

LOW SKEW, 1-TO-4, CRYSTAL-TO-LVCMOS/LVTTL FANOUT BUFFER

GENERAL DESCRIPTION

The ICS83904I-02 is a low skew, high performance 1-to-4 Crystal Oscillator/Crystal-to-LVCMOS Fanout Buffer and a member of the HiPerClockSM family of High Performance Clock Solutions from IDT. The ICS83904I-02 has selectable single-ended clock

or two crystal-oscillator inputs. There is an output enable to disable the outputs by placing them into a high-impedance state.

Guaranteed output and part-to-part skew characteristics make the ICS83904I-02 ideal for those applications demanding well defined performance and repeatability.

BLOCK DIAGRAM

ICS839041-02

FEATURES

- Four LVCMOS/LVTTL outputs, 19 Ω typical output impedance @ V_{DD} = V_{DDO} = 3.3V
- Two Crystal oscillator input pairs One LVCMOS/LVTTL clock input
- Crystal input frequencry range: 12MHz 38.88MHz
- Output frequency: 200MHz (maximum)
- Output Skew: 40ps (maximum) @ V_{DD} = V_{DDO} = 3.3V
- RMS phase jitter @ 25MHz output, using a 25MHz crystal (100Hz - 1MHz): 0.16ps (typical) @ $V_{DD} = V_{DDO} = 3.3V$
- RMS phase noise at 25MHz:

<u>Offset</u>	Noise Power
100Hz	118.4 dBc/Hz
1kHz	141.5 dBc/Hz
10kHz	157.2 dBc/Hz
100kHz	157.2 dBc/Hz

- Supply Voltage Modes:
 - (Core/Output) 3.3V/3.3V 3.3V/2.5V 3.3V/1.8V 2.5V/2.5V 2.5V/1.8V
- -40°C to 85°C ambient operating temperature
- Available in both standard (RoHS 5) and lead-free (RoHS 6) packages

CLK_SEL0 1 16 🛛 VDDO XTAL_OUT0 2 15 🗖 Q0 XTAL_IN0 3 14 🗌 Q1 Vdd 🗖 4 13 🗖 GND XTAL_IN1 5 12 🗖 Q2 XTAL_OUT1 6 11 🗖 Q3 CLK_SEL1 7 10 VDDO 8 CLK [9 🗆 OE

PIN ASSIGNMENT

ICS83904I-02 16-Lead TSSOP

4.4mm x 5.0mm x 0.92mm package body **G** Package

Top View

TABLE 1. PIN DESCRIPTIONS

Number	Name	Туре		Description
1, 7	CLK_SEL0, CLK_SEL1	Input	Pulldown	Clock select inputs. See Table 3, Input Reference Function Table. LVCMOS / LVTTL interface levels.
2, 3	XTAL_OUT0, XTAL_IN0	Input		Crystal oscillator interface. XTAL_IN0 is the input. XTAL_OUT0 is the output.
4	V _{DD}	Power		Core supply pin.
5, 6	XTAL_IN1, XTAL_OUT1	Input		Crystal oscillator interface. XTAL_IN1 is the input. XTAL_OUT1 is the output.
8	CLK	Input	Pulldown	Single-ended clock input. LVCMOS/LVTTL interface levels.
9	OE	Input	Pullup	Output enable. When LOW, outputs are in HIGH impedance state. When HIGH, outputs are active. LVCMOS / LVTTL interface levels.
10, 16	V _{DDO}	Power		Output supply pins.
11, 12, 14, 15	Q3, Q2, Q1, Q0	Output		Single-ended clock outputs. LVCMOS/LVTTL interface levels.
13	GND	Power		Power supply ground.

NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.

