

TDA7449

Digital tone control audio processor

Datasheet - production data

Features

- Input multiplexer
 - Two stereo inputs
 - Selectable input gain for optimal adaptation to different sources
- One stereo output
- Treble and bass control in 2.0 db steps
- Volume control in 1.0 db steps
- Two speaker attenuators:
 - Two independent speaker controls in 1.0 db steps to facilitate balance
 - Independent mute function
- All functions are programmable via serial bus

Description

The TDA7449 is a volume tone (bass and treble) balance (left/right) processor for quality audio applications in TV systems. Selectable input gain is provided. A serial bus controls all functions.

The AC signal setting is obtained by resistor networks and switches combined with operational amplifiers.

Bipolar/CMOS technology used allows obtaining low distortion, low noise and DC stepping.

Table 1. Device summary

Order code	Package	Packing
TDA7449D13TR	SO20	Tape and reel

Figure 1. Block diagram

September 2014

DocID006317 Rev 5

This is information on a product in full production.

Contents

1	Over	view	. 3
2	Elect	rical characteristics and test circuit	. 4
3	Appli	ication recommendations	. 7
	3.1	Bass, stages	. 7
	3.2	Treble stage	. 7
	3.3	Treble stage	. 8
4	l ² C b	us interface	. 9
	4.1	Data validity	. 9
	4.2	Start and stop conditions	. 9
	4.3	Start and stop conditions	. 9
	4.4	Acknowledge	. 9
	4.5	Transmission without acknowledge	. 9
5	Softv	vare specifications	11
	5.1	Interface protocol	11
		dv.	
6	Exan	nples	12
	6.1	No incremental bus	12
	6.2	Incremental bus	12
NS O	Data	bytes	13
8	Pack	age information	19
9	Revis	sion history	20

Overview 1

		•	
Symbol	Parameter	Value	Unit
V _S	Operating supply voltage	10.5	V
T _{amb}	Operating ambient temperature	0 to 70	°C
T _{stg}	Storage temperature range	-55 to 150	°C

Figure 2. Pin connections									
CREF [1	20	_ s	SDA					
V _s [2	19	🗆 s	SCL					
PGND	3	18		DIG_GND					
ROUT [4	17	т 🗆	REBLE(R)					
LOUT [5	16	ΤС	REBLE(L)					
R_IN2	6	15	В	BIN(L)					
R_IN1	7	14	В	3OUT(L)					
L_IN1	8	13	В	BOUT(R)					
L_IN2	9	12	В	BIN(R)					
MUXOUT(L)	10) 11		/UXOUT(R)					
		D98AU848							

Table 2. Absolute maximum ratings

Table 3. Thermal data

X

Symbol	Parameter	Value	Unit
R _{th j-pin}	Thermal resistance junction pins	85	°C/W

Table 4. Quick reference data

	R _{th j-pin}	R _{th j-pin} Thermal resistance junction pins		85		°C/W
	Symbol	Table 4. Quick reference data Parameter	Min.	Тур.	Max.	Unit
cO^{le}				-		V
205	V _S	Supply voltage	6	9	10.2	-
()	V _{CL}	Max input signal handling	2			V _{RMS}
	THD	Total harmonic distortion V = 0.1 Vrms f = 1 kHz		0.01	0.1	%
	S/N	Signal-to-noise ratio V _{out} = 1 Vrms (mode = OFF)		106		dB
	S _C	Channel separation f = 1 KHz		90		dB
		Input gain (2 dB step)	0		30	dB
		Volume control (1 dB step)	-47		0	dB
		Treble control (2 dB step)	-14		14	dB
		Bass control (2 dB step)	-14		14	dB
		Balance control 1 dB step	-79		0	dB
		Mute attenuation		100		dB

2 Electrical characteristics and test circuit

Table 5. Electrical characteristics (refer to the test circuit T_{amb} = 25 °C, V_S = 9 V,
R_{I} = 10 k Ω , R_{G} = 600 Ω , all controls flat (G = 0 dB), unless otherwise specified)

