36 Mbit (1M x 36/2M x 18/512K x 72) Pipelined SRAM with NoBL™ Architecture #### **Features** - Pin compatible and functionally equivalent to ZBT - Supports 250 MHz Bus Operations with Zero Wait States □ Available speed grades are 250, 200 and 167 MHz - Internally self timed Output Buffer Control to eliminate the need to use Asynchronous OE - Fully registered (inputs and outputs) for Pipelined Operation - Byte Write Capability - 3.3V Power Supply - 3.3V/2.5V I/O Power Supply - Fast Clock-to-output times □ 2.6 ns (for 250 MHz device) - Clock Enable (CEN) Pin to suspend operation - Synchronous self timed Writes - CY7C1460AV33, CY7C1462AV33 available in JEDEC-standard Pb-Free 100-pin TQFP, Pb-Free and non-Pb-Free 165-ball FBGA package. CY7C1464AV33 available in Pb-Free and non-Pb-Free 209-ball FBGA package - IEEE 1149.1 JTAG-Compatible Boundary Scan - Burst Capability—Linear or Interleaved Burst Order - "ZZ" Sleep Mode Option and Stop Clock Option #### **Functional Description** The CY7C1460AV33/CY7C1462AV33/CY7C1464AV33 are 3.3V, 1M x 36/2M x 18/512K x72 Synchronous pipelined burst SRAMs with No Bus Latency™ (NoBL™) logic, respectively. They are designed to support unlimited true back-to-back Read/Write operations with no wait states. The CY7C1460AV33/CY7C1462AV33/CY7C1464AV33 are equipped with the advanced (NoBL) logic required to enable consecutive Read/Write operations with data being transferred on every clock cycle. This feature dramatically improves the throughput of data in systems that require frequent Write/Read transitions. The CY7C1460AV33/CY7C1462AV33/CY7C1464AV33 are pin compatible and functionally equivalent to ZBT devices. All synchronous inputs pass through input registers controlled by the rising edge of the clock. All data outputs pass through output registers controlled by the rising edge of the clock. The clock input is qualified by the Clock Enable (CEN) signal, which when deasserted suspends operation and extends the previous clock cycle. <u>Write operations are controlled by the Byte Write Selects (BW_a-BW_h for CY7C1464AV33, BW_a-BW_d for CY7C1460A<u>V</u>33 and BW_a-BW_b for CY7C1462AV33) and a Write Enable (WE) input. All writes are conducted with on-chip synchronous self timed write circuitry.</u> Three synchronous Chip Enables (\overline{CE}_1 , \overline{CE}_2 , \overline{CE}_3) and an asynchronous Output Enable (\overline{OE}) provide for easy bank selection and output tristate control. To avoid bus contention, the output drivers are synchronously tristated during the data portion of a write sequence. ## Logic Block Diagram - CY7C1462AV33 (2M x 18) ## Logic Block Diagram - CY7C1464AV33 (512K x 72) #### **Selection Guide** | Description | 250 MHz | 200 MHz | 167 MHz | Unit | |------------------------------|---------|---------|---------|------| | Maximum Access Time | 2.6 | 3.2 | 3.4 | ns | | Maximum Operating Current | 475 | 425 | 375 | mA | | Maximum CMOS Standby Current | 120 | 120 | 120 | mA | ## **Contents** | Features | . 1 | |--|-----| | Functional Description | . 1 | | Logic Block Diagram - CY7C1460AV33 (1M x 36) | | | Logic Block Diagram - CY7C1462AV33 (2M x 18) | . 2 | | Logic Block Diagram - CY7C1464AV33 (512K x 72) | . 2 | | Selection Guide | . 2 | | Contents | | | Pin Configurations | | | Pin Definitions | | | Functional Overview | | | Sleep Mode | . 9 | | Interleaved Burst Address Table | | | (MODE = Floating or VDD) | | | Linear Burst Address Table (MODE = GND) | . 9 | | ZZ Mode Electrical Characteristics | | | Truth Table | | | Partial Write Cycle Description | | | IEEE 1149.1 Serial Boundary Scan (JTAG) | | | Disabling the JTAG Feature | | | TAP Controller State Diagram | | | Test Access Port (TAP) | | | TAP Controller Block Diagram | | | PERFORMING A TAP RESET | | | TAP REGISTERS | | | TAP Instruction Set | | | TAP Timing Diagram | 14 | | TAP AC Switching Characteristics | | | Over the Operating Range | | | 3.3V TAP AC Test Conditions | 15 | | 2.5V TAP AC Test Conditions | 15 | |--|-------| | TAP DC Electrical Characteristics And | | | Operating Conditions (0°C < TA < $+70$ °C; V_{DD} = 3.13 | 5V to | | 3.6V unless otherwise noted) | 15 | | Identification Register Definitions | 15 | | Scan Register Sizes | | | Identification Codes | 16 | | 165-ball FBGA Boundary Scan Order | 17 | | 209-ball BGA Boundary Scan Order | | | Maximum Ratings | | | Operating Range | 19 | | Neutron Soft Error Immunity | | | Electrical Characteristics | | | Over the Operating Range | 19 | | DC Electrical Characteristics | | | Over the Operating Range | 19 | | Capacitance | 20 | | Thermal Resistance | 20 | | Switching Characteristics | | | Over the Operating Range | 21 | | Ordering Information | | | Package Diagrams | 25 | | Document History Page | 28 | | Sales, Solutions, and Legal Information | 29 | | Worldwide Sales and Design Support | 29 | | Products | 29 | | PSoC Solutions | 29 | ## **Pin Configurations** Figure 1. 100-Pin TQFP Pinout ## Pin Configurations (continued) ## Figure 2. 165-ball FBGA (15 x 17 x 1.4 mm) ## CY7C1460AV33 (1M × 36) | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$ | | | _ | _ | | _ | <u>, </u> | _ | | | | | |--|---|------------------|--------|-----------------|-------------------|---------------------|---|-----------------|----------|--------------------|--------|------------------| | B NC/1G A CE2 BW _d BW _a CLK WE OE A A NC C DQP _c NC V _{DDQ} V _{SS} V _{SS} V _{SS} V _{SS} V _{SS} V _{DDQ} NC DQI D DQ _c DQ _c V _{DDQ} V _{DD} V _{SS} V _{SS} V _{SS} V _{DDQ} DQ _D DQ _D E DQ _c DQ _c V _{DDQ} V _{DD} V _{SS} V _{SS} V _{SS} V _{DDQ} DQ _D DQ _D F DQ _c DQ _c V _{DDQ} V _{DD} V _{SS} V _{SS} V _{SS} V _{DDQ} DQ _D DQ _D G DQ _c DQ _c V _{DDQ} V _{DDQ} V _{SS} V _{SS} V _{SS} V _{SS} V _{DDQ} DQ _D DQ _D H NC NC NC V _{DDQ} V _{DDQ} V _{SS} V _{SS} V _{SS} V _{DDQ} DQ _D DQ J DQ _d DQ _d V _{DDQ} | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | | C DQP _c NC V _{DDQ} V _{SS} V _{SS} V _{SS} V _{SS} V _{SS} V _{DDQ} NC DQI D DQ _c DQ _c V _{DDQ} V _{DD} V _{SS} V _{SS} V _{SS} V _{DD} DQ _b DQ E DQ _c DQ _c V _{DDQ} V _{DD} V _{SS} V _{SS} V _{SS} V _{DD} DQ _b DQ F DQ _c DQ _c V _{DDQ} V _{DD} V _{SS} V _{SS} V _{SS} V _{DD} DQ _b DQ G DQ _c DQ _c V _{DDQ} V _{DD} V _{SS} V _{SS} V _{SS} V _{DD} DQ _b DQ H NC NC NC V _{DD} V _{SS} V _{SS} V _{SS} V _{DD} NC NC NC J DQ _d DQ _d V _{DDQ} V _{DDQ} V _{DDQ} NC NC NC K DQ _d DQ _d V _{DDQ} V _{DDQ} V _{DDQ} V _{DDQ} NC DQ | Α | NC/576M | Α | CE ₁ | \overline{BW}_c | \overline{BW}_b | \overline{CE}_3 | CEN | ADV/LD | Α | Α | NC | | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$ | В | NC/1G | Α | CE2 | \overline{BW}_d | \overline{BW}_{a} | CLK | WE | ŌĒ | Α | Α | NC | | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$ | С | DQP _c | NC | V_{DDQ} | V_{SS} | V_{SS} | V_{SS} | V_{SS} | V_{SS} | V_{DDQ} | NC | DQP _b | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | D | DQ_c | DQ_c | V_{DDQ} | V_{DD} | V_{SS} | V_{SS} | V_{SS} | V_{DD} | V_{DDQ} | DQ_b | DQ _b | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | Е | DQ _c | DQ_c | V_{DDQ} | V_{DD} | V_{SS} | V_{SS} | V _{SS} | V_{DD} | V_{DDQ} | DQ_b | DQ _b | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | F | DQ_c | DQ_c | V_{DDQ} | V_{DD} | V_{SS} | V_{SS} | V_{SS} | V_{DD} | V_{DDQ} | DQ_b | DQ _b | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | G | DQ_c | DQ_c | V_{DDQ} | V_{DD} | V_{SS} | V_{SS} | V_{SS} | V_{DD} | V_{DDQ} | DQ_b | DQ _b | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | Н | NC | NC | NC | V_{DD} | V_{SS} | V_{SS} | V_{SS} | V_{DD} | NC | NC | ZZ | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | J | DQ_d | DQ_d | V_{DDQ} | V_{DD} | V_{SS} | V_{SS} | V_{SS} | V_{DD} | V_{DDQ} | DQ_a | DQa | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | K | DQ_d | DQ_d | V_{DDQ} | V_{DD} | V_{SS} | V_{SS} | V_{SS} | V_{DD} | V_{DDQ} | DQ_a | DQa | | N DQP _d NC V _{DDQ} V _{SS} NC NC NC V _{SS} V _{DDQ} NC DQI | L | DQ_d | DQ_d | V_{DDQ} | V_{DD} | V_{SS} | V_{SS} | V_{SS} | V_{DD} | V_{DDQ} | DQ_a | DQa | | 00 250 | М | DQ_d | DQ_d | V_{DDQ} | V_{DD} | V_{SS} | V_{SS} | V_{SS} | V_{DD} | V_{DDQ} | DQa | DQ_a | | P NC/144M NC/72M A A TDI A1 TDO A A NC/28 | N | DQP _d | NC | V_{DDQ} | V_{SS} | NC | NC | NC | V_{SS}