TABLE 2. PIN CHARACTERISTICS

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
C _{IN}	Input Capacitance			4		pF
R _{PULLUP}	Input Pullup Resistor			51		kΩ
R _{PULLDOWN}	Input Pulldown Resistor			51		kΩ
C _{PD}	Power Dissipation Capacitance (per output)	$V_{DDO} = 3.465 V$		8		pF
		V _{DDO} = 2.625V		7		pF
		$V_{DDO} = 2.0V$		7		pF
		$V_{DDO} = 3.3V$		19		Ω
R _{OUT}	Output Impedance	$V_{DDO} = 2.5V$		21		Ω
		$V_{DDO} = 1.8V$		32		Ω

TABLE 3. INPUT REFERENCE FUNCTION TABLE

Contro	l Inputs	Reference
CLK_SEL1	CLK_SEL0	nelerence
0	0	XTAL0 (default)
0	1	XTAL1
1	0	CLK
1	1	CLK

ABSOLUTE MAXIMUM RATINGS

Supply Voltage, V _{DD}	4.6V
Inputs, V _I	-0.5V to V _{DD} + 0.5 V
Outputs, V _o	-0.5V to V_{DDO} + 0.5V
Package Thermal Impedance, $\boldsymbol{\theta}_{_{J\!A}}$	100.3°C/W (0 mps)
Storage Temperature, T _{stg}	-65°C to 150°C

NOTE: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the *DC Characteristics* or *AC Characteristics* is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

Units Symbol Parameter **Test Conditions** Minimum Typical Maximum V_{DD} Core Supply Voltage 3.135 3.3 3.465 V Output Supply Voltage 3.135 3.3 3.465 V V_{DDO} No Load & XTALx selected @ 12MHz 7 mΑ **Power Supply Current** I_{DD} No Load & CLK selected 1 mΑ **Output Supply Current** No Load & CLK selected 1 mΑ I DDO

Table 4A. Power Supply DC Characteristics, $V_{DD} = V_{DDO} = 3.3V \pm 5\%$, TA = -40°C to 85°C

TABLE 4B. Power Supply DC Characteristics, $V_{DD} = 3.3V \pm 5\%$, $V_{DDO} = 2.5V \pm 5\%$, TA = -40°C to 85°C

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V _{DD}	Core Supply Voltage		3.135	3.3	3.465	V
V _{DDO}	Output Supply Voltage		2.375	2.5	2.625	V
	David Overalis Overant	No Load & XTALx selected @ 12MHz			7	mA
I _{DD} Power Supply Current	No Load & CLK selected			1	mA	
I _{DDO}	Output Supply Current	No Load & CLK selected			1	mA

TABLE 4C. Power Supply DC Characteristics, $V_{DD} = 3.3V \pm 5\%$, $V_{DDO} = 1.8V \pm 0.2V$, Ta = -40°C to 85°C

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V _{DD}	Core Supply Voltage		3.135	3.3	3.465	V
V _{DDO}	Output Supply Voltage		1.6	1.8	2.0	V
		No Load & XTALx selected @ 12MHz			7	mA
Power Supply Current	No Load & CLK selected			1	mA	
I _{DDO}	Output Supply Current	No Load & CLK selected			1	mA

TABLE 4D. Power Supply DC Characteristics, $V_{DD} = V_{DDO} = 2.5V \pm 5\%$, TA = -40°C to 85°C

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V _{DD}	Core Supply Voltage		2.375	2.5	2.625	V
V _{DDO}	Output Supply Voltage		2.375	2.5	2.625	V
	Power Supply Current	No Load & XTALx selected @ 12MHz			3	mA
DD		No Load & CLK selected			1	mA
I _{DDO}	Output Supply Current	No Load & CLK selected			1	mA

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V _{DD}	Core Supply Voltage		2.375	2.5	2.625	V
V _{DDO}	Output Supply Voltage		1.6	1.8	2.0	V
		No Load & XTALx selected @ 12MHz			3	mA
Power Supply Current	No Load & CLK selected			1	mA	
I _{DDO}	Output Supply Current	No Load & CLK selected			1	mA

TABLE 4E. POWER SUPPLY DC CHARACTERISTICS, V	$V_{\text{DD}} = 2.5V \pm 5\%, V_{\text{DDO}} = 1.8V \pm 0.2V, T_{\text{A}} = -40^{\circ}\text{C}$ to 85°C
--	--

