S6X8ECS2

RoHS

Main Features

Symbol	Value	Unit
I _{T(RMS)}	0.8	A
$V_{\rm drm}/V_{\rm rrm}$	600	V
I _{GT}	30	μA

Applications

The S6X8ECS2 is specifically designed for GFCI (Ground Fault Circuit Interrupter) and gas ignition applications.

Absolute Maximum Ratings

Symbol Parameter Value Unit RMS on-state current (full sine wave) $T_c = 55^{\circ}C$ 0.8 А I T(RMS) $T_c = 55^{\circ}C$ 0.51 Average on-state current А I_{T(AV)} F = 50 Hz 8 Non repetitive surge peak on-state current А I_{tsm} (Single cycle, T_1 initial = 25°C) F = 60 Hz 10 $t_{p} = 10 \text{ ms}$ F = 50 Hz0.32 l²t I²t Value for fusing A²s t_n = 8.3 ms F = 60 Hz0.41 di/dt Critical rate of rise of on-state current $I_c = 10 \text{mA}$ 50 T_= 125°C A/µs $\mathsf{I}_{\underline{\mathsf{GM}}}$ $t_{p} = 10 \ \mu s$ А Peak gate current T_= 125°C 1.0 P_{G(AV)} Average gate power dissipation T_= 125°C 0.1 W T_{stg} °C Storage junction temperature range -40 to 150 Operating junction temperature range -40 to 125 °C T_J

Description

This new .8 A sensitive gate SCR in an TO-92 package with a GAK pin out, offers a high static component series with a high static dv/dt and a low turn off (t_q) time by the use of small die planar construction implementation. All SCR's junctions are glass-passivated to ensure long term reliability and parametric stability.

Features

- Surge capability >10Amps
- High dv/dt noise immunity
- Improved turn-off time $(t_q) \le 25 \ \mu s.$
- TO-92 G-A-K pinout
- Sensitive gate for direct microprocessor interface
- RoHS compliant and Halogen-Free

Schematic Symbol

Littelfuse Power

Thyristors

0.8 Amp Sensitive SCRs

Electrical Characteristics (T₁ = 25°C, unless otherwise specified)

Symbol	Description	Test Conditions	Value		11
Symbol	Symbol Description		Min	Max	Unit
I _{gt}	DC Gate Trigger Current	V _D = 6V	1	30	μA
V _{gt}		$R_{L} = 100 \Omega$	—	0.8	V
V _{grm}	Peak Reverse Gate Voltage	I _{RG} = 10μA	5	—	V
I _H	Holding Current	$R_{_{GK}} = 1 \ k\Omega$ Initial Current = 20mA	_	3	mA
(dv/dt)s	Critical Rate-of-Rise of Off-State Voltage	$T_{J} = 125^{\circ}C, V_{D} = V_{DRM} / V_{RRM}$ Exponential Waveform, $R_{GK} = 1 k\Omega$	75	_	V/µs
V _{gt}	Gate Non-Trigger Voltage	$V_{\rm D} = V_{\rm DRM}, R_{\rm GK} = 1 \ \rm k\Omega$ $T_{\rm J} = 25^{\circ}\rm C$	0.2	_	V
t _q	Turn-Off Time	$T_J = 125^{\circ}C @ 600 V$ $R_{GK} = 1 k\Omega$	_	25	μs
t _{gt}	Turn-On Time	I _G = 10mA PW = 15μsec I _T = 1.6A (pk)	2.0	(Тур)	μs

Static Characteristics (T _J = 25°C, unless otherwise specified)				
Symbol Description	Description	Test Conditions	Value	11.54
	Description		Max	Unit
V _{TM}	Peak On-State Voltage	I _{TM} = 1.2 A (pk)	1.4	V
Cff State Constant Deals Departition	$T_J = 25^{\circ}C @V_D = V_{DRM'} R_{GK} = 1 k\Omega$	3	μA	
DRM	I _{DRM} Off-State Current, Peak Repetitive	$T_{1} = 125^{\circ}C @V_{D} = V_{DBM} R_{CK} = 1 k\Omega$	500	μA

Thermal Resistances				
Symbol	Parameter		Value	Unit
R _{e(JC)}	Junction to case (AC)	$I_{\rm T}$ = 0.8 A $_{\rm (RMS)}$, 60Hz AC resistive load condition, 100% conduction.	75	°C/W
R _{e(J-A)}	Junction to ambient		150	°C/W

Figure 2: Normalized DC Holding Current vs. Junction Temperature

Littelfuse Power

Thyristors

0.8 Amp Sensitive SCRs

Figure 3: DC Gate Trigger Voltage vs. Junction Temperature

Figure 5: Power Dissipation (Typical) vs. RMS On-State Current

Figure 6: Maximum Allowable Case Temperature vs. On-State Current

Soldering Parameters

Reflow Condition		Pb – Free assembly	
	-Temperature Min (T _{s(min)})	150°C	
Pre Heat	-Temperature Max (T _{s(max)})	200°C	
	-Time (min to max) (t _s)	60 – 180 secs	
Average ramp up rate (Liquidus Temp) (T_L) to peak		5°C/second max	
T _{S(max)} to T _L - Ramp-up Rate		5°C/second max	
Reflow	-Temperature (T _L) (Liquidus)	217°C	
	-Time (min to max) (t _s)	60 – 150 seconds	
PeakTemperature (T _p)		260 ^{+0/-5} °C	
Time within 5°C of actual peak Temperature (t _p)		20 – 40 seconds	
Ramp-down Rate		5°C/second max	
Time 25°C to peak Temperature (T _P)		8 minutes Max.	
Do not exceed		280°C	

Physical Specifications

Terminal Finish 100% Matte Tin-plated.	
Body Material UL Recognized compound meeting flammability rating V-0.	
Lead Material	Copper Alloy

Design Considerations

Careful selection of the correct component for the application's operating parameters and environment will go a long way toward extending the operating life of the Thyristor. Good design practice should limit the maximum continuous current through the main terminals to 75% of the component rating. Other ways to ensure long life for a power discrete semiconductor are proper heat sinking and selection of voltage ratings for worst case conditions. Overheating, overvoltage (including dv/dt), and surge currents are the main killers of semiconductors. Correct mounting, soldering, and forming of the leads also help protect against component damage.

Reliability/Environmental Tests

Test	Specifications and Conditions
AC Blocking	MIL-STD-750, M-1040, Cond A Applied Peak AC voltage @ 125°C for 1008 hours
Temperature Cycling	MIL-STD-750, M-1051, 100 cycles; -40°C to +150°C; 15-min dwell-time
Temperature/ Humidity	EIA / JEDEC, JESD22-A101 1008 hours; 320V - DC: 85°C; 85% rel humidity
High Temp Storage	MIL-STD-750, M-1031, 1008 hours; 150°C
Low-Temp Storage	1008 hours; -40°C
Resistance to Solder Heat	MIL-STD-750 Method 2031
Solderability	ANSI/J-STD-002, category 3, Test A
Lead Bend	MIL-STD-750, M-2036 Cond E