes
China RoHS compliant	Refer to Environmental Information (Page 8)

Connection Diagrams

For use in a circuit where devices or systems, including filters or air gaps, are used to control overvoltages at the maximum rated impulse withstand voltage peak of 6.0 kV. Devices or systems shall be evaluated using the requirements in the standard for Transient Voltage Surge Suppressors, UL1449 and shall also withstand the available short circuit current in accordance with UL 1449.

Electromagnetic Compatibility

Immunity	EN61000-6-2	Radiated Radio Frequency	
Electrostatic Discharge (ESD) Immunity Air discharge, 8 kV Contact, 4 kV	IEC/EN 61000-4-2 Performance Criteria 2 Performance Criteria 2	Immunity 10 V/m, 80 - 1000 MHz 10 V/m, 1.4 - 2.0 GHz 3 V/m, 2.0 - 2.7 GHz Conducted Radio Frequency	IEC/EN 61000-4-3 Performance Criteria 1 Performance Criteria 1 Performance Criteria 1 IEC/EN 61000-4-6
Electrical Fast Transient (Burst) Immunity	IEC/EN 61000-4-4	Immunity 10 V/m, 0.15 - 80 MHz	Performance Criteria 1
Output: 2 kV, 5 kHz Input: 1 kV, 5 kHz Electrical Surge Immunity Output, line to line, 1 kV	Performance Criteria 2 Performance Criteria 1 IEC/EN 61000-4-5 Performance Criteria 2	Voltage Dips Immunity 0% for 0.5 , 1 cycle 40% for 10 cycles 70% for 25 cycles 80% for 250 cycles	IEC/EN 61000-4-11 Performance Criteria 2 Performance Criteria 2 Performance Criteria 2 Performance Criteria 2
Output, line to earth, 1 kV Output, line to earth, 2 kV Input, line to line, 1 kV Input, line to earth, 2 kV	Performance Criteria 2 Performance Criteria 2 Performance Criteria 2 Performance Criteria 2	Voltage Interruptions Immunity 0% for 5000 ms	IEC/EN 61000-4-11 Performance Criteria 2
EMC Emission Radio Interference Voltage Emission (Conducted) 0.15 - 30 MHz	EN61000-6-4 IEC/EN 55011 Class A (industrial) with filters	Radio Interference Field Emission (Radiated) 30 - 1000 MHz	IEC/EN 55011 Class B

Notes:

- Control input lines must be installed together to maintain products' susceptibility to Radio Frequency interference.
- Performance Criteria 1: No degradation of performance or loss of function is allowed when the product is operated as intended.
- Performance Criteria 2: During the test, degradation of performance or partial loss of function is allowed. However, when the test is complete the product should return operating as intended by itself. - Performance Criteria 3: Temporary loss of function is allowed, provided the function can be restored by manual operation of the controls.

Short Circuit Protection - Co-ordination type 2 (IEC/EN 60947-4-3)

10.3 x 38	6.9 gRC 10 - 25	10	600
14 x 51	6.9xx CP gRC 14x51/40	10	600
		9	

* Formerly Ferraz Shawmut

xx=00 without fuse trip indication

xx = 21 with fuse trip indication

Type 2 Protection with Miniature Circuit Breakers

Part No.	Model no. for Z - type M. C. B. (rated current)	Model no. for B - type M. C. B. (rated current)	Wire cross sectional area [mm ²]	Minimum length of Cu wire conductor [m] ³	
RA2A25 (525 A²s)	S201 - Z4 (4A) S201 - Z6 UC (6A)	S201-B2 (2A) S201-B2 (2A)	1.0 1.5 2.5	21.0 21.0 31.5	
RA2A40 (1800 A²s)	S201 - Z10 (10A)	S201-B4 (4A)	1.0 1.5 2.5	7.6 11.4 19.0	
	S201 - Z16 (16A)	S201-B6 (6A)	1.0 1.5 2.5 4.0	5.2 7.8 13.0 20.8	
	S201 - Z20 (20A)	S201-B10 (10A)	1.5 2.5	12.6 21.0	
	S201 - Z25 (25A)	S201-B13 (13A)	2.5 4.0	25.0 40.0	
	2-pole S202 - Z25 (25A)	S202-B13 (13A)	2.5 4.0	19.0 30.4	

3. Between MCB and Load (including return path which goes back to the mains)

Note: A prospective current of 6kA and a 230/400V power supply system is assumed for the above suggested specifications. For cables with different cross section than those mentioned above please consult Carlo Gavazzi's Technical Support Group. Specifications are per pole.

Environmental Information

The declaration in this section is prepared in compliance with People's Republic of China Electronic Industry Standard SJ/ T11364-2014: Marking for the Restricted Use of Hazardous Substances in Electronic and Electrical Products.

Part Name	Toxic or Harardous Substances and Elements					
	Lead (Pb)	Mercury (Hg)	Cadmium (Cd)	Hexavalent Chromium (Cr(VI))	Polybrominated biphenyls (PBB)	Polybrominated diphenyl ethers (PBDE)
Power Unit Assembly	х	0	0	0	0	0

O: Indicates that said hazardous substance contained in homogeneous materials fot this part are below the limit requirement of GB/T 26572.

X: Indicates that said hazardous substance contained in one of the homogeneous materials used for this part is above the limit requirement of GB/T 26572.

环境特性

这份申明根据中华人民共和国电子工业标准

SJ/T11364-2014:标注在电子电气产品中限定使用的有害物质

零件名称	有毒或有害物质与元素					
	铅 (Pb)	汞 (Hg)	镉 (Cd)	六价铬 (Cr(Vl))	多溴化联苯 (PBB)	多溴联苯醚 (PBDE)
功率单元	Х	0	0	0	0	0
O:此零件所有材料中含有的该有害物低于GB/T 26572的限定。						
X: 此零件某种材料中含有的	该有害物高	于GB/T 2657	2的限定。			

Heatsink RHS38

Ordering Key

Heatsink

Factory mounted heatsink to RA2A

RHS38AD RA2A...H53

Derating Curve for RA2A..H53

Applicable for vertical mounting

Other Accessories

- Graphite thermal pad with adhesive on one side
- Type KK071CUT
 Dimensions: 35 x 43 x
- 0.25mm
- Packing quantity: 50pcs.

- Cable accessory for RA2A..C
- Type RCS4-xxx-1

xxx = 100 for 100cm length xxx = 400 for 400cm length

Other accessories include DIN rail adaptors, varistors and spacers.

For futher information refer to Accessories datasheets at: www.productselection.net/PDF/UK/SSR_Accessories.pdf