Table 4F. DC Characteristics, $T_A = -40^{\circ}C$ to $85^{\circ}C$

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
V	land the land		$V_{DD} = 3.3V \pm 5\%$	2.2		V _{DD} + 0.3	V
V _{IH}	Input High Voltage		$V_{DD} = 2.5V \pm 5\%$	1.6		V _{DD} + 0.3	V
V			$V_{DD} = 3.3V \pm 5\%$	-0.3		1.3	V
V _{IL}	Input Low Voltage		$V_{DD} = 2.5V \pm 5\%$	-0.3		0.9	V
I	Input High Current	CLK, CLK_SEL0:1	$V_{_{DD}} = 3.3 V \text{ or } 2.5 V \pm 5\%$			150	μA
IH		OE	$V_{DD} = 3.3 V \text{ or } 2.5 V \pm 5\%$			5	μA
I _{IL}	Input Low Current	CLK, CLK_SEL0:1	$V_{_{DD}} = 3.3 V \text{ or } 2.5 V \pm 5\%$	-5			μA
IL		OE	$V_{DD} = 3.3 V \text{ or } 2.5 V \pm 5\%$	-150			μA
		·	$V_{DDO} = 3.3V \pm 5\%$; NOTE 1	2.6			V
V _{OH}	Output HighVoltage		$V_{\rm DDO} = 2.5V \pm 5\%$; NOTE 1	1.8			V
			V _{DDO} = 1.8V ± 0.2V; NOTE 1	1.2			V
			$V_{\text{DDO}} = 3.3V \pm 5\%; \text{NOTE 1}$			0.6	V
V _{OL}	Output Low Voltage		$V_{DDO} = 2.5V \pm 5\%; NOTE 1$			0.5	V
-			$V_{DDO} = 1.8V \pm 0.2V; NOTE 1$			0.4	V

NOTE 1: Outputs terminated with 50 Ω to V_{DDO}/2. See Parameter Measurement section, "Load Test Circuit" diagrams.

TABLE 5. CRYSTAL CHARACTERISTICS

Parameter	Test Conditions	Minimum	Typical	Maximum	Units
Mode of Oscillation		Fι	indamenta	al	
Frequency		12		38.88	MHz
Equivalent Series Resistance (ESR)				50	Ω
Shunt Capacitance				7	pF
Drive Level				1	mW

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
\mathbf{f}_{MAX}	Output Frequency	w/external XTAL		12		38.88	MHz
		w/external CLK				200	MHz
tp _{LH}	Propagation Delay, Low-to-High; NOTE 1			1.4	1.9	2.4	ns
<i>t</i> sk(o)	Output Skew; NOTE 2					40	ps
<i>t</i> sk(pp)	Part-to-Part Skew; NOTE 2, 3					700	ps
<i>t</i> jit(Ø)	RMS Phase Jitter, Random; NOTE 2, 4		25MHz, Integration Range: 100Hz – 1MHz		0.16		ps
t _R / t _F	Output Rise/Fall Ti	me	20% to 80%	100		800	ps
a da	Output	w/external XTAL		45		55	%
odc	Duty Cycle	w/external CLK	<i>f</i> < 150MHz	46		54	%
t _{en}	Output Enable Time; NOTE 5					10	ns
t _{DIS}	Output Disable Time; NOTE 5					10	ns

TABLE 6A. AC CHARACTERISTICS, $V_{DD} = V_{DDO} = 3.3V \pm 5\%$, TA = -40°C to 85°C

NOTE 1: Measured from $V_{DD}/2$ of the input to $V_{DDO}/2$ of the output.

NOTE 2: This parameter is defined in accordance with JEDEC Standard 65.

NOTE 3: Defined as skew between outputs on different devices operating a the same supply voltages and

with equal load conditions. Using the same type of input on each device, the output is measured at $V_{ppq}/2$.

NOTE 4: Phase jitter is dependent on the input source used.

NOTE 5: These parameters are guaranteed by characterization. Not tested in production.

