500W BI-POLARITY TRANSIENT VOLTAGE SUPPRESSORS

1N6102 thru 1N6137

January 16, 1998

TEL:805-498-2111 FAX:805-498-3804 WEB:http://www.semtech.com

AXIAL LEADED, HERMETICALLY SEALED, 500 WATT TRANSIENT VOLTAGE SUPPRESSORS

- Low dynamic impedance
- Hermetically sealed in Metoxilite fused metal oxide
- 500 Watt peak pulse power
- 1.5 Watt continuous
- Available in JAN, JANTX, JANTXV and JANS versions

QUICK REFERENCE DATA

- V_{BR} MIN = 6.12 180V
- $I_{(BR)} = 5 175mA$
- $V_{RWM} = 5.2 152V$
- VC MAX = 11 273V

ELECTRIAL SPECIFICATIONS (@ 25°C UNLESS OTHERWISE SPECIFIED)

Device Type	Minimum Breakdown Voltage V _(BR) @ I(_{BR)}	Test Current I _(BR)	Working Pk. Reverse Voltage V _{RWM}	Max. Reverse Current I _R	Maximum Clamping Voltage V _C @ I _P	Maximum Pk. Pulse Current I _P t _P = 8.3mS	Temp. Coeff of V _(BR) OL _{VZ}	Maximum Reverse Current I _R @ 150 [°] C
	Volts	mA	Volts	μА	Volts	Amps	%/°C	μА
1N6102 1N6103 1N6104 1N6105 1N6106 1N6107 1N6108 1N6109 1N6110 1N6111 1N6112 1N6113 1N6114 1N6115 1N6116 1N6117 1N6118 1N6119 1N6120 1N6121 1N6121 1N6122 1N6123 1N6124 1N6123 1N6124 1N6125 1N6125 1N6126 1N6127 1N6128 1N6129 1N6130 1N6131 1N6131	6.12 6.75 7.38 8.19 9.00 9.90 10.8 11.7 13.5 14.4 16.2 18.0 19.8 21.6 24.3 27.0 29.7 32.4 35.1 38.7 42.3 45.9 50.4 55.8 61.2 67.5 73.8 81.9 99.0 108.0 117.0	175 175 150 150 125 125 100 100 75 75 65 50 40 30 30 30 25 20 20 20 115 12 10 10 10 10 10 10 10 10 10 10 10 10 10	5.2 5.7 6.2 6.9 7.6 8.4 9.1 9.9 11.4 12.2 13.7 15.2 16.7 18.2 20.6 22.8 25.1 27.4 29.7 32.7 35.8 38.8 42.6 47.1 51.7 56.0 62.2 69.2 76.0 83.6 91.2 98.8	100 50 20 20 20 20 20 20 20 1 1 1 1 1 1 1 1 1	11.0 11.8 12.7 14.0 15.2 16.3 17.7 19.0 21.9 23.4 26.3 29.0 31.9 34.8 39.2 43.6 47.9 52.3 56.2 62.0 67.7 73.5 80.7 89.3 98.0 108.1 118.2 131.1 144.1 158.5 172.9 187.3	45.4 42.4 39.4 35.7 32.9 30.7 28.2 26.3 21.4 19.0 17.2 15.7 14.4 12.8 11.5 10.4 9.6 8.9 8.1 7.4 6.2 5.6 4.2 3.5 3.2 2.9 2.7	%/°C .05 .06 .06 .06 .07 .07 .07 .08 .08 .085 .085 .095 .095 .095 .095 .095 .095 .095 .100 .100 .100 .100 .100 .100 .100 .10	μΑ 4000 750 500 300 200 200 150 150 150 100 100 100 100 100 100 1
1N6134 1N6135 1N6136 1N6137	135.0 144.0 162.0 180.0	8 8 5 5	114.0 121.6 136.8 152.0	1 1 1	216.2 228.8 257.4 286.0	2.3 2.2 1.9 1.7	.100 .100 .100 .100	100 100 100 100

January 16, 1998

These parts are qualified to MIL-PRF-19500/516 and are preferred parts as listed in MIL-STD-701

They can be supplied fully released as JAN, JANTX, JANTXV and JANS versions.

* Parts listed are 10% tolerance. 5% tolerance can be ordered by placing an "A" suffix on part numbers, eg. 1N6110A

Figure 1. Maximum power versus lead temperature.

Fig 2. Typical junction capacitance versus reverse voltage.

January 16, 1998

Fig 3. Steady state derating characteristic for free air mounting

Fig 4. Peak pulse power versus pulse time.

Fig 5. Pulse waveform

Fig 6. Pulse derating curve