| V_{DDQ} | NC | DQPa | | 1 NO/144W NO/12W A A NO/20 | Р | NC/144M | NC/72M | Α | Α | TDI | A1 | TDO | Α | Α | Α | NC/288M | | R MODE A A A TMS A0 TCK A A A | R | MODE | Α | Α | Α | TMS | A0 | TCK | Α | Α | Α | Α | ## CY7C1462AV33 (2M × 18) | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | |---|------------------|-----------------|--------------------|-------------------|----------|-----------------|-----------------|-----------------|--------------------|--------|------------------| | Α | NC/576M | Α | CE ₁ | \overline{BW}_b | NC | CE ₃ | CEN | ADV/LD | Α | Α | Α | | В | NC/1G | Α | CE2 | NC | BWa | CLK | WE | ŌĒ | Α | Α | NC | | С | NC | NC | V_{DDQ} | V_{SS} | V_{SS} | V_{SS} | V_{SS} | V _{SS} | V_{DDQ} | NC | DQP _a | | D | NC | DQ_b | V_{DDQ} | V_{DD} | V_{SS} | V_{SS} | V_{SS} | V_{DD} | V_{DDQ} | NC | DQa | | E | NC | DQ_b | V_{DDQ} | V_{DD} | V_{SS} | V_{SS} | V _{SS} | V_{DD} | V_{DDQ} | NC | DQa | | F | NC | DQ _b | V_{DDQ} | V_{DD} | V_{SS} | V_{SS} | V_{SS} | V_{DD} | V_{DDQ} | NC | DQa | | G | NC | DQ_b | V_{DDQ} | V_{DD} | V_{SS} | V_{SS} | V_{SS} | V_{DD} | V_{DDQ} | NC | DQa | | Н | NC | NC | NC | V_{DD} | V_{SS} | V_{SS} | V_{SS} | V_{DD} | NC | NC | ZZ | | J | DQ _b | NC | V_{DDQ} | V_{DD} | V_{SS} | V_{SS} | V_{SS} | V_{DD} | V_{DDQ} | DQ_a | NC | | K | DQ _b | NC | V_{DDQ} | V_{DD} | V_{SS} | V_{SS} | V_{SS} | V_{DD} | V_{DDQ} | DQ_a | NC | | L | DQ _b | NC | V_{DDQ} | V_{DD} | V_{SS} | V_{SS} | V_{SS} | V_{DD} | V_{DDQ} | DQ_a | NC | | M | DQ_b | NC | V_{DDQ} | V_{DD} | V_{SS} | V_{SS} | V_{SS} | V_{DD} | V_{DDQ} | DQa | NC | | N | DQP _b | NC | V_{DDQ} | V_{SS} | NC | NC | NC | V _{SS} | V_{DDQ} | NC | NC | | Р | NC/144M | NC/72M | Α | Α | TDI | A1 | TDO | Α | Α | Α | NC/288M | | R | MODE | Α | Α | Α | TMS | A0 | TCK | Α | Α | Α | Α | ## Pin Configurations (continued) ## Figure 3. 209-ball FBGA (14 x 22 x 1.76 mm) ## CY7C1464AV33 (512K x 72) | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | |---|------|------|------------------|--------------------|-----------------|----------------|-----------------|------------------|--------------------|------|------| | Α | DQg | DQg | Α | CE ₂ | Α | ADV/LD | Α | CE ₃ | Α | DQb | DQb | | В | DQg | DQg | BWS _c | BWS _g | NC | WE | Α | BWS _b | BWS _f | DQb | DQb | | С | DQg | DQg | BWS _h | BWS _d | NC/576M | Œ ₁ | NC | BWS _e | BWSa | DQb | DQb | | D | DQg | DQg | V _{SS} | NC | NC/1G | ŌE | NC | NC | V _{SS} | DQb | DQb | | E | DQPg | DQPc | V_{DDQ} | V_{DDQ} | V _{DD} | V_{DD} | V_{DD} | V_{DDQ} | V_{DDQ} | DQPf | DQPb | | F | DQc | DQc | V _{SS} | V _{SS} | V _{SS} | NC | V_{SS} | V _{SS} | V _{SS} | DQf | DQf | | G | DQc | DQc | V_{DDQ} | V_{DDQ} | V_{DD} | NC | V_{DD} | V_{DDQ} | V_{DDQ} | DQf | DQf | | Н | DQc | DQc | V _{SS} | V _{SS} | V _{SS} | NC | V_{SS} | V _{SS} | V _{SS} | DQf | DQf | | J | DQc | DQc | V_{DDQ} | V_{DDQ} | V _{DD} | NC | V_{DD} | V_{DDQ} | V_{DDQ} | DQf | DQf | | K | NC | NC | CLK | NC | V _{SS} | CEN | V _{SS} | NC | NC | NC | NC | | L | DQh | DQh | V_{DDQ} | V_{DDQ} | V _{DD} | NC | V_{DD} | V_{DDQ} | V_{DDQ} | DQa | DQa | | M | DQh | DQh | V _{SS} | V_{SS} | V _{SS} | NC | V_{SS} | V _{SS} | V _{SS} | DQa | DQa | | N | DQh | DQh | V_{DDQ} | V_{DDQ} | V_{DD} | NC | V_{DD} | V_{DDQ} | V_{DDQ} | DQa | DQa | | Р | DQh | DQh | V _{SS} | V _{SS} | V _{SS} | ZZ | V_{SS} | V _{SS} | V _{SS} | DQa | DQa | | R | DQPd | DQPh | V_{DDQ} | V_{DDQ} | V_{DD} | V_{DD} | V_{DD} | V_{DDQ} | V_{DDQ} | DQPa | DQPe | | T | DQd | DQd | V _{SS} | NC | NC | MODE | NC | NC | V _{SS} | DQe | DQe | | U | DQd | DQd | NC/144M | Α | NC/72M | Α | Α | Α | NC/288M | DQe | DQe | | V | DQd | DQd | Α | Α | Α | A1 | Α | Α | Α | DQe | DQe | | W | DQd | DQd | TMS | TDI | Α | A0 | Α | TDO | TCK | DQe | DQe | ## **Pin Definitions** | Pin Name | I/O Type | Pin Description | |---|-----------------------|--| | A0
A1
A | Input-
Synchronous | Address Inputs Used to Select One of the Address Locations. Sampled at the rising edge of the CLK. | | BW _a BW _b BW _c BW _d BW _e BW _f BW _g BW _h | Input-
Synchronous | Byte Write Select Inputs, Active LOW. Qualified with \overline{WE} to conduct writes to the SRAM. Sampled on the rising edge of CLK. \overline{BW}_a controls DQ_a and DQP_a , \overline{BW}_b controls DQ_b and DQP_b , \overline{BW}_c controls DQ_c and DQP_c , \overline{BW}_d controls DQ_d and DQP_d , \overline{BW}_e controls DQ_e and DQP_e , \overline{BW}_f controls DQ_f and DQP_g , \overline{BW}_g controls DQ_g and DQP_g , \overline{BW}_h controls DQ_h and DQP_h . | | WE | Input-
Synchronous | Write Enable Input, Active LOW. Sampled on the rising edge of CLK if CEN is active LOW. This signal must be asserted LOW to initiate a write sequence. | ## Pin Definitions (continued) | Pin Name | I/O Type | Pin Description | |--|-----------------------------------|--| | ADV/LD | Input-
Synchronous | Advance/Load Input Used to Advance the On-chip Address Counter or Load a New Address. When HIGH (and CEN is asserted LOW) the internal burst counter is advanced. When LOW, a new address can be loaded into the device for an access. After being deselected, ADV/LD should be driven LOW to load a new address. | | CLK | Input-
Clock | Clock Input. Used to capture all synchronous inputs to the device. CLK is qualified with CEN. CLK is only recognized if CEN is active LOW. | | CE ₁ | Input-
Synchronous | Chip Enable 1 Input, Active LOW . Sampled on the rising edge of CLK. Used in conjunction with CE ₂ and CE ₃ to select/deselect the device. | | CE ₂ | Input-
Synchronous | Chip Enable 2 Input, Active HIGH. Sampled on the rising edge of CLK. Used in conjunction with $\overline{\text{CE}}_1$ and $\overline{\text{CE}}_3$ to select/deselect the device. | | CE ₃ | Input-
Synchronous | Chip Enable 3 Input, Active LOW. Sampled on the rising edge of CLK. Used in conjunction with $\overline{\text{CE}}_1$ and $\overline{\text{CE}}_2$ to select/deselect the device. | | ŌĒ | Input-
Asynchronous | Output Enable, Active LOW . Combined with the synchronous logic block inside the device to control the direction of the I/O pins. When LOW, the I/O pins are allowed to behave as outputs. When deasserted HIGH, I/O pins are tristated, and act as input data pins. OE is masked during the data portion of a write sequence, during the first clock when emerging from a deselected state and when the device has been deselected. | | CEN | Input-
Synchronous | Clock Enable Input, Active LOW. When asserted LOW the clock signal is recognized by the SRAM. When deasserted HIGH the clock signal is masked. Since deasserting CEN does not deselect the device, CEN can be used to extend the previous cycle when required. | | DQ _a DQ _b DQ _c DQ _d DQ _e DQ _f DQ _g DQ _h | I/O-
Synchronous | Bidirectional Data I/O Lines . As inputs, they feed into an on-chip data register that is triggered by the rising edge of CLK. As outputs, they deliver the data contained in the memory location specified by A_X during the previous clock rise of the read cycle. The direction of the pins is controlled by \overline{OE} and the internal control logic. When \overline{OE} is asserted LOW, the pins can behave as outputs. When HIGH, DQ_a – DQ_d are placed in a tristate condition. The outputs are automatically tristated during the data portion of a write sequence, during the first clock when emerging from a deselected state, and when the device is deselected, regardless of the state of \overline{OE} . | | DQP _a ,DQP _b ,
DQP _c ,DQP _d
DQP _e ,DQP _f
DQP _g ,DQP _h | I/O-
Synchronous | Bidirectional Data Parity I/O Lines . Function <u>ally,</u> these signals are identic <u>al to $DQ_{[31:0]}$. During write sequences, DQP_a is controlled by \underline{BW}_a, DQP_b is controlled by \underline{BW}_b, DQP_c is controlled by \underline{BW}_c, and DQP_d is controlled by \overline{BW}_d, DQP_e is controlled by \overline{BW}_f, DQP_g is controlled by \overline{BW}_g, DQP_h is controlled by \overline{BW}_h.</u> | | MODE | Input Strap Pin | Mode Input .