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
f		w/external XTAL		12		38.88	MHz
f _{MAX}	Output Frequency	w/external CLK				200	MHz
tp _{LH}	Propagation Delay, Low-to-High; NOTE 1			1.5	2.0	2.5	ns
<i>t</i> sk(o)	Output Skew; NOTE 2					40	ps
<i>t</i> sk(pp)	Part-to-Part Skew; NOTE 2, 3					700	ps
<i>t</i> jit(Ø)	RMS Phase Jitter, Random; NOTE 2, 4		25MHz, Integration Range: 100Hz - 1MHz		0.16		ps
t _R / t _F	Output Rise/Fall Ti	me	20% to 80%	100		800	ps
odc	Output	w/external XTAL		45		55	%
ouc	Duty Cycle	w/external CLK	<i>f</i> < 150MHz	46		54	%
t _{en}	Output Enable Time; NOTE 5					10	ns
t _{DIS}	Output Disable Time; NOTE 5					10	ns

Table 6B. AC Characteristics, $V_{DD} = 3.3V \pm 5\%$, $V_{DDO} = 2.5V \pm 5\%$, Ta = -40°C to 85°C

NOTE 1: Measured from $V_{\text{DD}}/2$ of the input to $V_{\text{DDO}}/2$ of the output.

NOTE 2: This parameter is defined in accordance with JEDEC Standard 65.

NOTE 3: Defined as skew between outputs on different devices operating a the same supply voltages and

with equal load conditions. Using the same type of input on each device, the output is measured at $V_{DDO}/2$.

NOTE 4: Phase jitter is dependent on the input source used.

NOTE 5: These parameters are guaranteed by characterization. Not tested in production.

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
f _{MAX}		w/external XTAL		12		38.88	MHz
	Output Frequency	w/external CLK				200	MHz
tp _{LH}	Propagation Delay, Low-to-High; NOTE 1			1.7	2.2	2.7	ns
<i>t</i> sk(o)	Output Skew; NOTE 2					40	ps
<i>t</i> sk(pp)	Part-to-Part Skew; NOTE 2, 3					700	ps
<i>t</i> jit(Ø)	RMS Phase Jitter, Random; NOTE 2, 4		25MHz, Integration Range: 100Hz - 1MHz		0.16		ps
t _R / t _F	Output Rise/Fall Ti	me	20% to 80%	100		1000	ps
a da	Output	w/external XTAL		45		55	%
odc	Duty Cycle	w/external CLK	<i>f</i> < 150MHz	46		54	%
t _{en}	Output Enable Time; NOTE 5					10	ns
t _{DIS}	Output Disable Time; NOTE 5					10	ns

TABLE 6C. AC CHARACTERISTICS, $V_{DD} = 3.3V \pm 5\%$, $V_{DDO} = 1.8V \pm 0.2V$, TA = -40°C to 85°C

NOTE 1: Measured from $V_{DD}/2$ of the input to $V_{DDO}/2$ of the output.

NOTE 2: This parameter is defined in accordance with JEDEC Standard 65.

NOTE 3: Defined as skew between outputs on different devices operating a the same supply voltages and

with equal load conditions. Using the same type of input on each device, the output is measured at $V_{ppo}/2$.

NOTE 4: Phase jitter is dependent on the input source used.

NOTE 5: These parameters are guaranteed by characterization. Not tested in production.

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
£		w/external XTAL		12		38.88	MHz
f _{MAX}	Output Frequency	w/external CLK				200	MHz
tp _{LH}	Propagation Delay, NOTE 1	Low-to-High;		1.5	2.2	3.0	ns
<i>t</i> sk(o)	Output Skew; NOTE 2					40	ps
<i>t</i> sk(pp)	Part-to-Part Skew; NOTE 2, 3					700	ps
<i>t</i> jit(Ø)	RMS Phase Jitter, Random; NOTE 2, 4		25MHz, Integration Range: 100Hz - 1MHz		0.20		ps
t _R / t _F	Output Rise/Fall Ti	me	20% to 80%	100		800	ps
odo	Output	w/external XTAL		45		55	%
odc	Duty Cycle	w/external CLK	<i>f</i> < 150MHz	48		52	%
t _{en}	Output Enable Time; NOTE 5					10	ns
t _{DIS}	Output Disable Time; NOTE 5					10	ns

Table 6D. AC Characteristics, $V_{DD} = V_{DDO} = 2.5V \pm 5\%$, TA = -40°C to 85°C

NOTE 1: Measured from $V_{DD}/2$ of the input to $V_{DDO}/2$ of the output.

