

TDA7438

THREE BANDS DIGITALLY CONTROLLED AUDIO PROCESSOR

1 FEATURES

- INPUT MULTIPLEXER
 - 3 STEREO INPUTS
 - SELECTABLE INPUT GAIN FOR OPTIMAL ADAPTATION TO DIFFERENT SOURCES
- ONE STEREO OUTPUT
- TREBLE, MIDDLE AND BASS CONTROL IN 2.0dB STEPS
- VOLUME CONTROL IN 1.0dB STEPS
- TWO SPEAKER ATTENUATORS:
 - TWO INDEPENDENT SPEAKER CONTROL IN 1.0dB STEPS FOR BALANCE FACILITY
 - -INDEPENDENT MUTE FUNCTION
- ALL FUNCTION ARE PROGRAMMABLE VIA SERIAL BUS

2 **DESCRIPTION**

The TDA7438 is a volume tone (hess, middle and treble) balance (Left/Right) processor for quality audio applications in car-radio and Hi-Fi systems.

Figure 2. Block Diogram

Figure 1. Package

Table 1. Order Codes

Part Number	Package
TDA7438	DIP28
TDA7438D	جريح
TDA7438.06 1.3 FR	Tapo 'a Reel

Sciectable input gain is provided. Control of all the trunctions is accomplished by serial bus.

The AC signal setting is obtained by resistor networks and switches combined with operational amplifiants.

The triks to the used BIPOLAR/CMOS Technology, Low Distortion, Low Noise and DC stepping are obtained.

Symbol	Parameter	Value	Unit
Vs	Operating Supply Voltage	10.5	V
T _{amb}	Operating Ambient Temperature	0 to 70	°C
T _{stg}	Storage Temperature Range	-55 to 150	°C

Table 2. Absolute Maximum Ratings

Figure 3. Pin Connection

Table 3. Thermal Data

Symbo	Parameter	Value	Unit
R _{th j} -pins	Thermal Perusiance Junction-pins Max.	85	°C/W

Table 4. Quick Reference Data

Symbo!	Parameter	Min.	Тур.	Max.	Unit
V.	Supply Voltage	6	9	10.2	V
VCL	Max. input signal handling	2			Vrms
THD	Total Harmonic Distortion V = 1Vrms f = 1KHz		0.01	0.1	%
S/N	Signal to Noise Ratio V _{out} = 1Vrms (mode = OFF)		106		dB
Sc	Channel Separation f = 1KHz		90		dB
10	Input Gain in (2db step)	0		30	dB
	Volume Control (1db step)	-47		0	dB
	Treble Control (2db step)	-14		+14	dB
	Middle Control (2db step)	-14		+14	dB
	Bass Control (2dB step)	-14		+14	dB
	Balance Control 1dB step	-79		0	dB
	Mute Attenuation (*)	80	100		dB

(*) Even applied to Speaker Attenuator Left, Speaker Attenuator Right, Volume Control stand alone or to the combination, if any.

47/

Table 5. Electrical Characteristcs: (refer to the test circuit Tamb = 25° C, VS = 9V, RL= $10K\Omega$,
RG = 600Ω , all controls flat (G = 0dB), unless otherwise specified)

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Uni
SUPPLY						1
٧S	Supply Voltage		6	9	10.2	V
۱S	Supply Current			7		mA
SVR	Ripple Rejection		60	90		dB
INPUT ST	AGE		I			
RIN	Input Resistance			100		KΩ
VCL	Clipping Level	THD = 0.3%	2	2.5	.10	Vim
SIN	Input Separation	The selected input is grounded through a 2.2µ capacitor	80	100	CIT	dB
G _{inmin}	Minimum Input Gain		-1	0	1	dB
Ginman	Maximum Input Gain		70	30		dB
Gstep	Step Resolution	.0		2	C//	dB
VOLUME	CONTROL	1010		2))	1
Ri	Input Resistance	core	20	33	50	KΩ
CRANGE	Control Range	003	45	47	49	dB
A _{VMAX}	Max. Attenuation		45	47	49	dB
A _{STEP}	Step Resolution		0.5	1	1.5	dB
EA	Attenuation Set Error	√v = 0 to -24dB	-1.0	0	1.0	dB
		A _V = -24 to -47dB	-1.5	0	1.5	dB
Ε _T	Tracking Error	$A_V = 0$ to -24dB		0	1	dB
		A _V = -24 to -47dB		0	2	dB
VDC	DC S.ep	adjacent attenuation steps from 0dB to $A_{\rm V}$ max		0 0.5	3	m∖ m∖
^A mu e	Nute Attenuation		80	100		dB
B.\85 CO	NTROL (The center frequency and	I the response quality can be choser	by the ex	xt. circuitr	y)	
Gb	Control Range	Max. Boost/cut	+12.0	+14.0	+16.0	dB
BSTEP	Step Resolution		1	2	3	dB
RB	Internal Feedback Resistance		33	44	55	KΩ
TREBLE	CONTROL (The center frequency a	and the response quality can be chose	sen by the	e ext. circ	uitry)	
Gt	Control Range	Max. Boost/cut	+13.0	+14.0	+15.0	dB
T _{STEP}	Step Resolution		1	2	3	dB
MIDDLE	CONTROL (The center frequency a	nd the response quality can be chose	en by the	ext. circu	uitry)	
Gm	Control Range	Max. Boost/cut	+12.0	+14.0	+16.0	dB
MSTEP	Step Resolution		1	2	3	dB
RM	Internal Feedback Resistance		18.75	25	31.25	KΩ