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
Supply				1		
V _S	Supply voltage		6	9	10.2	V
ا _S	Supply current			7		mA
SVR	Ripple rejection		60	90	10	dB
Input stage					15	51
R _{IN}	Input resistance			100	N	kΩ
V _{CL}	Clipping level	THD = 0.3%	2	2.5		Vrms
S _{IN}	Input separation	The selected input is grounded through a 2.2 µ capacitor	80	100		dB
G _{inmin}	Minimum input gain		-1	0	1	dB
G _{inman}	Maximum input gain	005		30		dB
G _{step}	Step resolution	04		2		dB
Volume contro				•		
C _{RANGE}	Control range		45	47	49	dB
A _{VMAX}	Max. attenuation		45	47	49	dB
A _{STEP}	Step resolution		0.5	1	1.5	dB
E		$A_V = 0$ to -24 dB	-1.0	0	1.0	dB
E _A	Attenuation set error	A _V = -24 to -47 dB	-1.5	0	1.5	dB
-10/	Tra al in a surra	$A_V = 0$ to -24 dB		0	1	dB
ET	Tracking error	A _V = -24 to -47 dB		0	2	dB
V _{DC}	DC step	adjacent attenuation steps		0	3	mV
v DC	DC step	from 0 dB to A _V max		0.5		mV
A _{mute}	Mute attenuation		80	100		dB
Bass control (1)					
Gb	Control range	Max. boost/cut	+12.0	+14.0	+16.0	dB
B _{STEP}	Step resolution		1	2	3	dB
R _B	Internal feedback resistance		18.75	25	31.25	KΩ
Treble control	(1)		<u>.</u>			
Gt	Control range	Max. boost/cut	+13.0	+14.0	+15.0	dB
T _{STEP}	Step resolution		1	2	3	dB

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
Speaker atten	uators			•		
C _{RANGE}	Control range			76		dB
S _{STEP}	Step resolution		0.5	1	1.5	dB
F	Attenuation act error	A _V = 0 to -20 dB	-1.5	0	1.5	dB
E _A	Attenuation set error	A _V = -20 to -56 dB	-2	0	2	dB
V _{DC}	DC Step	adjacent attenuation steps		0	3	mV
A _{mute}	Mute attenuation		80	100	14	dB
Audio outputs					Cr	
V _{CLIP}	Clipping level	d = 0.3%	2.1	2.6	P*	V _{RMS}
RL	Output load resistance		2	9		kΩ
R _O	Output impedance	.0.	10	40	70	W
V _{DC}	DC voltage level	1010		3.8		V
General		SOL				
E _{NO}	Output noise	All gains = 0dB; BW = 20Hz to 20KHz flat		5	15	μV
E	Total tracking error	A _V = 0 to -24dB		0	1	dB
Et	Total tracking error	A _V = -24 to -47dB		0	2	dB
S/N	Signal-to-Noise ratio	All gains 0dB; V _O = 1V _{RMS} ;		106		dB
S _C	Channel separation left/right		80	100		dB
d	Distortion	A _V = 0; V _I = 1V _{RMS} ;		0.01	0.08	%
Bus input 🖕	0			•		•
VIL	Input low voltage				1	V
V IH	H Input high voltage		3			V
I _{IN}	Input current	V _{IN} = 0.4 V	-5		5	μΑ
V _O	Output voltage SDA acknowledge	I _O = 1.6 mA		0.4	0.8	v

Table 5. Electrical characteristics (refer to the test circuit $T_{amb} = 25 \text{ °C}$, $V_S = 9 \text{ V}$, $R_I = 10 \text{ k}\Omega$, $R_G = 600 \Omega$, all controls flat (G = 0 dB), unless otherwise specified) (continued)

Note:

1. The device is functionally good at Vs = 5 V. A step down on Vs to 4 V doesn't reset the device.

2. Bass and treble response: the center frequency and the response quality can be chosen by the external circuitry.

3 Application recommendations

The first and the last stages are volume control blocks. The control range is 0 to -47 dB (mute) for the first one and 0 to -79 dB (mute) for the last one. Both of them have 1 dB step resolution. The very high resolution allows the implementation of systems free from any noisy acoustical effect. The TDA7449 audio processor provides dual-band tone control. Typical responses are shown in *Figure 5* through *9*.

3.1 Bass stage

The bass cell has an internal resistor Ri = 25 k Ω typical. Several filter types can be implemented, connecting external components to the bass IN and OUT pins. *Figure 4* refers to a basic T-type bandpass filter. The filter component values R1 internal F_C, the gain A_V at max. boost and the filter Q factor are calculated as given below.

$$C1 = \frac{A_V - 1}{2 \cdot \pi \cdot Fc \cdot Ri \cdot Q}$$

$$C2 = \frac{Q^2 \cdot C1}{A_V - 1 - Q^2}$$

$$R2 = \frac{A_V - 1 - Q^2}{2 \cdot \pi \cdot C1 \cdot Fc \cdot (A_V - 1) \cdot Q}$$

3.2 Treble stage

The treble stage is a high-pass filter whose time constant is fixed by an internal resistor (25 k Ω typical) and an external capacitor connected between the treble pins and ground.

3.3 CREF

The recommended 10 μF reference capacitor (CREF) value can be reduced to 4.7 μF if the application requires faster power ON.

4 I²C bus interface

Data transmission from the microprocessor to the TDA7449 and vice versa takes place through the 2-wire I^2C bus interface, consisting of the two lines SDA and SCL (pull-up resistors to the positive supply voltage must be connected).

4.1 Data validity

As shown in *Figure 10*, the data on the SDA line must be stable during the high period of the clock. The HIGH and LOW state of the data line can only change when the clock signal on the SCL line is LOW.

4.2 Start and stop conditions

As shown in *Figure 11*, a start condition is a HIGH-to-LOW transition of the SDA line while SCL is HIGH. The stop condition is a LOW-to-HIGH transition of the SDA line while SCL is HIGH.

4.3 Byte format

Every byte transferred on the SDA line must contain 8 bits. Each byte must be followed by an acknowledge bit. The MSB is transferred first.

4.4 Acknowledge

The master (μ P) puts a resistive HIGH level on the SDA line during the acknowledge clock pulse (see *Figure 12*). The peripheral (audio processor) that acknowledges has to pull down (LOW) the SDA line during this clock pulse.

The audio processor which has been addressed has to generate an acknowledge after the reception of each byte, otherwise the SDA line remains at the HIGH level during the ninth clock pulse time. In this case the master transmitter can generate the STOP information in order to abort the transfer.

4.5

Transmission without acknowledge

Instead of detecting the acknowledge from the audio processor, the μP can use a simpler transmission which is to simply wait one clock pulse without checking the slave acknowledge and send the new data.

This is of course a riskier approach.

Software specifications 5

5.1 Interface protocol

The interface protocol comprises:

- A start condition (S) •
- A chip address byte, containing the TDA7449 address •
- A subaddress byte •
- A sequence of data (N byte + acknowledge)
- A stop condition (P)

		,			
		Figure 13. Ir	nterface proto	ocol	at (S
	CHIP ADDRESS	SUBADDRES	S	DATA 1 to DATA n	
	MSB LSE	T F B MSB	LSB MSE	3 LS	
	S 1 0 0 0 1 0 0 0		DATA ACK		ACK P
	D96AU420				
	ACK = Acknowledge		i at	3	
	S = Start		psolet	~	
	P = Stop		S		
	A = Address				
	B = Auto-increment	~ ^			
obsole	B = Auto-increment				

Examples 6

6.1 No incremental bus

The TDA7449 receives a start condition, the correct chip address, a subaddress with B = 0 (no incremental bus), N-data (all these data concern the subaddress selected), a stop condition.

Figure 14. No incremental bus (B = 0)

CHIP ADDRESS SUBADDRESS DATA MSB LSB MSB LSB S 1 0 0 0 ACK X X 0 D3 D2 D1 D0 ACK P D96AU421 D96AU421 D96AU421 D96AU421 D96AU421 D96AU421 D96AU421			· · · ·				
S 1 0 0 0 ACK X X 0 D3 D2 D1 D0 ACK ACK P D96AU421	CHIP ADDRESS	SUBADDRESS	DATA				
D96AU421	MSB LS	B MSB LSB	MSB LSB				
ducer	S 1 0 0 0 1 0 0 0	ACK X X X 0 D3 D2 D1 D0	ACK DATA ACK P				
Incremental bus	D96AU421						
	Incremental bus						
		5					

6.2 Incremental bus

The TDA7449 receives a start condition, the correct chip address, a subaddress with B = 1 (incremental bus): now it is in a loop condition with an autoincrease of the subaddress whereas SUBADDRESS from "XXX1000" to "XXX1111" of DATA are ignored.

DATA 1 concern the subaddress sent, and DATA 2 concerns the subaddress sent plus one in the loop etc, and at the end it receives the stop condition.

CHIP	ADDRESS	SUBADDRESS	DATA 1	to DATA n
MSB	LSB MSE	LSB	Г MSB	LSB
S 1 0 0	0 1 0 0 0 ACK X	X X 1 D3 D2 D1 D0	ACK D	ATA ACK P
	1422			

Table 6. Power-on reset	condition		
Input selection	IN2		
Input gain	28 dB		
Volume	Mute		
Bass	0 dB		
Treble	2 dB		
Speaker	Mute		
	Input selection Input gain Volume Bass Treble		

Table 6 Power-on reset condition

7 Data bytes

Address = 88 hex (Addr: OPEN)

MSB							LSB	Cubadduaaa
D7	D6	D5	D4	D3	D2	D1	D0	Subaddress
Х	Х	Х	В	0	0	0	0	Input select
Х	X	Х	В	0	0	0	1	Input gain
Х	X	Х	В	0	0	1	0	Volume
Х	Х	Х	В	0	0	1	1	Not allowed
Х	Х	Х	В	0	1	0	0	Bass
Х	X	Х	В	0	1	0	1	Treble
Х	Х	Х	В	0	1	1	0	Speaker attenuate "R"
Х	Х	Х	В	0	1	10	1	Speaker attenuate "L"
1: incr	ementa	l bus ac	tive	C	10 ²	,0,-		

Table 7. Function selection: first byte (subaddress)

X = don't care

	Table 6. Input Selection									
	MSB	-0	30					LSB	Input multiplexer	
	D7	D6	D5	D4	D3	D2	D1	D0	input multiplexer	
	X	Х	Х	Х	Х	Х	0	0	Not allowed	
76	Х	Х	Х	Х	Х	Х	0	1	Not allowed	
SO	Х	Х	Х	Х	Х	Х	1	0	IN2	
000	Х	Х	Х	Х	Х	Х	1	1	IN1	

Table 8. Input selection

1

MSB							LSB	Input gain
D7	D6	D5	D4	D3	D2	D1	D0	2 dB steps
				0	0	0	0	0 dB
				0	0	0	1	2 dB
				0	0	1	0	4 dB
				0	0	1	1	6 dB
				0	1	0	0	8 dB
				0	1	0	1	10 dB
				0	1	1	0	12 dB
				0	1	1	1	14 dB
				1	0	0	0	16 dB
				1	0	0	1	18 dB
				1	0	1	0	20 dB
				1	0	1	71	22 dB
				1	1	0	0	24 dB
				1	1	0	1	26 dB
				1	1	1	0	28 dB
				1	51	1	1	30 dB

Gain = 0 to 30 dB

		Table 10. Volume selection								
	MSB		$\cdot 0$					LSB	Volume	
	D7	D6	D5	D4	D3	D2	D1	D0	1 dB steps	
						0	0	0	0 dB	
						0	0	1	-1 dB	
	KO I					0	1	0	-2 dB	
2/6						0	1	1	-3 dB	
						1	0	0	-4 dB	
						1	0	1	-5 dB	
						1	1	0	-6 dB	
						1	1	1	-7 dB	
		0	0	0	0				0 dB	
		0	0	0	1				-8 dB	
		0	0	1	0				-16 dB	
		0	0	1	1				-24 dB	
		0	1	0	0				-32 dB	
		0	1	0	1				-40 dB	
		Х	1	1	1	X	Х	Х	Mute	

Table 10. Volume selection

Volume = 0 to 47dB/mute

MSB							LSB	Bass
D7	D6	D5	D4	D3	D2	D1	D0	2 dB steps
				0	0	0	0	-14 dB
				0	0	0	1	-12 dB
				0	0	1	0	-10 dB
				0	0	1	1	-8 dB
				0	1	0	0	-6 dB
				0	1	0	1	-4 dB
				0	1	1	0	-2 dB
				0	1	1	1	0 dB
				1	1	1	1	0 dB
				1	1	1	0	2 dB
				1	1	0		4 dB
				1	1	0	0	6 dB
				1	0	1	1	8 dB
				1	0	1	0	10 dB
				1	0	0	1	12 dB
					0	0	0	14 dB

Table 11. Bass selection

Table 12. Treble selection

	MSB		<u>, ()</u>					LSB	Treble
	D7	D6	D5	D4	D3	D2	D1	D0	2 dB steps
		30			0	0	0	0	-14 dB
	X				0	0	0	1	-12 dB
	KC				0	0	1	0	-10 dB
					0	0	1	1	-8 dB
1050le					0	1	0	0	-6 dB
705					0	1	0	1	-4 dB
					0	1	1	0	-2 dB
					0	1	1	1	0 dB
					1	1	1	1	0 dB
					1	1	1	0	2 dB
					1	1	0	1	4 dB
					1	1	0	0	6 dB
					1	0	1	1	8 dB
					1	0	1	0	10 dB
					1	0	0	1	12 dB
					1	0	0	0	14 dB

MSB						LSB	Speaker attenuation	
D7	D6	D5	D4	D3	D2	D1	D0	1 dB
	1				0	0	0	0 dB
					0	0	1	-1 dB
					0	1	0	-2 dB
					0	1	1	-3 dB
					1	0	0	-4 dB
					1	0	1	-5 dB
					1	1	0	-6 dB
					1	1	1	-7 dB
								0
	0	0	0	0			X	0 dB
	0	0	0	1				-8 dB
	0	0	1	0		20		-16 dB
	0	0	1	1	5			-24 dB
	0	1	0	0)			-32 dB
	0	1	0	1				-40 dB
	0	1	15	0				-48 dB
	0	10	1	1				-56 dB
	1	0	0	0				-64 dB
	(1)	0	0	1				-72 dB
	1	1	1	1	Х	X	Х	Mute

Table 13. Speaker attenuation selection

8 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

9 Revision history

Table 14. Document revision history

	Date	Revision	Changes
	03-Sep-2014	5	Removed DIP20 package option Updated <i>Table 1: Device summary</i> Revised document presentation along with minor textual updates and modification of title
005018	teprod		obsolete Productis

IMPORTANT NOTICE - PLEASE READ CAREFULLY

obsolete Product(s)

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2014 STMicroelectronics – All rights reserved