Selects the burst order of the device. Tied HIGH selects the interleaved burst order. Pulled LOW selects the linear burst order. MODE should not change states during operation. When left floating MODE defaults HIGH, to an interleaved burst order. | | TDO | JTAG serial output
Synchronous | Serial Data-out to the JTAG Circuit. Delivers data on the negative edge of TCK. | | TDI | JTAG serial input
Synchronous | Serial Data-In to the JTAG Circuit. Sampled on the rising edge of TCK. | | TMS | Test Mode Select
Synchronous | This Pin Controls the Test Access Port State Machine. Sampled on the rising edge of TCK. | | TCK | JTAG-Clock | Clock Input to the JTAG Circuitry. | | V_{DD} | Power Supply | Power Supply Inputs to the Core of the Device. | | V_{DDQ} | I/O Power Supply | Power Supply for the I/O Circuitry. | | V _{SS} | Ground | Ground for the Device. Should be connected to ground of the system. | | NC | N/A | No Connects. This pin is not connected to the die. | | NC/72M | N/A | Not Connected to the Die. Can be tied to any voltage level. | | NC/144M | N/A | Not Connected to the Die. Can be tied to any voltage level. | | NC/288M | N/A | Not Connected to the Die. Can be tied to any voltage level. | #### Pin Definitions (continued) | Pin Name | I/O Type | Pin Description | |----------|--------------|--| | NC/576M | N/A | Not Connected to the Die. Can be tied to any voltage level. | | NC/1G | N/A | Not Connected to the Die. Can be tied to any voltage level. | | | Asynchronous | ZZ "Sleep" Input . This active HIGH input places the device in a non-time critical "sleep" condition with data integrity preserved. During normal operation, this pin can be connected to V _{SS} or left floating. ZZ pin has an internal pull down. | #### **Functional Overview** The CY7C1460AV33/CY7C1462AV33/CY7C1464AV33 are synchronous-pipelined Burst NoBL SRAMs designed specifically to eliminate wait states during Write/Read transitions. All synchronous inputs pass through input registers controlled by the rising edge of the clock. The clock signal is qualified with the Clock Enable input signal (CEN). If CEN is HIGH, the clock signal is not recognized and all internal states are maintained. All synchronous operations are qualified with CEN. All data outputs pass through output registers controlled by the rising edge of the clock. Maximum access delay from the clock rise (t_{CO}) is 2.6 ns (250 MHz device). Accesses can be initiated by asserting all three Chip Enables (CE₁, CE₂, CE₃) active at the rising edge of the clock. If Clock Enable (CEN) is active LOW and ADV/LD is asserted LOW, the address presented to the device is latched. The access can either be a read or write operation, depending on the status of the Write Enable (WE). $BW_{[x]}$ can be used to conduct byte write operations. Write operations are qualified by the Write Enable ($\overline{\text{WE}}$). All writes are simplified with on-chip synchronous self timed write circuitry. Three synchronous Chip Enables $(\overline{CE}_1, CE_2, \overline{CE}_3)$ and an asynchronous Output Enable (\overline{OE}) simplify depth expansion. All operations (Reads, Writes, and Deselects) are pipelined. ADV/ \overline{LD} should be driven LOW after the device has been deselected to load a new address for the next operation. #### Single Read Accesses A read access is initiated when the following conditions are satisfied at clock rise: (1) CEN is asserted LOW, (2) CE₁, CE₂, and CE3 are ALL asserted active, (3) the Write Enable input signal WE is deasserted HIGH, and (4) ADV/LD is asserted LOW. The address presented to the address inputs is latched into the Address Register and presented to the memory core and control logic. The control logic determines that a read access is in progress and allows the requested data to propagate to the input of the output register. At the rising edge of the next clock the requested data is allowed to propagate through the output register and onto the data bus within 2.6 ns (250 MHz device) provided OE is active LOW. After the first clock of the read access the output buffers are controlled by OE and the internal control logic. OE must be driven LOW for the device to drive out the requested data. During the second clock, a subsequent operation (Read/Write/Deselect) can be initiated. Deselecting the device is also pipelined. Therefore, when the SRAM is deselected at clock rise by one of the chip enable signals, its output tristates following the next clock rise. #### **Burst Read Accesses** The CY7C1460AV33/CY7C1462AV33/CY7C1464AV33 have an on-chip burst counter that enables the user the ability to supply a single address and conduct up to four Reads without reasserting the address inputs. ADV/LD must be driven LOW in order to load a new address into the SRAM, as described in the Single Read Access section earlier. The sequence of the burst counter is determined by the MODE input signal. A LOW input on MODE selects a linear burst mode, a HIGH selects an interleaved burst sequence. Both burst counters use A0 and A1 in the burst sequence, and wraps around when incremented sufficiently. A HIGH input on ADV/LD increments the internal burst counter regardless of the state of chip enables inputs or WE. WE is latched at the beginning of a burst cycle. Therefore, the type of access (Read or Write) is maintained throughout the burst sequence. #### **Single Write Accesses** Write access are initiated when the following conditions are satisfied at clock rise: (1) CEN is asserted LOW, (2) CE₁, CE₂, and CE₃ are ALL asserted active, and (3) the write signal WE is asserted LOW. The address presented to the address inputs is loaded into the Address Register. The write signals are latched into the Control Logic block. On the subsequent clock rise the data lines are automatically tristated regardless of the state of the $\overline{\text{OE}}$ input signal. This enables the external logic to present the data on DQ and DQP (DQ_{a,b,c,d,e,f,g,h}/DQP_{a,b,c,d,e,f,g,h} for CY7C1464AV33, DQ_{a,b,c,d}/DQP_{a,b,c,d} for CY7C1460AV33 and DQ_{a,b}/DQP_{a,b} for CY7C1462AV33). In addition, the address for the subsequent access (Read/Write/Deselect) is latched into the Address Register (provided the appropriate control signals are asserted). On the next clock rise the data presented to DQ and DQP (DQ $_{a,b,c,d,e,f,g,h}$ /DQP $_{a,b,c,d,e,f,g,h}$ for CY7C1464AV33, DQ $_{a,b,c,d}$ /DQP $_{a,b,c,d}$ for CY7C1460AV33 and DQ $_{a,b}$ /DQP $_{a,b}$ for CY7C1462AV33) (or a subset for byte write operations, see Write Cycle Description table for details) inputs is latched into the device and the write is complete. The data written during the Write operation is controlled by BW (BW_{a,b,c,d,e,f,g,h} for CY7C1464AV33, BW_{a,b,c,d} for CY7C1460AV33 and BW_{a,b} for CY7C1462AV33) signals. The CY7C1460AV33/CY7C1462AV33/CY7C1464AV33 provides byte write capability that is described in the Write Cycle Description table. Asserting the Write Enable input (WE) with the selected Byte Write Select (BW) input selectively writes to only the desired bytes. Bytes not selected during a byte write operation remains unaltered. A synchronous self timed write mechanism has been provided to simplify the write operations. Byte write capability has been included in order to greatly simplify Read/Modify/Write sequences, which can be reduced to simple byte write operations. Because the CY7C1460AV33/CY7C1462AV33/CY7C1464AV33 are common I/O devices, data should not be driven \underline{into} the device while the outputs are active. The Output Enable (\overline{OE}) can be deasserted HIGH before presenting data to the DQ and DQP (DQa,b,c,d,e,f,g,h/DQPa,b,c,d,e,f,g,h) for CY7C1464AV33, DQa,b,c,d/DQPa,b,c,d for CY7C1460AV33 and DQa,b/DQPa,b for CY7C1462AV33) inputs. Doing so tristates the output drivers. As a safety precaution, DQ and DQP (DQa,b,c,d,e,f,g,h/DQPa,b,c,d,e,f,g,h) for CY7C1464AV33, DQa,b,c,d/DQPa,b,c,d for CY7C1460AV33 and DQa,b/DQPa,b for CY7C1462AV33) are automatically tristated during the data portion of a write cycle, regardless of the state of \overline{OE} . #### **Burst Write Accesses** The CY7C1460AV33/CY7C1462AV33/CY7C1464AV33 has an on-chip burst counter that allows the user the ability to supply a single address and conduct up to four WRITE operations without reasserting the address inputs. ADV/LD must be driven LOW in order to load the initial address, as described in the Single Write Access section earlier. When ADV/LD is driven HIGH on the subsequent clock rise, the chip enables (CE1, CE2, and CE3) and WE inputs are ignored and the burst counter is incremented. The correct BW (BWa,b,c,de,f,g,h for CY7C1464AV33, BWa,b,c,d for CY7C1460AV33 and BWa,b for CY7C1462AV33) inputs must be driven in each cycle of the burst write in order to write the correct bytes of data. #### Sleep Mode The ZZ input pin is an asynchronous input. Asserting ZZ places the SRAM in a power conservation "sleep" mode. Two clock cycles are required to enter into or exit from this "sleep" mode. While in this mode, data integrity is guaranteed. Accesses pending when entering the "sleep" mode are not considered valid nor is the completion of the operation guaranteed. The device must be deselected prior to entering the "sleep" mode. $\overline{\text{CE}}_1$, $\overline{\text{CE}}_2$, and $\overline{\text{CE}}_3$, must remain inactive for the duration of t_{ZZREC} after the ZZ input returns LOW. # Interleaved Burst Address Table (MODE = Floating or V_{DD}) | First
Address | Second
Address | Third
Address | Fourth
Address | |------------------|-------------------|------------------|-------------------| | A1,A0 | A1,A0 | A1,A0 | A1,A0 | | 00 |
01 | 10 | 11 | | 01 | 00 | 11 | 10 | | 10 | 11 | 00 | 01 | | 11 | 10 | 01 | 00 | ## **Linear Burst Address Table (MODE = GND)** | First
Address | Second
Address | Third
Address | Fourth
Address | |------------------|-------------------|------------------|-------------------| | A1,A0 | A1,A0 | A1,A0 | A1,A0 | | 00 | 01 | 10 | 11 | | 01 | 10 | 11 | 00 | | 10 | 11 | 00 | 01 | | 11 | 00 | 01 | 10 | #### **ZZ Mode Electrical Characteristics** | Parameter | Description | Test Conditions | Min | Max | Unit | |--------------------|-----------------------------------|---------------------------|-------------------|-------------------|------| | I _{DDZZ} | Sleep mode standby current | $ZZ \ge V_{DD} - 0.2V$ | | 100 | mA | | t _{ZZS} | Device operation to ZZ | $ZZ \ge V_{DD} - 0.2V$ | | 2t _{CYC} | ns | | t _{ZZREC} | ZZ recovery time | ZZ <u><</u> 0.2V | 2t _{CYC} | | ns | | t _{ZZI} | ZZ active to sleep current | This parameter is sampled | | 2t _{CYC} | ns | | t _{RZZI} | ZZ Inactive to exit sleep current | This parameter is sampled | 0 | | ns | #### **Truth Table** The Truth Table for CY7C1460AV33/CY7C1462AV33/CY7C1464AV33 follows. [1, 2, 3, 4, 5, 6, 7] | Operation | Address
Used | CE | ZZ | ADV/LD | WE | $\overline{\text{BW}}_{\text{x}}$ | OE | CEN | CLK | DQ | |---------------------------------|-----------------|----|----|--------|----|-----------------------------------|----|-----|-----|--------------| | Deselect Cycle | None | Н | L | L | Χ | Х | Х | L | L-H | Tristate | | Continue
Deselect Cycle | None | Х | L | Н | Х | Х | Х | L | L-H | Tristate | | Read Cycle
(Begin Burst) | External | L | L | L | Н | Х | L | L | L-H | Data Out (Q) | | Read Cycle
(Continue Burst) | Next | Х | L | Н | Х | Х | L | L | L-H | Data Out (Q) | | NOP/Dummy Read
(Begin Burst) | External | L | L | L | Н | Х | Н | L | L-H | Tristate | | Dummy Read
(Continue Burst) | Next | Х | L | Н | Х | Х | Н | L | L-H | Tristate | | Write Cycle
(Begin Burst) | External | L | L | L | L | L | Х | L | L-H | Data In (D) | | Write Cycle
(Continue Burst) | Next | Х | L | Н | Х | L | Х | L | L-H | Data In (D) | | NOP/WRITE ABORT (Begin Burst) | None | L | L | L | L | Н | Х | L | L-H | Tristate | | WRITE ABORT
(Continue Burst) | Next | Х | L | Н | Х | Н | Х | L | L-H | Tristate | | IGNORE CLOCK
EDGE
(Stall) | Current | Х | L | Х | Х | Х | Х | Н | L-H | - | | SLEEP MODE | None | Χ | Н | Х | Χ | Х | Х | Х | Х | Tristate | - 1. X = "Don't Care", H = Logic HIGH, L = Logic LOW, \overline{CE} stands for ALL Chip Enables active. \overline{BWx} = L signifies at least one Byte Write Select is active, \overline{BWx} = Valid signifies that the desired byte write selects are asserted, see Write Cycle Description table for details. 2. Write is defined by \overline{WE} and \overline{BWx} . See Write Cycle Description table for details. 3. When a write cycle is detected, all I/Os are tristated, even during byte writes. 4. The DQ and DQP pins are controlled by the current cycle and the \overline{OE} signal. 5. \overline{CEN} = H inserts wait states. 6. Perior provers up deselected and the I/Os in a tristate condition recording of \overline{OE} . - 6. Device powers up deselected and the I/Os in a tristate condition, regardless of OE. 7. OE is asynchronous and is not sampled with the clock rise. It is masked internally during write cycles. During a read cycle DQ_s and DQP_X = Tristate when OE is inactive or when the device is deselected, and DQ_s=data when OE is active. ## **Partial Write Cycle Description** The Partial Write Cycle Description for CY7C1460AV33/CY7C1462AV33/CY7C1464AV33 follows. $\ ^{[1,\,2,\,3,\,8]}$ | Function (CY7C1460AV33) | WE | BW _d | BW c | BW _b | BW _a | |--|----|-----------------|-----------------|-----------------|-----------------| | Read | Н | Х | X | X | Х | | Write – No bytes written | L | Н | Н | Н | Н | | Write Byte a – (DQ _a and DQP _a) | L | Н | Н | Н | L | | Write Byte b – (DQ _b and DQP _b) | L | Н | Н | L | Н | | Write Bytes b, a | L | Н | Н | L | L | | Write Byte c – (DQ _c and DQP _c) | L | Н | L | Н | Н | | Write Bytes c, a | L | Н | L | Н | L | | Write Bytes c, b | L | Н | LL | L | Н | | Write Bytes c, b, a | L | Н | L | L | L | | Write Byte d – (DQ _d and DQP _d) | L | L | Н | Н | Н | | Write Bytes d, a | L | L | Н | Н | L | | Write Bytes d, b | L | L | Н | L | Н | | Write Bytes d, b, a | L | L | Н | L | L | | Write Bytes d, c | L | L | L | Н | Н | | Write Bytes d, c, a | L | L | L | Н | L | | Write Bytes d, c, b | L | L | L | L | Н | | Write All Bytes | L | L | L | L | L | | Function (CY7C1462AV33) ^[2,8] | WE | \overline{BW}_b | \overline{BW}_{a} | |--|----|-------------------|---------------------| | Read | Н | Х | х | | Write – No Bytes Written | L | Н | Н | | Write Byte a – (DQ _a and DQP _a) | L | Н | L | | Write Byte b – (DQ _b and DQP _b) | L | Г | Н | | Write Both Bytes | L | Ĺ | Ĺ | | Function (CY7C1464AV33) ^[2,8] | WE | BW _x | |--|----|-----------------| | Read | Н | х | | Write – No Bytes Written | L | Н | | Write Byte $X - (DQ_x \text{ and } DQP_x)$ | L | L | | Write All Bytes | L | All BW = L | #### Note ^{8.} Table only lists a partial listing of the byte write combinations. Any combination of $\overline{BW}_{[a:d]}$ is valid. Appropriate write is done based on which byte write is active. ## IEEE 1149.1 Serial Boundary Scan (JTAG) The CY7C1460AV33/CY7C1462AV33/CY7C1464AV33 incorporates a serial boundary scan test access port (TAP). This part is fully compliant with 1149.1. The TAP operates using JEDEC-standard 3.3V or 2.5V I/O logic level. The CY7C1460AV33/CY7C1462AV33/CY7C1464AV33 contains a TAP controller, instruction register, boundary scan register, bypass register, and ID register. #### Disabling the JTAG Feature It is possible to operate the SRAM without using the JTAG feature. To disable the TAP controller, TCK must be tied LOW (V_{SS}) to prevent clocking of the device. TDI and TMS are internally pulled up and may be unconnected. They may alternately be connected to V_{DD} through a pull up resistor. TDO should be left unconnected. Upon power up, the device comes up in a reset state which does not interfere with the operation of the device. ### TAP Controller State Diagram The 0/1 next to each state represents the value of TMS at the rising edge of TCK. #### Test Access Port (TAP) #### Test Clock (TCK) The test clock is used only with the TAP controller. All inputs are captured on the rising edge of TCK. All outputs are driven from the falling edge of TCK. #### Test MODE SELECT (TMS) The TMS input is used to give commands to the TAP controller and is sampled on the rising edge of TCK. It is allowable to leave this ball unconnected if the TAP is not used. The ball is pulled up internally, resulting in a logic HIGH level. #### Test Data-In (TDI) The TDI ball is used to serially input information into the registers and can be connected to the input of any of the registers. The register between TDI and TDO is chosen