Table 5 (continued)

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
SPEAKE	RATTENUATORS		-	1	ļ	4
CRANGE	Control Range			76		dB
SSTEP	Step Resolution		0.5	1	1.5	dB
EA	Attenuation Set Error	$A_V = 0$ to -20dB	-1.5	0	1.5	dB
		A _V = -20 to -56dB	-2	0	2	dB
ΕT	Tracking Error	$A_V = 0$ to -24dB		0	1	dB
		A _V = -24 to -47dB		0	2	dB
V _{DC}	DC Step	adjacent attenuation steps		0	3	5 n V
Amute	Mute Attenuation		80	100		dB
AUDIO O	UTPUTS			0	<u>)</u>	
VCLIP	Clipping Level	d = 0.3%	2.1	2.6	1.6	VRM
RL	Output Load Resistance		2			KΩ
R _O	Output Impedance		10	40	70	W
V _{DC}	DC Voltage Level			3.8		V
GENERA	L (Gain, Bass, Treble, Middle Cont	rols Flat)	0			1
E _{NO}	Output Noise	All gains = 0dl3; BW = 20Hz to 20KHz flat	3	5	15	μV
Et	Total Tracking Error	Av -= 0 to -24dB		0	1	dB
	(Volume + Speaker Attenuator)	Av= -24 to -47dB		0	2	dB
	2010	A _V = -47 to -79dB		0	3	dB
S/N	Signal to Noise Fat	All gains 0dB; VO = 1V _{RMS} ;	90	106		dB
S _C	Channel Socaration Left/Right	51	80	100		dB
d	Dicto tiun	A _V = 0; VI = 1V _{RMS} ;		0.01	0.08	%
BUS INF						1
lı v'	Input Low Voltage				1	V
VIH	Input High Voltage		3			V
*	Input Current	V _{IN} = 0.4V	-5		5	μA

Figure 4. Test Circuit

3 APPLICATION SUGGESTICINS

The first and the last stages are volume control blocks. The control range is 0 to -47dB (mute) for the first one, 0 to -79dB (mute) for the last one.

Both of them have 1dB strip resolution. The very high resolution allows the implementation of systems free from any noisy accusical cirect. The TDA7438 audioprocessor provides 3 bands tones control.

3.1 Bass, Middle Stages

The Bass and the middle cells have the same structure.

The Pace cell has an internal resistor $Ri = 44K\Omega$ typical.

The Middle cell has an internal resistor $Ri = 25K\Omega$ typical.

Several filter types can be implemented, connecting external components to the Bass/Middle IN and OUT pins.

57

The fig.5 refers to basic T Type Bandpass Filter starting from the filter component values (R1 internal and R2,C1,C2 external) the centre frequency Fc, the gain Av at max. boost and the filter Q factor are computed as follows:

$$F_{c} = \frac{1}{2 \cdot \pi \cdot \sqrt{Ri, R2, C1, C2}}$$

$$A_{V} = \frac{R2C2 + R2C1 + RiC1}{R1C1 + R2C2}$$

 $Q = \frac{\sqrt{Ri, R2, C1, C2}}{R2C1 + R2C2}$

te river will t Viceversa, once Fc, Av, and Ri internal value are fixed, the external components value: will be:

$$C1 = \frac{A_V - 1}{2 \cdot \pi \cdot R_i \cdot Q} \qquad C2 = \frac{Q^2 \cdot C1}{A_V - 1Q^2}$$
$$R2 = \frac{A_V - 1 - Q^2}{2 \cdot \pi \cdot C1 \cdot F_c \cdot (A_V - 1) \cdot Q}$$

3.2 Treble Stage

The treble stage is a high pass filter whose time constant is fixed by an internal resistor (25K Ω typical) and an external capacitor connected between that le pins and ground Typical responses are reported in Figg. 14 to 17.

3.3 CREF

The suggested 10mr reference capacitor (CREF) value can be reduced to 4.7mF if the application requires faster power ON.

Figure C. ThD vs. frequency 1, 10 r N (75) Vin=1Vms Av=0dB ALL CTRLS FLAT 0.1 0.01 0.001 └-10 10000 100 1000 Frequency (Hz)

Figure 7. THD vs. RLOAD

47/

Figure 8. Channel separation vs. frequency

Figure 19. 7reble response

Figure 11. Middle response

4 I²C BUS INTERFACE

Data transmission from microprocessor to the TDA7438 and vice versa takes place through the 2 wires I_2C BUS interface, consisting of the two lines SDA and SCL (pull-up resistors to positive supply voltage must be connected).

4.1 Data Validity

As shown in fig. 12, the data on the SDA line must be stable during the high period of the clock. The HIGH and LOW state of the data line can only change when the clock signal on the SCL line is LOW.

4.2 Start and Stop Conditions

As shown in fig.13 a start condition is a HIGH to LOW transition of the SDA line while SCL is HICH. The stop condition is a LOW to HIGH transition of the SDA line while SCL is HIGH.

4.3 Byte Format

Every byte transferred on the SDA line must contain 8 bits. Each byte must be followed by an acknowledge bit. The MSB is transferred first.

4.4 Acknowledge

The master (mP) puts a resistive HIGH level on the SDA line during the acknowledge clock pulse (see fig. 14). The peripheral (audio processor) that acknowledges has to cruit-down (LOW) the SDA line during this clock pulse.

The audio processor which has been addressed has 'c generate an acknowledge after the reception of each byte, otherwise the SDA line remains at the High level during the ninth clock pulse time. In this case the master transmitter can generate the STOP information in order to abort the transfer.

4.5 Transmission without Acknowledge

Avoiding to detect the acknowledge or the audio processor, the mP can use a simpler transmission: simply it waits one clock without checking the slave acknowledging, and sends the new data.

This approach of course is less protected from misworking.

Figure 15. Acknowledge on the I²CBUS

5 SOFTWARE SPECIFICATION

Interface Protocol

- A start condition (S)
- A chip address byte, containing the TDA7438 address
- A subaddress bytes
- A sequence of data (N byte + acknowledge)

Figure 16.

Interface Protocol		
The interface protocol comprises:		4(5)
 A start condition (S) 		
 A chip address byte, containing 	the TDA7438 address	0.0.
 A subaddress bytes 		210 16
A sequence of data (N byte + ac	knowledge)	
Figure 16.		ate duller
CHIP ADDRESS	SUBADDRESS	DATA 1 to DATA n
MSB LSB	MSB LSB	MSB LSB
S 1 0 0 0 1 0 0 AC	CK X X X B DATA ACK	DATA ACK P
D96AU420		

ACK = Acknowledge

S = Start

P = Stop A = Address

B = Auto Increment

5.1 EXAMPLES

5.1.1 No Incremental Bus

The TDA7.138 receives a start condition, the correct chip address, a subaddress with the B = 0 (no incremental bis), N-data (all these data concern the subaddress selected), a stop condition.

Figure 17.

Γ	CHIP ADDRESS								SUBADDRESS							DATA													
	C	ľ	ИSВ	}						LSB		I MSE	3						LSB		I MSB						LSB		
K	2.1	S	1	0	0	0	1	0	0	0	ACK	Х	Х	Х	0	D3	D2	D1	D0	ACK				DATA				ACK	Ρ
					D96A	U42	1																						

5.1.2 Incremental Bus

The TDA7438 receive a start conditions, the correct chip address, a subaddress with the B = 1 (incremental bus): now it is in a loop condition with an autoincrease of the subaddress whereas SUBADDRESS from "XXX1000" to "XXX1111" of DATA are ignored. The DATA 1 concern the subaddress sent, and the DATA 2 concern the subaddress sent plus one in the loop etc, and at the end it receivers the stop condition

47/

Figure 18.

Table 6. POWER ON RESET CONDITION

INPUT SELECTION INPUT GAIN	IN2 28dB									
VOLUME	MUTE									
BASS	0dB									
MIDDLE	2dB									
TREBLE	2dB									
SPEAKER	MULE									
6 DATA BYTES Address = 88 HEX (ADDR:OPEN).	lete Product(S)									
Table 7. FUNCTION SELECTION: First byte (subaddre se)										

6 **DATA BYTES**

Table 7. FUNCTION SELECTION: First byte (subaddre se)

MSB						A	LSB	
D7	D6	D5	D4	D3	D2	D1	D0	SUBADDRESS
Х	Х	Х	В	6	0	0	0	INPUT SELECT
Х	х	Х	В	0	0	0	1	INPUT GAIN
Х	Х	Х	3	0	0	1	0	VOLUME
Х	Х	X	В	0	0	1	1	BASS
Х	X	X	В	0	1	0	0	MIDDLE
Х	OX -	Х	В	0	1	0	1	TREBLE
×	Х	Х	В	0	1	1	0	SPEAKER ATTENUATE "R"
X	Х	Х	В	0	1	1	1	SPEAKER ATTENUATE "L"

B = 1: INCREMENTAL BUS ACTIVE

B = 0: NO INCREMENTAL BUS

X = DON'T CARE

Figure 19. INPUT SELECTION

MSB							LSB	INPUT MULTIPLEXER				
D7	D6	D5	D4	D3	D2	D1	D0					
Х	Х	Х	Х	Х	Х	0	0	IN3				
Х	Х	Х	Х	Х	Х	0	1	NOT ALLOWED				
Х	Х	Х	Х	Х	Х	1	0	IN2				
Х	Х	Х	Х	Х	Х	1	1	IN1				

Table 8. INPUT GAIN SELECTION

MSB							LSB	INPUT GAIN
D7	D6	D5	D4	D3	D2	D1	D0	2dB STEPS
				0	0	0	0	0dB
				0	0	0	1	2dB
				0	0	1	0	4dB
				0	0	1	1	6dB
				0	1	0	0	8dB
				0	1	0	1	10dB
				0	1	1	0	12dB
				0	1	1	1	1.1d3
				1	0	0	0	1F,dB
				1	0	0	1	18dB
				1	0	1	Û	20dB
				1	0	1		22dB
				1	1	0	0	24dB
				1	1	6	1	26dB
				1	19	1	0	28dB
				1		1	1	30dB

Table 9. VOLUME SELECTION

MSB				($\overline{\mathbf{O}}$		LSB	VOLUME
D7	D6	D5	D4	D3	D2	D1	D0	1dB STEPS
		20		6	0	0	0	0dB
	0		Č	N.	0	0	1	-1dB
	20				0	1	0	-2dB
	0	0	<i></i>		0	1	1	-3dB
5		214			1	0	0	-4dB
	. 0.				1	0	1	-5dB
	0,0				1	1	0	-6dB
-0					1	1	1	-7dB
3	0	0	0	0				0dB
Y	0	0	0	1				-8dB
	0	0	1	0				-16dB
	0	0	1	1				-24dB
	0	1	0	0				-32dB
	0	1	0	1				-40dB
	Х	1	1	1	Х	Х	Х	MUTE

VOLUME = 0 to 47dB/MUTE

Table 10. BASS SELECTION

MSB							LSB	BASS
D7	D6	D5	D4	D3	D2	D1	D0	2dB STEPS
				0	0	0	0	-14dB
				0	0	0	1	-12dB
				0	0	1	0	-10dB
				0	0	1	1	-8dB
				0	1	0	0	-6dB
				0	1	0	1	-4dB
				0	1	1	0	-2dB
				0	1	1	1	095
				1	1	1	1	CdB
				1	1	1	0	2dB
				1	1	0		4dB
				1	1	0	5	6dB
				1	0		1	8dB
				1	0	ì	0	10dB
				1	\$	0	1	12dB
				1		0	0	14dB
le 11.		SELECTIC	DN (6		let		

Table 11. MIDDLE SELECTION

MSB			CV.		~0~	/	LSB	MIDDLE
D7	D6	D5	24	D3	D2	D1	D0	2dB STEPS
		010		0	0	0	0	-14dB
			x	50	0	0	1	-12dB
	×C		$\cdot \cdot \mathbf{C}^{\mathbf{v}}$	0	0	1	0	-10dB
	6		5	0	0	1	1	-8dB
20		50		0	1	0	0	-6dB
Q^{-}		K i		0	1	0	1	-4dB
	20			0	1	1	0	-2dB
- 0	0			0	1	1	1	0dB
3				1	1	1	1	0dB
Y				1	1	1	0	2dB
				1	1	0	1	4dB
				1	1	0	0	6dB
				1	0	1	1	8dB
				1	0	1	0	10dB
				1	0	0	1	12dB
				1	0	0	0	14dB

Table 12. TREBLE SELECTION

MSB							LSB	TREBLE
D7	D6	D5	D4	D3	D2	D1	D0	2dB STEPS
				0	0	0	0	-14dB
				0	0	0	1	-12dB
				0	0	1	0	-10dB
				0	0	1	1	-8dB
				0	1	0	0	-6dB
				0	1	0	1	-4dB
				0	1	1	0	-2dB
				0	1	1	1	0dB
				1	1	1	1	0d3
				1	1	1	0	263
				1	1	0	1	4dB
				1	1	0	0	6dB
				1	0	1	1	8dB
				1	0	1)	10dB
				1	0	0	1	12dB
				1	0	1-0-	0	14dB
ble 13.	SPEAKE		JATE SEI		005		Pr'	9

Table 13. SPEAKER ATTENUATE SELECTION

MSB				-			LSB	SPEAKER ATTENUATION
D7	D6	D5	D4	D3	D2	D1	D0	1dB
				202	0	0	0	0dB
					0	0	1	-1dB
			70		0	1	0	-2dB
		~ (0	1	1	-3dB
				15	1	0	0	-4dB
	.0		. (N.	1	0	1	-5dB
			YV,		1	1	0	-6dB
0			0		1	1	1	-7dB
5		21						
P								
	0	0	0	0				0dB
	0	0	0	1				-8dB
6	0	0	1	0				-16dB
02	0	0	1	1				-24dB
	0	1	0	0				-32dB
	0	1	0	1				-40dB
	0	1	1	0				-48dB
	0	1	1	1				-56dB
	1	0	0	0				-64dB
	1	0	0	1				-72dB
	1	1	1	1	Х	Х	Х	MUTE

SPEAKER ATTENUATION = 0 to -79dB/MUTE

Figure 20. PINS: 23

Figure 2?. FINS: 1, 2, 3, 4, 5, 28

Figure 23. PINS: 6, 8

Figure 24. PINS: 7, 9

57

Figure 26. PINS: 10, 17

Figure 27. PINS: 12, 14

Figure 28. PN 9: 13, 15

57

Figure 29. PINS: 18, 19

Figure 30. PIN: 20

Figure 31. PINS: 21

Figure 32. DIP28 Mechanical Data & Package Dimensions

DIM.		mm			inch				
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.			
a1		0.63			0.025				
b		0.45			0.018				
b1	0.23		0.31	0.009		0.012			
b2		1.27			0.050				
D			37.34			1.470			
Е	15.2		16.68	0.598		0.657			
е		2.54			0.100				
e3		33.02			1.300				
F			14.1			0.555			
I		4.445			0.175				
L		3.3			0.130				

57

Figure 33. SO28 Mechanical Data & Package Dimensions

DIM.		mm		inch					
2	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.			
А			2.65			0.104			
a1	0.1		0.3	0.004		0.012			
b	0.35		0.49	0.014		0.019			
b1	0.23		0.32	0.009		0.013			
С		0.5			0.020				
c1	45° (typ.)								
D	17.7		18.1	0.697		0.713			
Е	10		10.65	0.394		0.419			
е		1.27			0.050				
e3		16.51			0.65				
F	7.4		7.6	0.291		0.299			
L	0.4		1.27	0.016		0.050			
S	8 ° (max.)								

17/19

Table 14. Revision History

Date	Revision	Description of Changes
January 2004	6	First Issue in EDOCS DMS
June 2004	7	Changed the Style-sheet in compliance to the new "Corporate Technical Pubblications Design Guide"

Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s)

έγ/

isbe to the product of the product o Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

> The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners

> > © 2004 STMicroelectronics - All rights reserved

STMicroelectronics GROUP OF COMPANIES

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States

www.st.com