NOTE 2: This parameter is defined in accordance with JEDEC Standard 65.

NOTE 3: Defined as skew between outputs on different devices operating a the same supply voltages and

with equal load conditions. Using the same type of input on each device, the output is measured at $V_{_{DDO}}/2$.

NOTE 4: Phase jitter is dependent on the input source used.

NOTE 5: These parameters are guaranteed by characterization. Not tested in production.

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
f		w/external XTAL		12		38.88	MHz
f _{MAX}	Output Frequency	w/external CLK				200	MHz
tp _{LH}	Propagation Delay, Low-to-High; NOTE 1			1.7	2.5	3.3	ns
<i>t</i> sk(o)	Output Skew; NOTE 2					40	ps
<i>t</i> sk(pp)	Part-to-Part Skew; NOTE 2, 3					700	ps
<i>t</i> jit(Ø)	RMS Phase Jitter, Random; NOTE 2, 4		25MHz, Integration Range: 100Hz - 1MHz		0.19		ps
t _R / t _F	Output Rise/Fall Ti	me	20% to 80%	100		1000	ps
ada	Output	w/external XTAL		45		55	%
odc	Duty Cycle	w/external CLK	<i>f</i> < 150MHz	46		54	%
t _{en}	Output Enable Time; NOTE 5					10	ns
t _{DIS}	Output Disable Time; NOTE 5					10	ns

Table 6E. AC Characteristics, $V_{_{DD}}$ = 2.5V \pm 5%, $V_{_{DDO}}$ = 1.8V ± 0.2 V, Ta = -40°C to 85°C

NOTE 1: Measured from $V_{DD}/2$ of the input to $V_{DDO}/2$ of the output. NOTE 2: This parameter is defined in accordance with JEDEC Standard 65.

NOTE 3: Defined as skew between outputs on different devices operating a the same supply voltages and

with equal load conditions. Using the same type of input on each device, the output is measured at $V_{_{DDO}}/2$.

NOTE 4: Phase jitter is dependent on the input source used.

NOTE 5: These parameters are guaranteed by characterization. Not tested in production.

TYPICAL PHASE NOISE AT 25MHz

8

PARAMETER MEASUREMENT INFORMATION

APPLICATION INFORMATION

CRYSTAL INPUT INTERFACE

Figure 1 shows an example of ICS83904I-02 crystal interface with a parallel resonant crystal. The frequency accuracy can be fine tuned by adjusting the C1 and C2 values. For a parallel crystal with loading capacitance CL = 18pF, we suggest C1 = 15pF and C2 = 15pF to start with. These values may be slightly fine tuned further to optimize the frequency accuracy for different board

layouts. Slightly increasing the C1 and C2 values will slightly reduce the frequency. Slightly decreasing the C1 and C2 values will slightly increase the frequency. For the oscillator circuit below, R1 can be used, but is not required. For new designs, it is recommended that R1 not be used.

FIGURE 1. Crystal Input Interface

LVCMOS TO XTAL INTERFACE

The XTAL_IN input can accept a single-ended LVCMOS signal through an AC coupling capacitor. A general interface diagram is shown in *Figure 2*. The XTAL_OUT pin can be left floating. The input edge rate can be as slow as 10ns. For LVCMOS inputs, it is recommended that the amplitude be reduced from full swing to half swing in order to prevent signal interference with the power rail and to reduce noise. This configuration requires that the output

impedance of the driver (Ro) plus the series resistance (Rs) equals the transmission line impedance. In addition, matched termination at the crystal input will attenuate the signal in half. This can be done in one of two ways. First, R1 and R2 in parallel should equal the transmission line impedance. For most 50Ω applications, R1 and R2 can be 100Ω . This can also be accomplished by removing R1 and making R2 50Ω .

FIGURE 2. GENERAL DIAGRAM FOR LVCMOS DRIVER TO XTAL INPUT INTERFACE

RECOMMENDATIONS FOR UNUSED INPUT AND OUTPUT PINS

INPUTS:

CRYSTAL INPUTS

For applications not requiring the use of the crystal oscillator input, both XTAL_IN and XTAL_OUT can be left floating. Though not required, but for additional protection, a $1k\Omega$ resistor can be tied from XTAL_IN to ground.

CLK INPUT

For applications not requiring the use of the clock input, it can be left floating. Though not required, but for additional protection, a $1k\Omega$ resistor can be tied from the CLK input to ground.

SELECT PINS

All select pins have internal pull-ups and pull-downs; additional resistance is not required but can be added for additional protection. A $1k\Omega$ resistor can be used.

OUTPUTS:

LVCMOS OUTPUTS

All unused LVCMOS output can be left floating. There should be no trace attached.

RELIABILITY INFORMATION

Table 7. $\boldsymbol{\theta}_{_{JA}} \text{vs.}$ Air Flow Table for 16 Lead TSSOP

θ_{A} by Velocity (Linear Feet per Minute)							
Multi-Layer PCB, JEDEC Standard Test Boards	0 100.3°C/W	1 96.0°C/W	2.5 93.9°C/W				

TRANSISTOR COUNT

The transistor count for ICS83904I-02 is: 205

PACKAGE OUTLINE - G SUFFIX FOR 16 LEAD TSSOP

TABLE 8. PACKAGE DIMENSIONS

SYMBOL	Millimeters				
STMDOL	Minimum	Maximum			
Ν	16				
A		1.20			
A1	0.05	0.15			
A2	0.80	1.05			
b	0.19	0.30			
с	0.09	0.20			
D	4.90	5.10			
E	6.40 E	BASIC			
E1	4.30	4.50			
е	0.65 E	BASIC			
L	0.45	0.75			
α	0°	8°			
aaa		0.10			

Reference Document: JEDEC Publication 95, MO-153

TABLE 9. ORDERING INFORMATION

Part/Order Number	Marking	Package	Shipping Packaging	Temperature
ICS83904AGI-02	3904AI02	16 Lead TSSOP	tube	-40°C to 85°C
ICS83904AGI-02T	3904AI02	16 Lead TSSOP	2500 tape & reel	-40°C to 85°C
ICS83904AGI-02LF	904AI02L	16 Lead "Lead-Free" TSSOP	tube	-40°C to 85°C
ICS83904AGI-02LFT	904AI02L	16 Lead "Lead-Free" TSSOP	2500 tape & reel	-40°C to 85°C

NOTE: Parts that are ordered with an "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.

While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology, Incorporated (IDT) assumes no responsibility for either its use or for infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial and industrial applications. Any other applications such as those requiring high reliability or other extraordinary environmental requirements are not recommended without additional processing by IDT. IDT reserves the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT product for use in life support devices or critical medical instruments.

Innovate with IDT and accelerate your future networks. Contact:

For Sales

800-345-7015 408-284-8200 Fax: 408-284-2775

For Tech Support

netcom@idt.com 480-763-2056

Corporate Headquarters

Integrated Device Technology, Inc. 6024 Silver Creek Valley Road San Jose, CA 95138 United States 800 345 7015 +408 284 8200 (outside U.S.)

Asia Pacific and Japan

Integrated Device Technology Singapore (1997) Pte. Ltd. Reg. No. 199707558G 435 Orchard Road #20-03 Wisma Atria Singapore 238877 +65 6 887 5505

Europe

IDT Europe, Limited 321 Kingston Road Leatherhead, Surrey KT22 7TU England +44 (0) 1372 363 339 Fax: +44 (0) 1372 378851

© 2007 Integrated Device Technology, Inc. All rights reserved. Product specifications subject to change without notice. IDT, the IDT logo, ICS and HiPerClockS are trademarks of Integrated Device Technology, Inc. All other brands, product names and marks are or may be trademarks or registered trademarks used to identify products or services of their respective owners. Printed in USA