by the instruction that is loaded into the TAP instruction register. TDI is internally pulled up and can be unconnected if the TAP is unused in an application. TDI is connected to the most significant bit (MSB) of any register. (See TAP Controller Block Diagram.) #### Test Data-Out (TDO) The TDO output ball is used to serially clock data-out from the registers. The output is active depending upon the current state of the TAP state machine. The output changes on the falling edge of TCK. TDO is connected to the least significant bit (LSB) of any register. (See TAP Controller State Diagram.) ### **TAP Controller Block Diagram** #### Performing a TAP Reset A RESET is performed by forcing TMS HIGH (VDD) for five rising edges of TCK. This RESET does not affect the operation of the SRAM and may be performed while the SRAM is operating. At power up, the TAP is reset internally to ensure that TDO comes up in a High Z state. #### **TAP Registers** Registers are connected between the TDI and TDO balls and allow data to be scanned into and out of the SRAM test circuitry. Only one register can be selected at a time through the instruction register. Data is serially loaded into the TDI ball on the rising edge of TCK. Data is output on the TDO ball on the falling edge of TCK. #### Instruction Register Three bit instructions can be serially loaded into the instruction register. This register is loaded when it is placed between the TDI and TDO balls as shown in the Tap Controller Block Diagram. Upon power up, the instruction register is loaded with the IDCODE instruction. It is also loaded with the IDCODE instruction if the controller is placed in a reset state as described in the previous section. When the TAP controller is in the Capture-IR state, the two least significant bits are loaded with a binary "01" pattern to enable fault isolation of the board-level serial test data path. #### Bypass Register To save time when serially shifting data through registers, it is sometimes advantageous to skip certain chips. The bypass register is a single bit register that can be placed between the TDI and TDO balls. This allows data to be shifted through the SRAM with minimal delay. The bypass register is set LOW (V_{SS}) when the BYPASS instruction is executed. #### Boundary Scan Register The boundary scan register is connected to all the input and bidirectional balls on the SRAM. The length of the Boundary Scan Register for the SRAM in different packages is listed in the Scan Register Sizes table. The boundary scan register is loaded with the contents of the RAM I/O ring when the TAP controller is in the Capture-DR state and is then placed between the TDI and TDO balls when the controller is moved to the Shift-DR state. The EXTEST, SAMPLE/PRELOAD and SAMPLE Z instructions can be
used to capture the contents of the I/O ring. The Table, "165-ball FBGA Boundary Scan Order [13]," on page 17 and Table, "209-ball BGA Boundary Scan Order [13, 14]," on page 18 show the order in which the bits are connected. Each bit corresponds to one of the bumps on the SRAM package. The MSB of the register is connected to TDI, and the LSB is connected to TDO. #### Identification (ID) Register The ID register is loaded with a vendor-specific, 32 bit code during the Capture-DR state when the IDCODE command is loaded in the instruction register. The IDCODE is hardwired into the SRAM and can be shifted out when the TAP controller is in the Shift-DR state. The ID register has a vendor code and other information described in the Table, "Identification Register Definitions," on page 15 #### **TAP Instruction Set** #### Overview Eight different instructions are possible with the three bit instruction register. All combinations are listed in the Instruction Codes table. Three of these instructions are listed as RESERVED and should not be used. The other five instructions described in detail are as follows. Instructions are loaded into the TAP controller during the Shift-IR state when the instruction register is placed between TDI and TDO. During this state, instructions are shifted through the instruction register through the TDI and TDO balls. To execute the instruction after it is shifted in, the TAP controller needs to be moved into the Update-IR state. #### **IDCODE** The IDCODE instruction causes a vendor-specific, 32 bit code to be loaded into the instruction register. It also places the instruction register between the TDI and TDO balls and allows the IDCODE to be shifted out of the device when the TAP controller enters the Shift-DR state. The IDCODE instruction is loaded into the instruction register upon power up or whenever the TAP controller is given a test logic reset state. #### SAMPLE Z The SAMPLE Z instruction causes the boundary scan register to be connected between the TDI and TDO pins when the TAP controller is in a Shift-DR state. The SAMPLE Z command puts the output bus into a High Z state until the next command is given during the "Update IR" state. #### SAMPLE/PRELOAD SAMPLE/PRELOAD is a 1149.1 mandatory instruction. When the SAMPLE/PRELOAD instructions are loaded into the instruction register and the TAP controller is in the Capture-DR state, a snapshot of data on the inputs and output pins is captured in the boundary scan register. The user must be aware that the TAP controller clock can only operate at a frequency up to 20 MHz, while the SRAM clock operates more than an order of magnitude faster. Because there is a large difference in the clock frequencies, it is possible that during the Capture-DR state, an input or output undergoes a transition. The TAP may then try to capture a signal while in transition (metastable state). This does not harm the device, but there is no guarantee as to the value that is captured. Repeatable results may not be possible. To guarantee that the boundary scan register captures the correct value of a signal, the SRAM signal must be stabilized long enough to meet the TAP controller's capture setup plus hold times (t_{CS} and t_{CH}). The SRAM clock input might not be captured correctly if there is no way in a design to stop (or slow) the clock during a SAMPLE/PRELOAD instruction. If this is an issue, it is still possible to capture all other signals and simply ignore the value of the CK and CK# captured in the boundary scan register. After the data is captured, it is possible to shift out the data by putting the TAP into the Shift-DR state. This places the boundary scan register between the TDI and TDO pins. PRELOAD allows an initial data pattern to be placed at the latched parallel outputs of the boundary scan register cells prior to the selection of another boundary scan test operation. The shifting of data for the SAMPLE and PRELOAD phases can occur concurrently when required—that is, while data captured is shifted out, the preloaded data can be shifted in. #### **BYPASS** When the BYPASS instruction is loaded in the instruction register and the TAP is placed in a Shift-DR state, the bypass register is placed between the TDI and TDO pins. The advantage of the BYPASS instruction is that it shortens the boundary scan path when multiple devices are connected together on a board. #### **EXTEST** The EXTEST instruction enables the preloaded data to be driven out through the system output pins. This instruction also selects the boundary scan register to be connected for serial access between the TDI and TDO in the shift-DR controller state. #### EXTEST OUTPUT BUS TRISTATE IEEE Standard 1149.1 mandates that the TAP controller be able to put the output bus into a tristate mode. The boundary scan register has a special bit located at bit #89 (for 165-FBGA package) or bit #138 (for 209-FBGA package). When this scan cell, called the "extest output bus tristate," is latched into the preload register during the "Update-DR" state in the TAP controller, it directly controls the state of the output (Q-bus) pins, when the EXTEST is entered as the current instruction. When HIGH, it enables the output buffers to drive the output bus. When LOW, this bit places the output bus into a High Z condition. This bit can be set by entering the SAMPLE/PRELOAD or EXTEST command, and then shifting the desired bit into that cell, during the "Shift-DR" state. During "Update-DR," the value loaded into that shift-register cell latches into the preload register. When the EXTEST instruction is entered, this bit directly controls the output Q-bus pins. Note that this bit is preset HIGH to enable the output when the device is powered-up, and also when the TAP controller is in the "Test-Logic-Reset" state. #### Reserved These instructions are not implemented but are reserved for future use. Do not use these instructions. #### TAP Timing Diagram TAP AC Switching Characteristics Over the Operating Range^[9, 10] | Parameter | Description | Min | Max | Unit | |-------------------|-------------------------------|-----|-----|------| | Clock | | | | | | t _{TCYC} | TCK Clock Cycle Time | 50 | | ns | | t _{TF} | TCK Clock Frequency | | 20 | MHz | | t _{TH} | TCK Clock HIGH time | 20 | | ns | | t _{TL} | TCK Clock LOW time | 20 | | ns | | Output Time | es | | | | | t _{TDOV} | TCK Clock LOW to TDO Valid | | 10 | ns | | t _{TDOX} | TCK Clock LOW to TDO Invalid | 0 | | ns | | Setup Time | s | | | | | t _{TMSS} | TMS Setup to TCK Clock Rise | 5 | | ns | | t _{TDIS} | TDI Setup to TCK Clock Rise | 5 | | ns | | t _{CS} | Capture Setup to TCK Rise | 5 | | ns | | Hold Times | | | | | | t _{TMSH} | TMS Hold after TCK Clock Rise | 5 | | ns | | t _{TDIH} | TDI Hold after Clock Rise | 5 | | ns | | t _{CH} | Capture Hold after Clock Rise | 5 | | ns | #### Notes 10. Test conditions are specified using the load in TAP AC test Conditions. $t_{\rm R}/t_{\rm F}=1$ ns. ^{9.} t_{CS} and t_{CH} refer to the setup and hold time requirements of latching data from the boundary scan register. #### 3.3V TAP AC Test Conditions | Input pulse levels | \dots V_{SS} to 3.3V | |--------------------------------------|--------------------------| | Input rise and fall times | 1 ns | | Input timing reference levels | 1.5V | | Output reference levels | 1.5V | | Test load termination supply voltage | 1.5V | Figure 4. 3.3V TAP AC Output Load Equivalent #### 2.5V TAP AC Test Conditions | Input pulse levels | V _{SS} to 2.5V | |--------------------------------------|-------------------------| | Input rise and fall time | 1 ns | | Input timing reference levels | 1.25V | | Output reference levels | 1.25V | | Test load termination supply voltage | 1.25V | Figure 5. 2.5V TAP AC Output Load Equivalent # TAP DC Electrical Characteristics And Operating Conditions $(0^{\circ}C < TA < +70^{\circ}C; V_{DD} = 3.135V \text{ to } 3.6V \text{ unless otherwise noted})^{[11]}$ | Parameter | Description | Test Co | Min | Max | Unit | | |------------------|---------------------|--|-------------------------|------|-----------------------|----| | V _{OH1} | Output HIGH Voltage | I _{OH} = -4.0 mA, V _{DDQ} = 3.3V | | 2.4 | | V | | | | I_{OH} = -1.0 mA, V_{DDQ} | = 2.5V | 2.0 | | V | | V _{OH2} | Output HIGH Voltage | I _{OH} = -100 μA | V _{DDQ} = 3.3V | 2.9 | | V | | | | | $V_{DDQ} = 2.5V$ | 2.1 | | V | | V _{OL1} | Output LOW Voltage | I _{OL} = 8.0 mA | V _{DDQ} = 3.3V | | 0.4 | V | | | | I _{OL} = 1.0 mA | V _{DDQ} = 2.5V | | 0.4 | V | | V_{OL2} | Output LOW Voltage | I _{OL} = 100 μA | V _{DDQ} = 3.3V | | 0.2 | V | | | | | $V_{DDQ} = 2.5V$ | | 0.2 | V | | V _{IH} | Input HIGH Voltage | | V _{DDQ} = 3.3V | 2.0 | V _{DD} + 0.3 | V | | | | | $V_{DDQ} = 2.5V$ | 1.7 | V _{DD} + 0.3 | V | | V _{IL} | Input LOW Voltage | | V _{DDQ} = 3.3V | -0.3 | 0.8 | V | | | | | $V_{DDQ} = 2.5V$ | -0.3 | 0.7 | V | | I _X | Input Load Current | $GND \le V_{IN} \le V_{DDQ}$ | • | -5 | 5 | μA | ## **Identification Register Definitions** | Instruction Field | CY7C1460AV33
(1M ×36) | CY7C1462AV33
(2M ×18) | CY7C1464AV33
(512K ×72) | Description | |------------------------------------|--------------------------|--------------------------|----------------------------|--| | Revision Number (31:29) | 000 | 000 | 000 | Describes the version number. | | Device Depth (28:24)[12] | 01011 | 01011 | 01011 | Reserved for Internal Use | | Architecture/Memory Type(23:18) | 001000 | 001000 | 001000 | Defines memory type and architecture | | Bus Width/Density(17:12) | 100111 | 010111 | 110111 | Defines width and density | | Cypress JEDEC ID Code (11:1) | 00000110100 | 00000110100 | 00000110100 | Allows unique identification of SRAM vendor. | | ID Register Presence Indicator (0) | 1 | 1 | 1 | Indicates the presence of an ID register. | ^{11.} All voltages referenced to V_{SS}
(GND). 12. Bit #24 is "1" in the ID Register Definitions for both 2.5V and 3.3V versions of this device. ## **Scan Register Sizes** | Register Name | Bit Size (×36) | Bit Size (×18) | Bit Size (×72) | |---|----------------|----------------|----------------| | Instruction | 3 | 3 | 3 | | Bypass | 1 | 1 | 1 | | ID | 32 | 32 | 32 | | Boundary Scan Order (165-ball FBGA package) | 89 | 89 | - | | Boundary Scan Order (209-ball FBGA package) | - | - | 138 | ## **Identification Codes** | Instruction | Code | Description | |----------------|------|--| | EXTEST | 000 | Captures I/O ring contents. Places the boundary scan register between TDI and TDO. Forces all SRAM outputs to High Z state. | | IDCODE | 001 | Loads the ID register with the vendor ID code and places the register between TDI and TDO. This operation does not affect SRAM operations. | | SAMPLE Z | 010 | Captures I/O ring contents. Places the boundary scan register between TDI and TDO. Forces all SRAM output drivers to a High Z state. | | RESERVED | 011 | Do Not Use: This instruction is reserved for future use. | | SAMPLE/PRELOAD | 100 | Captures I/O ring contents. Places the boundary scan register between TDI and TDO. Does not affect SRAM operation. | | RESERVED | 101 | Do Not Use: This instruction is reserved for future use. | | RESERVED | 110 | Do Not Use: This instruction is reserved for future use. | | BYPASS | 111 | Places the bypass register between TDI and TDO. This operation does not affect SRAM operations. | ## 165-ball FBGA Boundary Scan Order [13] CY7C1460AV33 (1M x 36), CY7C1462AV33 (2M x 18) | Bit# | ball ID | |------|---------|------|---------|------|---------|------|----------| | 1 | N6 | 26 | E11 | 51 | A3 | 76 | N1 | | 2 | N7 | 27 | D11 | 52 | A2 | 77 | N2 | | 3 | 10N | 28 | G10 | 53 | B2 | 78 | P1 | | 4 | P11 | 29 | F10 | 54 | C2 | 79 | R1 | | 5 | P8 | 30 | E10 | 55 | B1 | 80 | R2 | | 6 | R8 | 31 | D10 | 56 | A1 | 81 | P3 | | 7 | R9 | 32 | C11 | 57 | C1 | 82 | R3 | | 8 | P9 | 33 | A11 | 58 | D1 | 83 | P2 | | 9 | P10 | 34 | B11 | 59 | E1 | 84 | R4 | | 10 | R10 | 35 | A10 | 60 | F1 | 85 | P4 | | 11 | R11 | 36 | B10 | 61 | G1 | 86 | N5 | | 12 | H11 | 37 | A9 | 62 | D2 | 87 | P6 | | 13 | N11 | 38 | В9 | 63 | E2 | 88 | R6 | | 14 | M11 | 39 | C10 | 64 | F2 | 89 | Internal | | 15 | L11 | 40 | A8 | 65 | G2 | | | | 16 | K11 | 41 | B8 | 66 | H1 | | | | 17 | J11 | 42 | A7 | 67 | H3 | | | | 18 | M10 | 43 | В7 | 68 | J1 | | | | 19 | L10 | 44 | В6 | 69 | K1 | | | | 20 | K10 | 45 | A6 | 70 | L1 | | | | 21 | J10 | 46 | B5 | 71 | M1 | | | | 22 | H9 | 47 | A5 | 72 | J2 | | | | 23 | H10 | 48 | A4 | 73 | K2 | | | | 24 | G11 | 49 | B4 | 74 | L2 | | | | 25 | F11 | 50 | В3 | 75 | M2 | | | 13. Bit# 89 is preset HIGH. ## 209-ball BGA Boundary Scan Order [13, 14] CY7C14604V33 (512K x 72) | Bit# | Ball ID | |------|---------|------|---------|------|---------|------|----------| | 1 | W6 | 36 | 6F | 71 | 6H | 106 | 3K | | 2 | V6 | 37 | 8K | 72 | 6C | 107 | 4K | | 3 | U6 | 38 | 9K | 73 | 6B | 108 | 6K | | 4 | W7 | 39 | 10K | 74 | 6A | 109 | 2K | | 5 | V7 | 40 | 11J | 75 | 5A | 110 | 2L | | 6 | U7 | 41 | 10J | 76 | 5B | 111 | 1L | | 7 | T7 | 42 | 11H | 77 | 5C | 112 | 2 Mbit | | 8 | V8 | 43 | 10H | 78 | 5D | 113 | 1 Mbit | | 9 | U8 | 44 | 11G | 79 | 4D | 114 | 2N | | 10 | T8 | 45 | 10G | 80 | 4C | 115 | 1N | | 11 | V9 | 46 | 11F | 81 | 4A | 116 | 2P | | 12 | U9 | 47 | 10F | 82 | 4B | 117 | 1P | | 13 | P6 | 48 | 10E | 83 | 3C | 118 | 2R | | 14 | W11 | 49 | 11E | 84 | 3B | 119 | 1R | | 15 | W10 | 50 | 11D | 85 | 3A | 120 | 2T | | 16 | V11 | 51 | 10D | 86 | 2A | 121 | 1T | | 17 | V10 | 52 | 11C | 87 | 1A | 122 | 2U | | 18 | U11 | 53 | 10C | 88 | 2B | 123 | 1U | | 19 | U10 | 54 | 11B | 89 | 1B | 124 | 2V | | 20 | T11 | 55 | 10B | 90 | 2C | 125 | 1V | | 21 | T10 | 56 | 11A | 91 | 1C | 126 | 2W | | 22 | R11 | 57 | 10A | 92 | 2D | 127 | 1W | | 23 | R10 | 58 | 9C | 93 | 1D | 128 | 6T | | 24 | P11 | 59 | 9B | 94 | 1E | 129 | 3U | | 25 | P10 | 60 | 9A | 95 | 2E | 130 | 3V | | 26 | N11 | 61 | 8D | 96 | 2F | 131 | 4T | | 27 | N10 | 62 | 8C | 97 | 1F | 132 | 5T | | 28 | M11 | 63 | 8B | 98 | 1G | 133 | 4U | | 29 | M10 | 64 | 8A | 99 | 2G | 134 | 4V | | 30 | L11 | 65 | 7D | 100 | 2H | 135 | 5W | | 31 | L10 | 66 | 7C | 101 | 1H | 136 | 5V | | 32 | K11 | 67 | 7B | 102 | 2J | 137 | 5U | | 33 | M6 | 68 | 7A | 103 | 1J | 138 | Internal | | 34 | L6 | 69 | 6D | 104 | 1K | | | | 35 | J6 | 70 | 6G | 105 | 6N | | | 14. Bit# 138 is preset HIGH. ## **Maximum Ratings** Exceeding maximum ratings may shorten the useful life of the device. User guidelines are not tested. | Storage Temperature65°C to +150°C | |---| | Ambient Temperature with Power Applied55°C to +125°C | | Supply Voltage on V_{DD} Relative to GND–0.5V to +4.6V | | Supply Voltage on V_{DDQ} Relative to GND –0.5V to + V_{DD} | | DC to Outputs in Tristate–0.5V to V_{DDQ} + 0.5V | | DC Input Voltage0.5V to V _{DD} + 0.5V | | Current into Outputs (LOW)20 mA | | Static Discharge Voltage > 2001V (per MIL-STD-883, Method 3015) | | Latch up Current > 200 mA | ## **Operating Range** | Range | Ambient
Temperature | V _{DD} | V _{DDQ} | | |------------|------------------------|-----------------|------------------|--| | Commercial | 0°C to +70°C | 3.3V | 2.5V –5% to | | | Industrial | –40°C to +85°C | –5%/+10% | V_{DD} | | ## **Neutron Soft Error Immunity** | Parameter | Description | Test
Conditions | Тур | Max* | Unit | |-----------|---------------------------------|--------------------|-----|------|-------------| | LSBU | Logical
Single Bit
Upsets | 25°C | 361 | 394 | FIT/
Mb | | LMBU | Logical Multi
Bit Upsets | 25°C | 0 | 0.01 | FIT/
Mb | | SEL | Single Event
Latch up | 85°C | 0 | 0.1 | FIT/
Dev | ^{*} No LMBU or SEL events occurred during testing; this column represents a statistical $\chi^2,\,95\%$ confidence limit calculation. For more details refer to Application Note AN 54908 "Accelerated Neutron SER Testing and Calculation of Terrestrial Failure Rates" ## Electrical Characteristics Over the Operating Range [15, 16] #### DC Electrical Characteristics Over the Operating Range | Parameter | Description | Test Conditions | Min | Max | Unit | |-----------------|--|--|------------|-----------------|------| | V_{DD} | Power Supply Voltage | | 3.135 | 3.6 | V | | V_{DDQ} | I/O Supply Voltage | for 3.3V I/O | 3.135 | V_{DD} | V | | | | for 2.5V I/O | 2.375 | 2.625 | V | | V _{OH} | Output HIGH Voltage | for 3.3V I/O, I _{OH} = -4.0 mA | 2.4 | | V | | | | for 2.5V I/O, I _{OH} = -1.0 mA | 2.0 | | V | | V_{OL} | Output LOW Voltage | for 3.3V I/O, I _{OL} = 8.0 mA | | 0.4 | V | | | | for 2.5V I/O, I _{OL} = 1.0 mA | | 0.4 | V | | V _{IH} | Input HIGH Voltage[15] | for 3.3V I/O | 2.0 | $V_{DD} + 0.3V$ | V | | | | for 2.5V I/O | 1.7 | $V_{DD} + 0.3V$ | V | | V _{IL} | Input LOW Voltage[15] | for 3.3V I/O | -0.3 | 0.8 | V | | | | for 2.5V I/O | -0.3 | 0.7 | V | | I _X | Input Leakage Current except ZZ and MODE | $GND \leq V_I \leq V_{DDQ}$ | – 5 | 5 | μА | | | Input Current of MODE | Input = V _{SS} | -30 | | μА | | | | Input = V _{DD} | | 5 | μА | | | Input Current of ZZ | Input = V _{SS} | - 5 | | μА | | | | Input = V _{DD} | | 30 | μА | | I _{OZ} | Output Leakage Current | $GND \leq V_I \leq V_{DDQ,} \text{ Output Disabled}$ | - 5 | 5 | μΑ | ^{15.} Overshoot: $V_{IH}(AC) < V_{DD} + 1.5V$ (Pulse width less than $t_{CYC}/2$), undershoot: $V_{IL}(AC) > -2V$ (Pulse width less than $t_{CYC}/2$). 16. $T_{power\,up}$: Assumes a linear ramp from 0V to V_{DD} (Min) within 200 ms. During this time $V_{IH} < V_{DD}$ and $V_{DDQ} \le V_{DD}$. ## Electrical Characteristics Over the Operating Range [15, 16] #### DC Electrical Characteristics Over the Operating Range | Parameter | Description | Test Conditio | Test Conditions | | | Unit | |------------------|---|---|---------------------|--|-----|------| | I _{DD} | V _{DD} Operating Supply | $V_{DD} = Max$, $I_{OUT} = 0$ mA, | 4 ns cycle, 250 MHz | | 475 | mA | | | | $f = f_{MAX} = 1/t_{CYC}$ | 5 ns cycle, 200 MHz | | 425 | mA | | | | | 6 ns cycle, 167 MHz | | 375 | mA | | I _{SB1} | Automatic CE
Power down
Current—TTL Inputs | $\begin{aligned} &\text{Max V}_{DD}, \text{ Device Deselected,} \\ &\text{V}_{IN} \geq \text{V}_{IH} \text{ or V}_{IN} \leq \text{V}_{IL}, \text{ f = f}_{MAX} = \\ &\text{1/t}_{CYC} \end{aligned}$ | All speed grades | | 225 | mA | | I _{SB2} | Automatic CE
Power down
Current—CMOS Inputs | $\begin{array}{l} \text{Max V}_{DD}, \text{ Device Deselected}, \\ \text{V}_{\text{IN}} \leq 0.3 \text{V or V}_{\text{IN}} \geq \text{V}_{DDQ} - 0.3 \text{V}, \\ \text{f} = 0 \end{array}$ | All speed grades | | 120 | mA | | I _{SB3} | Automatic CE
Power down
Current—CMOS Inputs | $\begin{array}{l} \text{Max V}_{DD}, \text{ Device Deselected,} \\ \text{V}_{\text{IN}} \leq 0.3 \text{V or V}_{\text{IN}} \geq \text{V}_{DDQ} - 0.3 \text{V,} \\ \text{f} = \text{f}_{\text{MAX}} = 1/\text{t}_{\text{CYC}} \end{array}$ | All speed grades | | 200 | mA | | I _{SB4} | Automatic CE
Power down
Current—TTL Inputs | $\begin{aligned} &\text{Max V}_{DD}, \text{ Device Deselected,} \\ &\text{V}_{IN} \geq \text{V}_{IH} \text{ or V}_{IN} \leq \text{V}_{IL}, \text{ f = 0} \end{aligned}$ | All speed grades | | 135 | mA | ## Capacitance^[17] | Parameter | Description | Test Conditions | 100 TQFP
Max | 165 FBGA
Max |
209 FBGA
Max | Unit | |------------------|--------------------------|---|-----------------|-----------------|-----------------|------| | C _{IN} | Input Capacitance | $T_A = 25^{\circ}C, f = 1 \text{ MHz},$ | 6.5 | 7 | 5 | pF | | C _{CLK} | Clock Input Capacitance | $V_{DD} = 2.5 V V_{DDQ} = 2.5 V$ | 3 | 7 | 5 | pF | | C _{I/O} | Input/Output Capacitance | | 5.5 | 6 | 7 | pF | ## Thermal Resistance^[17] | Parameters | Description | Test Conditions | 100 TQFP
Package | 165 FBGA
Package | 209 FBGA
Package | Unit | |------------|-------------|---|---------------------|---------------------|---------------------|------| | - 3/1 | , | Test conditions follow standard test methods and procedures | 25.21 | 20.8 | 25.31 | °C/W | | - 30 | | for measuring thermal impedance, per EIA/JESD51. | 2.28 | 3.2 | 4.48 | °C/W | #### Figure 6. AC Test Loads and Waveforms #### Note ^{17.} Tested initially and after any design or process changes that may affect these parameters. ## Switching Characteristics Over the Operating Range [22, 23] | Davamatav | Description | -2 | 250 | -2 | :00 | -167 | | l lmi4 | |------------------------------------|---|-----|-----|-----|-----|------|-----|--------| | Parameter | Description | Min | Max | Min | Max | Min | Max | Unit | | t _{Power} ^[18] | V _{CC} (typical) to the first access read or write | | | 1 | | 1 | | ms | | Clock | | | | | | | | | | t _{CYC} | Clock Cycle Time | 4.0 | | 5.0 | | 6.0 | | ns | | F _{MAX} | Maximum Operating Frequency | | 250 | | 200 | | 167 | MHz | | t _{CH} | Clock HIGH | 1.5 | | 2.0 | | 2.4 | | ns | | t _{CL} | Clock LOW | 1.5 | | 2.0 | | 2.4 | | ns | | Output Times | | | | | | | | | | t _{CO} | Data Output Valid After CLK Rise | | 2.6 | | 3.2 | | 3.4 | ns | | t _{EOV} | OE LOW to Output Valid | | 2.6 | | 3.0 | | 3.4 | ns | | t _{DOH} | Data Output Hold After CLK Rise | 1.0 | | 1.5 | | 1.5 | | ns | | t _{CHZ} | Clock to High Z ^[19, 20, 21] | | 2.6 | | 3.0 | | 3.4 | ns | | t _{CLZ} | Clock to Low Z ^[19, 20, 21] | 1.0 | | 1.3 | | 1.5 | | ns | | t _{EOHZ} | OE HIGH to Output High Z ^[19, 20, 21] | | 2.6 | | 3.0 | | 3.4 | ns | | t _{EOLZ} | OE LOW to Output Low Z ^[19, 20, 21] | 0 | | 0 | | 0 | | ns | | Setup Times | | | | | | | | | | t _{AS} | Address Setup Before CLK Rise | 1.2 | | 1.4 | | 1.5 | | ns | | t _{DS} | Data Input Setup Before CLK Rise | 1.2 | | 1.4 | | 1.5 | | ns | | t _{CENS} | CEN Setup Before CLK Rise | 1.2 | | 1.4 | | 1.5 | | ns | | t _{WES} | WE, BW _x Setup Before CLK Rise | 1.2 | | 1.4 | | 1.5 | | ns | | t _{ALS} | ADV/LD Setup Before CLK Rise | 1.2 | | 1.4 | | 1.5 | | ns | | t _{CES} | Chip Select Setup | 1.2 | | 1.4 | | 1.5 | | ns | | Hold Times | | | | | | | | | | t _{AH} | Address Hold After CLK Rise | 0.3 | | 0.4 | | 0.5 | | ns | | t _{DH} | Data Input Hold After CLK Rise | 0.3 | | 0.4 | | 0.5 | | ns | | t _{CENH} | CEN Hold After CLK Rise | 0.3 | | 0.4 | | 0.5 | | ns | | t _{WEH} | WE, BW _x Hold After CLK Rise | 0.3 | | 0.4 | | 0.5 | | ns | | t _{ALH} | ADV/LD Hold after CLK Rise | 0.3 | | 0.4 | | 0.5 | | ns | | t _{CEH} | Chip Select Hold After CLK Rise | 0.3 | | 0.4 | | 0.5 | | ns | ^{18.} This part has a voltage regulator internally; tpower is the time power needs to be supplied above Vdd minimum initially, before a Read or Write operation can be initiated. ^{19.} t_{CHZ}, t_{CLZ}, t_{EOLZ}, and t_{EOHZ} are specified with AC test conditions shown in (b) of AC Test Loads. Transition is measured ± 200 mV from steady-state voltage. 20. At any voltage and temperature, t_{EOHZ} is less than t_{EOLZ} and t_{CHZ} is less than t_{CLZ} to eliminate bus contention between SRAMs when sharing the same data bus. These specifications do not imply a bus contention condition, but reflect parameters guaranteed over worst case user conditions. Device is designed to achieve High Z prior to Low Z under the same system conditions. ^{21.} This parameter is sampled and not 100% tested. ^{22.} Timing reference is 1.5V when $V_{\rm DDQ}$ =3.3V and is 1.25V when $V_{\rm DDQ}$ =2.5V. 23. Test conditions shown in (a) of AC Test Loads unless otherwise noted. ## **Switching Waveforms** Figure 7. Read/Write/Timing^[24, 25, 26] #### Notes 24. For this waveform ZZ is tied low. 25. When $\overline{\text{CE}}$ is LOW, $\overline{\text{CE}}_1$ is LOW, $\overline{\text{CE}}_2$ is HIGH and $\overline{\text{CE}}_3$ is LOW. When $\overline{\text{CE}}$ is HIGH, $\overline{\text{CE}}_1$ is HIGH or $\overline{\text{CE}}_2$ is LOW or $\overline{\text{CE}}_3$ is HIGH. 26. Order of the Burst sequence is determined by the status of the MODE (0 = Linear, 1 = Interleaved). Burst operations are optional. ## Switching Waveforms (continued) ## Figure 8. NOP, STALL and DESELECT Cycles^[24, 25, 27] Figure 9. ZZ Mode Timing $^{[28, 29]}$ #### Notes 29. I/Os are in High Z when exiting ZZ sleep mode. ^{27.} The IGNORE CLOCK EDGE or STALL cycle (Clock 3) illustrated $\overline{\text{CEN}}$ being used to create a pause. A write is not performed during this cycle. 28. Device must be deselected when entering ZZ mode. See cycle description table for all possible signal conditions to deselect the device. ## **Ordering Information** The table below contains only the parts that are currently available. If you don't see what you are looking for, please contact your local sales representative. For more information, visit the Cypress website at www.cypress.com and refer to the product summary page at http://www.cypress.com/products Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives and distributors. To find the office closest to you, visit us at http://www.cypress.com/go/datasheet/offices Table 1. Ordering Information | Speed (MHz) | Ordering Code | Package
Diagram | | Operating Range | |-------------|---------------------|--------------------|---|-----------------| | 167 | CY7C1460AV33-167AXC | 51-85050 | 100-Pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Pb-Free | Commercial | | | CY7C1462AV33-167AXC | | | | | | CY7C1460AV33-167BZC | 51-85165 | 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) | | | | CY7C1460AV33-167AXI | 51-85050 | 100-Pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Pb-Free | Industrial | | | CY7C1464AV33-167BGI | 51-85167 | 209-ball Fine-Pitch Ball Grid Array (14 × 22 × 1.76 mm) | | | 200 | CY7C1460AV33-200AXC | 51-85050 | 100-Pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Pb-Free | Commercial | | 250 | CY7C1460AV33-250AXC | 51-85050 | 100-Pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Pb-Free | Commercial | | | CY7C1460AV33-250BZC | 51-85165 | 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) | | | | CY7C1460AV33-250AXI | 51-85050 | 100-Pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Pb-Free | Industrial | ## **Package Diagrams** Figure 10. 100-Pin TQFP (14 x 20 x 1.4 mm) # Package Diagrams (continued) Figure 11. 165-Ball FBGA (15 x 17 x 1.4 mm) ## Package Diagrams (continued) Figure 12. 209-Ball FBGA (14 x 22 x 1.76 mm) ## **Document History Page** Document Title: CY7C1460AV33/CY7C1462AV33/CY7C1464AV33, 36 Mbit (1M x 36/2M x 18/512K x 72) Pipelined SRAM with NoBL™ Architecture | Revision | ECN | Orig. of
Change | Submission
Date | Description of Change | |----------|--------|--------------------|--------------------|---| | ** | 254911 | SYT | See ECN | New Data sheet Part number changed from previous revision. New and old part number differ by the letter "A" | | *A | 303533 | SYT | See ECN | Changed H9 pin from V_{SSQ} to V_{SS} on the Pin Configuration table for 209 FBGA on Page # 5 Changed the test condition from V_{DD} = Min to V_{DD} = Max for V_{OI} in the Electrical Characteristics table Replaced Θ_{JA} and Θ_{JC} from TBD to respective Thermal Values for All Packages on the Thermal Resistance Table Changed I_{DD} from 450, 400 and 350 mA to 475, 425 and 375 mA for 250, 200 and 167 MHz respectively Changed I_{SB1} from 190, 180 and 170 mA to 225 mA for 250, 200 and 167 MHz respectively Changed I_{SB2} from 80 mA to 100 mA for all frequencies Changed I_{SB3} from 180, 170 and 160 mA to 200 mA for 250, 200 and 167 MHz respectively Changed I_{SB3} from 100 mA to 110 mA for all frequencies Changed I_{SB4} from 100 mA to 110 mA for all frequencies Changed I_{SB4} from 3.0 to 6.5, 3 and 5.5 pF from 5, 5 and 7 pF for TQFP Package Changed I_{CO} from 3.0 to 3.2 ns and I_{DOH} from 1.3 ns to 1.5 ns fo 200 MHz Speed Bin Added Pb-Free information for 100-pin TQFP and 165 FBGA and 209 BGA packages | | *B | 331778 | SYT | See ECN | Modified Address Expansion balls in the pinouts for 165 FBGA and 209 BGA Package as per JEDEC standards and updated the Pin
Definitions accordingly Modified V_{OL} , V_{OH} test conditions Changed C_{IN} , C_{CLK} and $C_{I/O}$ to 7, 7and 6 pF from 5, 5 and 7 pF for 165 FBGA Package Added Industrial Temperature Grade Changed I_{SB2} and I_{SB4} from 100 and 110 mA to 120 and 135 mA respectively Updated the Ordering Information by Shading and Unshading MPNs as per availability | | *C | 417509 | RXU | See ECN | Converted from Preliminary to Final Changed address of Cypress Semiconductor Corporation on Page# 1 from "3901 North First Street" to "198 Champion Court Changed I_X current value in MODE from -5 and $30~\mu A$ to $-30~and 5~\mu A$ respectively and also Changed I_X current value in ZZ from $-30~and 5~\mu A$ to $-5~and 30~\mu A$ respectively on page# 18 Modified test condition from $V_{IH} \leq V_{DD}$ to $V_{IH} < V_{DD}$ Modified "Input Load" to "Input Leakage Current except ZZ and MODE" in the Electrical Characteristics Table Replaced Package Name column with Package Diagram in the Ordering Information table Replaced Package Diagram of 51-85050 from *A to *B | | *D | 473229 | NXR | See ECN | Added the Maximum Rating for Supply Voltage on V_{DDQ} Relative to GND Changed t_{TH} , t_{TL} from 25 ns to 20 ns and t_{TDOV} from 5 ns to 10 ns in TAP AC Switching Characteristics table Updated the Ordering Information table. | | Document Title: CY7C1460AV33/CY7C1462AV33/CY7C1464AV33, 36 Mbit (1M x 36/2M x 18/512K x 72) Pipelined SRAM with NoBL™ Architecture Document Number: 38-05353 | | | | | | | | | |--|---------|-----|------------|--|--|--|--|--| | *E | 2756998 | VKN | 08/28/09 | Included Soft Error Immunity Data Modified Ordering Information table by including parts that are available and modified the disclaimer for the Ordering information. Updated Package Diagram for spec 51-85165. | | | | | | *F | 2900822 | NJY | 03/29/2010 | Added CY7C1460AV33-167AXI part in Ordering Information Updated links in Sales, Solutions, and Legal Information Updated 100-pin TQFP and 209-Ball FBGA package diagrams. | | | | | ### Sales, Solutions, and Legal Information #### **Worldwide Sales and Design Support** Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations. #### **Products** Automotive cypress.com/go/automotive Clocks & Buffers cypress.com/go/clocks Interface cypress.com/go/interface cypress.com/go/powerpsoc cypress.com/go/plc Memory cypress.com/go/memory Optical & Image Sensing cypress.com/go/image PSoC cypress.com/go/psoc Touch Sensing cypress.com/go/touch USB Controllers cypress.com/go/USB Wireless/RF cypress.com/go/wireless #### **PSoC Solutions** psoc.cypress.com/solutions PSoC 1 | PSoC 3 | PSoC 5 © Cypress Semiconductor Corporation, 2004-2010. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges. