TPS61240, TPS61241 SLVS806D - APRIL 2009-REVISED DECEMBER 2015 ## TPS6124x 3.5-MHz High Efficiency Step-Up Converter #### **Features** - Efficiency > 90% at Nominal Operating Conditions - Total DC Output Voltage Accuracy 5.0 V±2% - Typical 30-uA Quiescent Current - Best in Class Line and Load Transient - Wide V_{IN} Range From 2.3 V to 5.5 V - Output Current up to 450 mA - Automatic PFM/PWM Mode Transition - Low Ripple Power Save Mode for Improved Efficiency at Light Loads - Internal Softstart, 250-µs Typical Start-Up Time - 3.5-MHz Typical Operating Frequency - Load Disconnect During Shutdown - Current Overload and Thermal Shutdown Protection - Three Surface-Mount External Components Required (One MLCC Inductor, Two Ceramic Capacitors) - Total Solution Size <13 mm² - Available in a 6-Pin DSBGA and 2-mm x 2-mm WSON Package ## 2 Applications - **USB-OTG Applications** - Portable HDMI Applications - Cell Phones, Smart Phones - PDAs, Pocket PCs - Portable Media Players - **Digital Cameras** # Typical Application Schematic ## 3 Description TPS6124x device is a highly synchronous step-up DC-DC converter optimized for products powered by either a three-cell alkaline, NiCd or NiMH, or one-cell Li-lon or Li-Polymer battery. The TPS6124x supports output currents up to 450 mA. The TPS61240 has an input valley current limit of 500 mA, and the TPS61241 has an input valley current of 600 mA. With an input voltage range of 2.3 V to 5.5 V, the device supports batteries with extended voltage range and are ideal to power portable applications like mobile phones and other portable equipment. The TPS6124x boost converter is based on a quasiconstant on-time valley current mode control scheme. The TPS6124x presents a high impedance at the V_{OUT} pin when shut down. This allows for use in applications that require the regulated output bus to be driven by another supply while the TPS6124x is shut down. During light loads the device will automatically pulse skip allowing maximum efficiency at lowest guiescent currents. In the shutdown mode, the current consumption is reduced to less than 1 µA. TPS6124x allows the use of small inductors and capacitors to achieve a small solution size. During shutdown, the load is completely disconnected from the battery. The TPS6124x is available in a 6-pin DSBGA and 2-mm × 2-mm WSON package. #### Device Information⁽¹⁾ | PART NUMBER | PACKAGE | PACKAGE BODY SIZE (NOM) | | | |-------------|-----------|-------------------------|--|--| | TDCC4040 | WSON (6) | 2.00 mm × 2.00 mm | | | | TPS61240 | DSBGA (6) | 1.25 mm × 0.86 mm | | | | TPS61241 | DSBGA (6) | 1.25 mm × 0.86 mm | | | (1) For all available packages, see the orderable addendum at the end of the datasheet. #### **Efficiency vs Output Current** | 1 | Га | h | ۵۱ | ∩ f | C | ٦n | tο | nte | |---|----|---|----|------------|---|----|----|------| | ı | ıa | v | 16 | v | | _ | LC | 11.5 | | tion | |------------| | 12
17 | | 17 | | | | 45 | | tions 17 | | 18 | | 18 | | 18 | | 18 | | Support 19 | | 19 | | 19 | | 19 | | ıtion 19 | | 19 | | Orderable | | sions19 | | n S | ## 4 Revision History | Cł | nanges from Revision C (December 2014) to Revision D | Page | |----|---|------| | • | Changed V _{IH} Description From: High level input voltage, EN To: High level input voltage threshold, EN in the
Electrical Characteristics | 5 | | • | Changed V _{IL} Description From: Low level input voltage, EN To: Low level input voltage threshold, EN in the
Electrical Characteristics | 5 | | Cł | nanges from Revision B (February 2012) to Revision C | Page | | • | Added ESD Ratings table, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and Mechanical Packaging, and Orderable Information section. | 1 | Product Folder Links: TPS61240 TPS61241 Submit Documentation Feedback ## **Device Options** | PART NUMBER ⁽¹⁾ | OUTPUT
VOLTAGE | DEVICE SPECIFIC FEATURES | |----------------------------|-------------------|--| | TPS61240 | | Supports 5 V, up to 250 mA loading down to 3.2 V input voltage | | 1F301240 | F. \/ | Supports 5 V, up to 250 mA loading down to 3.2 V input voltage | | TPS61241 | 5 V | Supports 5 V, up to 300 mA loading down to 3.2 V input voltage | | TPS61242 ⁽²⁾ | | Optimized to drive an inductive load | - See *Mechanical, Packaging, and Orderable Information* for ordering information. Product preview. Contact TI factory for more information. ## 6 Pin Configuration and Functions #### **DSBGA Package** 6 Pins **Top View** TOP VIEW (B2) (C1) **WSON Package** 6 Pins Top View ## **Pin Functions** | | PIN | | I/O | DESCRIPTION | REMARKS | |------------------|------|-------|-----|-----------------------------------|---------------------------------------| | NAME | WSON | DSGBA | 1/0 | DESCRIPTION | REMARKS | | EN | 4 | C1 | Ι | Enable | Positive polarity. Low = IC shutdown. | | FB | 3 | C2 | Ι | Feedback input | Feedback for regulation. | | GND | 1 | A2 | _ | Ground | Power ground and IC ground | | L | 5 | B1 | Ι | Boost and rectifying switch input | Inductor connection to FETs | | V_{IN} | 6 | A1 | Ι | Supply voltage | Supply from battery | | V _{OUT} | 2 | B2 | 0 | Output | Connected to load | ## 7 Specifications ### 7.1 Absolute Maximum Ratings over operating free-air temperature range (unless otherwise noted) (1) (2) | | | MIN | MAX | UNIT | |------------------|--|-----------|-----------|------| | V_{I} | Input voltage on V _{IN} , L, EN | -0.3 | 7 | V | | | Voltage on V _{OUT} | -2.0 | 7 | V | | | Voltage on FB | -2.0 | 14 | V | | | Peak output current | Internall | y limited | Α | | TJ | Maximum operating junction temperature | -40 | 125 | °C | | T _{stg} | Storage temperature | -65 | 150 | °C | ⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute—maximum—rated conditions for extended periods may affect device reliability. ## 7.2 ESD Ratings | | | | VALUE | UNIT | |--------------------|--|--|-------|------| | | | Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 (2) | ±4000 | | | V _(ESD) | Electrostatic discharge ⁽¹⁾ | Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽³⁾ | ±500 | V | | | | Machine model (MM) | ±200 | | ⁽¹⁾ The human body model is a 100 pF capacitor discharged through a 1.5 kΩ resistor into each pin. The machine model is a 200 pF capacitor discharged directly into each pin. ## 7.3 Recommended Operating Conditions | | | | MIN | NOM | MAX | UNIT | |----------------|--------------------------------|----------------------|-----|-----|-----|------| | V_{IN} | Input voltage range | | 2.3 | | 5.5 | V | | L | Inductance | | 0.4 | 1 | 1.5 | μΗ | | Co | Output capacitance | TPS61240
TPS61241 | 1 | | 20 | μF | | | | TPS61242 | 0.8 | | 10 | μF | | T _A | Operating ambient temperature | | -40 | | 85 | °C | | T_J | Operating junction temperature | | -40 | | 125 | °C | #### 7.4 Thermal Information | | | TPS | TPS6124x | | | |-----------------------|--|--------|----------|--------|--| | | THERMAL METRIC ⁽¹⁾ | YFF | DRV | UNIT | | | | | 6 PINS | 6 PINS | = | | | $R_{\theta JA}$ | Junction-to-ambient thermal resistance | 132.7 | 104.1 | | | | $R_{\theta JC(top)}$ | Junction-to-case (top) thermal resistance | 1.2 | 97.1 | | | | $R_{\theta JB}$ | Junction-to-board thermal resistance | 22.4 | 74.0 | 00/11/ | | | ΨЈΤ | Junction-to-top characterization parameter | 5.2 | 4.5 | °C/W | | | ΨЈВ | Junction-to-board characterization parameter | 22.4 | 74.4 | | | | R _{0JC(bot)} | Junction-to-case (bottom) thermal resistance | _ | 48.4 | | | (1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953. ⁽²⁾ The human body model is a 100 pF capacitor discharged through a 1.5 kΩ resistor into each pin. The machine model is a 200 pF capacitor discharged directly into each pin. ⁽²⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Manufacturing with less than 500-V HBM is possible with the necessary precautions. ⁽³⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Manufacturing with less than 250-V CDM is possible with the necessary precautions. ## 7.5 Electrical Characteristics Over full operating ambient temperature range, typical values are at T_A = 25°C. Unless otherwise noted, specifications apply for condition V_{IN} = EN = 3.6V. External components C_{IN} = 2.2 μ F, C_{OUT} = 4.7 μ F 0603, L = 1 μ H, refer to Parameter Measurement Information section. | | PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |-----------------------|--|---|-----|------|-----|-----------| | DC-DC ST | rage | | | | | | | V _{IN} | Input voltage range | | 2.3 | | 5.5 | V | | V _{OUT} | Fixed output voltage range | $2.3 \text{ V} \le \text{V}_{\text{IN}} \le 5.5 \text{ V}, 0 \text{ mA} \le \text{I}_{\text{OUT}} \le 200 \text{ mA}$ | 4.9 | 5.0 | 5.1 | V | | V _{O_Ripple} | Ripple voltage, PWM mode | I _{LOAD} = 150 mA | | | 20 | mVpp | | | Output current | V _{IN} 2.3 V to 5.5 V | 200 | | | mA | | | Switch valley current limit | $V_{OUT} = V_{GS} = 5.0 \text{ V (TPS61240)}$ | 500 | 600 | | mA | | | Switch valley current limit | V _{OUT} = V _{GS} = 5.0 V (TPS61241, TPS61242) | 600 | 700 | | ША | | | Short circuit current | $V_{OUT} = V_{GS} = 5.0 \text{ V}$ | 200 | 350 | | mApk | | | High side MOSFET on-resistance (1) | $V_{IN} = V_{GS} = 5.0 \text{ V}, T_A = 25^{\circ}C^{(1)}$ | | 290 | | $m\Omega$ | | | Low Side MOSFET on-resistance (1) | $V_{IN} = V_{GS} = 5.0 \text{ V}, T_A = 25^{\circ}\text{C}^{(1)}$ | | 250 | | mΩ | | | Operating quiescent current | I _{OUT} = 0 mA, Power save mode | | 30 | 40 | μΑ | | I _{SW} | Shutdown current | EN = GND | | | 1.5 | μΑ | | | Reverse leakage current V _{OUT} | EN = 0, V _{OUT} = 5 V | | | 2.5 | μΑ | | | Leakage current from battery to V _{OUT} | EN = GND | | | 2.5 | μΑ | | | Line transient response | V _{IN} 600 mVp-p AC square wave, 200 Hz, 12.5% DC at 50/200 mA load | | ±25 | ±50 | mVpk | | | Load transient response | 0–50 mA, 50–0 mA V_{IN} = 3.6V T_{Rise} = T_{Fall} = 0.1 μs | | 50 | | | | | Load transient response | $50-200$ mA, $200-50$ mA, $V_{IN} = 3.6$ V, $T_{Rise} = T_{Fall} = 0.1$ μs | | 150 | | mVpk | | I _{IN} | Input bias current, EN | EN = GND or V _{IN} | | 0.01 | 1.0 | μΑ | | V | I landomicita do locico et throchold | Falling | | 2.0 | 2.1 | V | | V_{UVLO} | Undervoltage lockout threshold | Rising | | 2.1 | 2.2 | V | | CONTRO | L STAGE | | | | | | | V _{IH} | High level input voltage threshold, EN | 2.3 V ≤ V _{IN} ≤ 5.5 V | | | 1.0 | V | | V _{IL} | Low level input voltage threshold, EN | 2.3 V ≤ V _{IN} ≤ 5.5 V | 0.4 | | | V | | 0) (0 | | Falling | | 5.9 | | | | OVC | Input overvoltage threshold | Rising | | 6.0 | | V | | t _{Start} | Start-up time | Time from active EN to start switching, no-load until $\rm V_{OUT}$ is stable 5 $\rm V$ | | | 300 | μs | | DC-DC ST | ΓAGE | | | | | | | f | | See Figure 7 (Frequency Dependancy vs I _{OUT}) | | 3.5 | | MHz | | _ | Thermal shutdown | Increasing junction temperature | | 140 | | °C | | T _{SD} | Thermal shutdown hysteresis | Decreasing junction temperature | | 20 | | °C | ⁽¹⁾ DRV package has an increased R_{DSon} of about $40m\Omega$ due to bond wire resistance. ## 7.6 Typical Characteristics ## 7.6.1 Table of Graphs | | | Figure | |------------------------|--|----------| | Maximum Output Current | vs Input Voltage | Figure 1 | | Efficiency | vs Output Current, V _{out} = 5V, V _{in} = [2.3 V; 3.0 V; 3.6 V; 4.2 V] | Figure 2 | | Efficiency | vs Input Voltage, $V_{out} = 5 \text{ V}$, $I_{out} = [100 \mu\text{A}; 1 \text{ mA}; 10 \text{ mA}; 100 \text{ mA}; 200 \text{ mA}]$ | Figure 3 | | Input Current | at No Output Load, Device Disabled | Figure 4 | | Output Voltage | vs Output Current, V _{out} = 5 V, V _{in} = [2.3 V; 3.0 V; 3.6 V; 4.2 V] | Figure 5 | | Output voltage | vs Input Voltage | Figure 6 | | Frequency | vs Output Load, V _{out} = 5 V, V _{in} = [3.0 V; 4.0 V; 5.0 V] | Figure 7 | Submit Documentation Feedback Copyright © 2009–2015, Texas Instruments Incorporated ## **8 Parameter Measurement Information** Figure 8. Parameter Measurement Schematic ## 9 Detailed Description #### 9.1 Overview The TPS6124x device is a highly efficient synchronous step-up DC-DC converter optimized for products powered by either a three-cell alkaline, NiCd or NiMH, or one-cell Li-Ion or Li-Polymer battery. The TPS6124x supports output currents up to 450 mA. The TPS61240 has an input valley current limit of 500 mA, and the TPS61241 has an input valley current of 600 mA. The TPS6124x boost converter is based on a quasi-constant on-time valley current mode control scheme. TPS6124x allows the use of small inductors and capacitors to achieve a small solution size. During shutdown, the load is completely disconnected from the battery. #### 9.2 Functional Block Diagram #### 9.3 Feature Description ## 9.3.1 Operation The TPS6124x boost converter operates with typically 3.5-MHz fixed frequency pulse width modulation (PWM) at moderate to heavy load currents. At light load currents the converter will automatically enter power save mode and operates then in PFM (Pulse Frequency Modulation) mode. During PWM operation the converter uses a unique fast response quasi-constant on-time valley current mode controller scheme which allows "Best in Class" line and load regulation allowing the use of small ceramic input and output capacitors. Based on the $V_{\text{IN}}/V_{\text{OUT}}$ ratio, a simple circuit predicts the required on-time. At the beginning of the switching cycle, the low-side N-MOS switch is turned-on and the inductor current ramps up to a defined peak current. In the second phase, once the peak current is reached, the current comparator trips, the on-timer is reset turning off the switch, and the current through the inductor then decays to an internally set valley current limit. Once this occurs, the on-timer is set to turn the boost switch back on again and the cycle is repeated. ### **Feature Description (continued)** #### 9.3.2 Current Limit Operation The current limit circuit employs a valley current sensing scheme. Current limit detection occurs during the off time through sensing of the voltage drop across the synchronous rectifier. The output voltage is reduced as the power stage of the device operates in a constant current mode. The maximum continuous output current (I_{OUT(CL)}), before entering current limit operation, can be defined by Equation 1 as shown. $$I_{OUT(CL)} = (1 - D) \times (I_{VALLEY} + \frac{1}{2} \Delta I_L) \quad \text{with } \Delta I_L = \frac{V_{IN}}{L} \times \frac{D}{f} \text{ and } D \approx \frac{V_{OUT} - V_{IN}}{V_{OUT}}$$ (1) Figure 9 illustrates the inductor and rectifier current waveforms during current limit operation. The output current, I_{OUT} , is the average of the rectifier ripple current waveform. When the load current is increased such that the lower peak is above the current limit threshold, the off time is lengthened to allow the current to decrease to this threshold before the next on-time begins (so called frequency fold-back mechanism). Figure 9. Inductor/Rectifier Currents in Current Limit Operation #### 9.3.3 Undervoltage Lockout The undervoltage lockout circuit prevents the device from malfunctioning at low input voltages and from excessive discharge of the battery. It disables the output stage of the converter once the falling V_{IN} trips the undervoltage lockout threshold V_{UVLO} . The undervoltage lockout threshold V_{UVLO} for falling V_{IN} is typically 2.0 V. The device starts operation once the rising VIN trips undervoltage lockout threshold V_{UVLO} again at typically 2.1 V. #### 9.3.4 Input Overvoltage Protection In the event of an overvoltage condition appearing on the input rail, the output voltage will also experience the overvoltage due to being in dropout condition. A input overvoltage protection feature has been implemented into the TPS6124x which has an input overvoltage threshold of 6.0 V. Once this level is triggered, the device will go into a shutdown mode to protect itself. If the voltage drops to 5.9 V or below, the device will startup once more into normal operation. #### 9.3.5 **Enable** The device is enabled setting EN pin to high. At first, the internal reference is activated and the internal analog circuits are settled. Afterwards, the soft start is activated and the output voltage is ramped up. The output voltages reaches its nominal value in typically 250 µs after the device has been enabled. Submit Documentation Feedback Copyright © 2009–2015, Texas Instruments Incorporated ### **Feature Description (continued)** The EN input can be used to control power sequencing in a system with various DC-DC converters. The EN pin can be connected to the output of another converter, to drive the EN pin high and getting a sequencing of supply rails. With EN = GND, the device enters shutdown mode. #### 9.3.6 Soft Start The TPS6124x has an internal soft start circuit that controls the ramp up of the output voltage. The output voltages reaches its nominal value within t_{Start} of typically 250µs after EN pin has been pulled to high level. The output voltage ramps up from 5% to its nominal value within t_{RAMP} of typically 300 µs. This limits the inrush current in the converter during start up and prevents possible input voltage drops when a battery or high impedance power source is used. During soft start, the switch current limit is reduced to 300 mA until the output voltage reaches V_{IN} . Once the output voltage trips this threshold, the device operates with its nominal current limit I_{LIMT} . #### 9.3.7 Load Disconnect Load disconnect electrically removes the output from the input of the power supply when the supply is disabled. This is especially important during shutdown. In shutdown of a boost converter, the load is still connected to the input through the inductor and catch diode. Since the input voltage is still connected to the output, a small current continues to flow, even when the supply is disabled. Even small leakage currents significantly reduce battery life during extended periods of off time. The benefit of this implemented feature for the system design engineer is that the battery is not depleted during shutdown of the converter. No additional components must be added to the design to make sure that the battery is disconnected from the output of the converter. #### 9.3.8 Thermal Shutdown As soon as the junction temperature, T_J , exceeds 140°C (typical) the device goes into thermal shutdown. In this mode, the High Side and Low Side MOSFETs are turned-off. When the junction temperature falls below the thermal shutdown hysteresis, the device continuous operation. #### 9.4 Device Functional Modes #### 9.4.1 Power Save Mode The TPS6124x family of devices integrates a power save mode to improve efficiency at light load. In power save mode the converter only operates when the output voltage trips below a set threshold voltage. It ramps up the output voltage with several pulses and goes into power save mode once the output voltage exceeds the set threshold voltage. The PFM mode is left and PWM mode entered in case the output current can not longer be supported in PFM mode. ## 10 Application and Implementation #### NOTE Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality. ## 10.1 Application Information The TPS6124x device is optimized for products powered by either a three-cell alkaline, NiCd or NiMH, or one-cell Li-lon or Li-Polymer battery. With an input voltage range of 2.3 V to 5.5 V, the device supports batteries with extended voltage range and are ideal to power portable applications like mobile phones and other portable equipment. The TPS6124x supports output currents up to 450 mA. The TPS6124x presents a high impedance at the V_{OUT} pin and the load is completely disconnected from the battery when shut down. This allows for use in applications that require the regulated output bus to be driven by another supply while the TPS6124x is shut down. ## 10.2 Typical Application TPS61240 to output fixed 5.0 V for HDMI / USB-OTG applications. Figure 10. TPS61240 Fixed 5.0 V for HDMI / USB-OTG Applications #### 10.2.1 Design Requirements In this example, the TPS61240 is used to design a 5-V output with 100-mA output current capability. The TPS61240 is powered by either a three-cell alkaline, NiCd or NiMH, or one-cell Li-lon or Li-Polymer battery. In this example, the input voltage range is from 3 V to 4.2 V for a one-cell Li-lon battery input design. Table 1. TPS61240 5V Output Design Requirements | Parameters | Value | |----------------|--------------| | Input Voltage | 3 V to 4.2 V | | Output Voltage | 5 V | | Output Current | 100 mA | #### 10.2.2 Detailed Design Procedure **Table 2. List of Components** | COMPONENT
REFERENCE | PART NUMBER | MANUFACTURER | VALUE | | | |------------------------|-----------------|--------------|--------------------------|--|--| | C _{IN} | JMK105BJ225MV | Taiyo Yuden | 2.2 μF, X5R, 6.3 V, 0402 | | | | C _{OUT} | JDK105BJ475MV | Taiyo Yuden | 4.7 μF, X5R, 6.3 V, 0402 | | | | L | MDT2012-CH1R0AN | TOKO | 1.0 µH, 900mA, 0805 | | | #### 10.2.2.1 Programming the Output Voltage The output voltage is set by a resistor divider internally. The FB pin is used to sense the output voltage. So to configure the output properly, the FB pin needs to be connected directly to the output. #### 10.2.2.2 Inductor Selection To make sure that the TPS6124x devices can operate, an inductor must be connected between pin V_{IN} and pin L. A boost converter normally requires two main passive components for storing energy during the conversion. A boost inductor and a storage capacitor at the output are required. To select the boost inductor, it is recommended to keep the possible peak inductor current below the current limit threshold of the power switch in the chosen configuration. The highest peak current through the inductor and the switch depends on the output load, the input (V_{IN}) , and the output voltage (V_{OUT}) . Estimation of the maximum average inductor current can be done using Equation 2. $$I_{L_MAX} \approx I_{OUT} \times \frac{V_{OUT}}{\eta \times V_{IN}}$$ (2) For example, for an output current of 200 mA at 5.0 V V_{OUT} , at least 540 mA of average current flows through the inductor at a minimum input voltage of 2.3 V. The second parameter for choosing the inductor is the desired current ripple in the inductor. Normally, it is advisable to work with a ripple of less than 20% of the average inductor current. A smaller ripple reduces the magnetic hysteresis losses in the inductor, as well as output voltage ripple and EMI. But in the same way, regulation time at load changes rises. In addition, a larger inductor increases the total system size and cost. With these parameters, it is possible to calculate the value of the minimum inductance by using Equation 3. $$L_{MIN} \approx \frac{V_{IN} \times (V_{OUT} - V_{IN})}{\Delta I_{L} \times f \times V_{OUT}}$$ (3) Parameter f is the switching frequency and ΔI_L is the ripple current in the inductor, i.e., 20% x I_L . In this example, the desired inductor has the value of 1.7 μ H. With this calculated value and the calculated currents, it is possible to choose a suitable inductor. In typical applications a 1.0- μ H inductance is recommended. The device has been optimized to operate with inductance values between 1.0 μ H and 2.2 μ H. It is recommended that inductance values of at least 1.0 μ H is used, even if Equation 3 yields something lower. Care has to be taken that load transients and losses in the circuit can lead to higher currents as estimated in Equation 3. Also, the losses in the inductor caused by magnetic hysteresis losses and copper losses are a major parameter for total circuit efficiency. With the chosen inductance value, the peak current for the inductor in steady state operation can be calculated. Equation 4 shows how to calculate the peak current I. $$I_{L(peak)} = \frac{V_{IN} \times D}{2 \times f \times L} + \frac{I_{OUT}}{(1 - D) \times \eta} \quad \text{with } D = \frac{V_{OUT} - V_{IN}}{V_{OUT}}$$ (4) This would be the critical value for the current rating for selecting the inductor. It also needs to be taken into account that load transients and error conditions may cause higher inductor currents. **Table 3. List of Inductors** | MANUFACTURER | SERIES | DIMENSIONS | |----------------|-------------------|------------------------------| | TOKO | MDT2012-CH1R0AN | 2.0 x 1.2 x 1.0 max. height | | TORO | MDT1608-CH1R0N | 1.6 x 0.8 x 0.95 max. height | | Hitachi Metals | KSLI-201210AG-1R0 | 2.0 x 1.2 x 1.0 max. height | | Hitachi Metais | KSLI-201610AG-1R0 | 2.0 x 1.6 x 1.0 max. height | | muRata | LQM21PN1R0MC0 | 2.0 x 1.2 x 0.55 max. height | | FDK | MIPS2012D1R0-X2 | 2.0 x 1.2 x 1.0 max. height | #### 10.2.2.3 Input Capacitor At least 2.2-µF input capacitor is recommended to improve transient behavior of the regulator and EMI behavior of the total power supply circuit. It is recommended to place a ceramic capacitor as close as possible to the VIN and GND pins. #### 10.2.2.4 Output Capacitor For the output capacitor, it is recommended to use small ceramic capacitors placed as close as possible to the V_{OUT} and GND pins of the IC. If, for any reason, the application requires the use of large capacitors which can not be placed close to the IC, using a smaller ceramic capacitor in parallel to the large one is recommended. This small capacitor should be placed as close as possible to the V_{OUT} and GND pins of the IC. To get an estimate of the recommended minimum output capacitance, Equation 5 can be used. $$C_{min} = \frac{I_{OUT} \times (V_{OUT} - V_{IN})}{f \times \Delta V \times V_{OUT}}$$ where - f is the switching frequency - ΔV is the maximum allowed ripple (5) With a chosen ripple voltage of 10 mV, a minimum effective capacitance of 2.7 μ F is needed. The total ripple is larger due to the ESR of the output capacitor. This additional component of the ripple can be calculated using $\Delta V_{ESR} = I_{OUT} \times R_{ESR}$. A capacitor with a value in the range of the calculated minimum should be used. This is required to maintain control loop stability. There are no additional requirements regarding minimum ESR. There is no upper limit for the output capacitance value. Larger capacitors cause lower output voltage ripple as well as lower output voltage drop during load transients. Note that ceramic capacitors have a DC Bias effect, which will have a strong influence on the final effective capacitance needed. Therefore the right capacitor value has to be chosen carefully. Package size and voltage rating in combination with material are responsible for differences between the rated capacitor value and the effective capacitance. ## 10.2.2.5 Checking Loop Stability The first step of circuit and stability evaluation is to look from a steady-state perspective at the following signals: - Switching node, SW - Inductor current, I₁ - Output ripple voltage, V_{O(AC)} These are the basic signals that need to be measured when evaluating a switching converter. When the switching waveform shows large duty cycle jitter or the output voltage or inductor current shows oscillations, the regulation loop may be unstable. This is often a result of board layout and/or L-C combination. As a next step in the evaluation of the regulation loop, the load transient response is tested. The time between the application of the load transient and the turn on of the P-channel MOSFET, the output capacitor must supply all of the current required by the load. V_O immediately shifts by an amount equal to $\Delta I_{(LOAD)} \times ESR$, where ESR is the effective series resistance of C_O . $\Delta I_{(LOAD)}$ begins to charge or discharge C_O generating a feedback error signal used by the regulator to return V_O to its steady-state value. The results are most easily interpreted when the device operates in PWM mode. During this recovery time, V_O can be monitored for settling time, overshoot or ringing that helps judge the converter's stability. Without any ringing, the loop has usually more than 45° of phase margin. Because the damping factor of the circuitry is directly related to several resistive parameters (for example, MOSFET $r_{DS(on)}$) that are temperature dependant, the loop stability analysis has to be done over the input voltage range, load current range, and temperature range. Submit Documentation Feedback ## 10.2.3 Application Curves | | FIGURE | |---|-----------| | Output Voltage Ripple, PFM Mode, I _{out} = 10 mA | Figure 11 | | Output Voltage Ripple, PWM Mode, I _{out} = 150 mA | Figure 12 | | Load Transient Response, V _{in} = 3.6 V, 0 - 50 mA | Figure 13 | | Load Transient Response, V _{in} = 3.6 V, 50 - 200 mA | Figure 14 | | Line Transient Response, V _{in} = 3.6 V - 4.2 V, I _{out} = 50 mA | Figure 15 | | Line Transient Response, V _{in} = 3.6 V - 4.2 V, I _{out} = 200 mA | Figure 16 | | Startup after Enable, V_{in} = 3.6 V, V_{out} = 5 V, Load = 5 K Ω | Figure 17 | | Startup after Enable, V_{in} = 3.6 V, V_{out} = 5 V, Load = 16.5 Ω | Figure 18 | | Startup and Shutdown, V_{in} = 3.6 V, V_{out} = 5 V, Load = 16.5 Ω | Figure 19 | Figure 11. Output Voltage Ripple - PFM Mode Figure 13. Load Transient Response 0 mA - 50 mA and 50 mA - 0 mA Figure 12. Output Voltage Ripple - PWM Mode Figure 14. Load Transient Response 0 mA - 200 mA and 200 mA - 0 mA Submit Documentation Feedback Copyright © 2009–2015, Texas Instruments Incorporated ### 10.3 System Examples Figure 20. TPS61240 Fixed 5.0 V With Schottky Diode for Output Overvoltage Protection Figure 21. DRV2603 + TPS61242 Haptic Driver Solution featuring PWM Modulation Control ## 11 Power Supply Recommendations C_{out} = muRata GRM155R60J475M The power supply can be a three-cell alkaline, NiCd or NiMH, or one-cell Li-lon or Li-Polymer battery. The input supply should be well regulated with the rating of TPS6124x. If the input supply is located more than a few inches from the device, additional bulk capacitance may be required in addition to the ceramic bypass capacitors. An electrolytic or tantalum capacitor with a value of 47 µF is a typical choice. ## 12 Layout ## 12.1 Layout Guidelines As for all switching power supplies, the layout is an important step in the design, especially at high peak currents and high switching frequencies. If the layout is not carefully done, the regulator could show stability problems as well as EMI problems. Therefore, use wide and short traces for the main current path and for the power ground tracks. The input and output capacitor, as well as the inductor should be placed as close as possible to the IC. Use a common ground node for power ground and a different one for control ground to minimize the effects of ground noise. Connect these ground nodes at any place close to one of the ground pins of the IC. The feedback divider should be placed as close as possible to the control ground pin of the IC. To lay out the control ground, it is recommended to use short traces as well, separated from the power ground traces. This avoids ground shift problems, which can occur due to superimposition of power ground current and control ground current. ## 12.2 Layout Example Figure 22. Suggested Layout (Top) #### 12.3 Thermal Considerations Implementation of integrated circuits in low-profile and fine-pitch surface-mount packages typically requires special attention to power dissipation. Many system-dependant issues such as thermal coupling, airflow, added heat sinks, and convection surfaces, and the presence of other heat-generating components, affect the power-dissipation limits of a given component. Three basic approaches for enhancing thermal performance are listed below: - Improving the power dissipation capability of the PCB design - For example, increase of the GND plane on the top layer which is connected to the exposed thermal pad - Use thicker copper layer - Improving the thermal coupling of the component to the PCB - · Introducing airflow in the system The maximum recommended junction temperature (T_J) of the TPS6124x is 105°C. The thermal resistance of the 6-pin CSP package (YFF-6) is $R_{\theta JA}$ = 133 °C/W. Regulator operation is specified to a maximum steady-state ambient temperature T_A of 85°C. Therefore, the maximum power dissipation is about 150 mW. $$P_{D(Max)} = [T_{J (max)} - T_{A}] / \theta_{JA} = [105^{\circ}C - 85^{\circ}C] / 133^{\circ}C/W = 150 \text{ mW}$$ (6) ## 13 Device and Documentation Support #### 13.1 Device Support #### 13.1.1 Third-Party Products Disclaimer TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE. #### 13.2 Related Links The table below lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy. Table 4. Related Links | PARTS | PRODUCT FOLDER | SAMPLE & BUY | TECHNICAL DOCUMENTS | TOOLS &
SOFTWARE | SUPPORT & COMMUNITY | |----------|----------------|--------------|---------------------|---------------------|---------------------| | TPS61240 | Click here | | TPS61241 | Click here | #### 13.3 Trademarks NanoFree is a trademark of Texas Instruments. All other trademarks are the property of their respective owners. #### 13.4 Electrostatic Discharge Caution These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates. #### 13.5 Glossary SLYZ022 — TI Glossary. This glossary lists and explains terms, acronyms, and definitions. ## 14 Mechanical, Packaging, and Orderable Information The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation. ## 14.1 Chip Scale Package Dimensions The TPS6124x device is available in a 6-bump chip scale package (YFF, NanoFree™). The package dimensions are given as: | D | E | |---------------|-------------------| | Max = 1280 μm | $Max = 890 \mu m$ | | Min = 1220 μm | Min = 830 μm | Chip Scale Package (Bottom View) ## Chip Scale Package (Top View) #### Code: - YM Year Month date code - S Assembly site codeCC Chip Code - · LLLL Lot trace code Submit Documentation Feedback Copyright © 2009–2015, Texas Instruments Incorporated www.ti.com 6-Nov-2021 #### PACKAGING INFORMATION | Orderable Device | Status (1) | Package Type | Package
Drawing | | Package
Qty | Eco Plan | Lead finish/
Ball material | MSL Peak Temp | Op Temp (°C) | Device Marking
(4/5) | Samples | |------------------|------------|--------------|--------------------|---|----------------|--------------|-------------------------------|--------------------|--------------|-------------------------|---------| | TPS61240DRVR | ACTIVE | WSON | DRV | 6 | 3000 | RoHS & Green | NIPDAU | Level-1-260C-UNLIM | | OCJ | Samples | | TPS61240DRVT | ACTIVE | WSON | DRV | 6 | 250 | RoHS & Green | NIPDAU | Level-1-260C-UNLIM | | OCJ | Samples | | TPS61240YFFR | ACTIVE | DSBGA | YFF | 6 | 3000 | RoHS & Green | SNAGCU | Level-1-260C-UNLIM | -40 to 85 | GM | Samples | | TPS61240YFFT | ACTIVE | DSBGA | YFF | 6 | 250 | RoHS & Green | SNAGCU | Level-1-260C-UNLIM | -40 to 85 | GM | Samples | | TPS61241YFFR | ACTIVE | DSBGA | YFF | 6 | 3000 | RoHS & Green | SNAGCU | Level-1-260C-UNLIM | -40 to 85 | NF | Samples | | TPS61241YFFT | ACTIVE | DSBGA | YFF | 6 | 250 | RoHS & Green | SNAGCU | Level-1-260C-UNLIM | -40 to 85 | NF | Samples | (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. **OBSOLETE:** TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. **Green:** TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement. - (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. - (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. - (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. - (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width. ## **PACKAGE OPTION ADDENDUM** www.ti.com 6-Nov-2021 Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. #### OTHER QUALIFIED VERSIONS OF TPS61240: Automotive: TPS61240-Q1 NOTE: Qualified Version Definitions: Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects www.ti.com 6-Nov-2021 ## TAPE AND REEL INFORMATION | | Dimension designed to accommodate the component width | |----|---| | B0 | Dimension designed to accommodate the component length | | K0 | Dimension designed to accommodate the component thickness | | W | Overall width of the carrier tape | | P1 | Pitch between successive cavity centers | ## QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE #### *All dimensions are nominal | Device | Package
Type | Package
Drawing | | SPQ | Reel
Diameter
(mm) | Reel
Width
W1 (mm) | A0
(mm) | B0
(mm) | K0
(mm) | P1
(mm) | W
(mm) | Pin1
Quadrant | |--------------|-----------------|--------------------|---|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------| | TPS61240DRVR | WSON | DRV | 6 | 3000 | 179.0 | 8.4 | 2.2 | 2.2 | 1.2 | 4.0 | 8.0 | Q2 | | TPS61240DRVT | WSON | DRV | 6 | 250 | 179.0 | 8.4 | 2.2 | 2.2 | 1.2 | 4.0 | 8.0 | Q2 | | TPS61240YFFR | DSBGA | YFF | 6 | 3000 | 180.0 | 8.4 | 0.98 | 1.41 | 0.69 | 4.0 | 8.0 | Q1 | | TPS61240YFFT | DSBGA | YFF | 6 | 250 | 180.0 | 8.4 | 0.98 | 1.41 | 0.69 | 4.0 | 8.0 | Q1 | | TPS61241YFFR | DSBGA | YFF | 6 | 3000 | 180.0 | 8.4 | 0.98 | 1.41 | 0.69 | 4.0 | 8.0 | Q1 | | TPS61241YFFT | DSBGA | YFF | 6 | 250 | 180.0 | 8.4 | 0.98 | 1.41 | 0.69 | 4.0 | 8.0 | Q1 | www.ti.com 6-Nov-2021 *All dimensions are nominal | Device | Package Type | Package Drawing | Pins | SPQ | Length (mm) | Width (mm) | Height (mm) | |--------------|--------------|-----------------|------|------|-------------|------------|-------------| | TPS61240DRVR | WSON | DRV | 6 | 3000 | 200.0 | 183.0 | 25.0 | | TPS61240DRVT | WSON | DRV | 6 | 250 | 200.0 | 183.0 | 25.0 | | TPS61240YFFR | DSBGA | YFF | 6 | 3000 | 182.0 | 182.0 | 20.0 | | TPS61240YFFT | DSBGA | YFF | 6 | 250 | 182.0 | 182.0 | 20.0 | | TPS61241YFFR | DSBGA | YFF | 6 | 3000 | 182.0 | 182.0 | 20.0 | | TPS61241YFFT | DSBGA | YFF | 6 | 250 | 182.0 | 182.0 | 20.0 | Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details. 4206925/F #### NOTES: - 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance. NOTES: (continued) - 4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature - number SLUA271 (www.ti.com/lit/slua271). 5. Vias are optional depending on application, refer to device data sheet. If some or all are implemented, recommended via locations are shown. NOTES: (continued) 6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. #### NOTES: - 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance. NOTES: (continued) - 4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271). - 5. Vias are optional depending on application, refer to device data sheet. If some or all are implemented, recommended via locations are shown. NOTES: (continued) 6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. DIE SIZE BALL GRID ARRAY #### NOTES: - 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. DIE SIZE BALL GRID ARRAY NOTES: (continued) 3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints. For more information, see Texas Instruments literature number SNVA009 (www.ti.com/lit/snva009). DIE SIZE BALL GRID ARRAY NOTES: (continued) 4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. ## **IMPORTANT NOTICE AND DISCLAIMER** TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources. TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. TI objects to and rejects any additional or different terms you may have proposed. Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022, Texas Instruments Incorporated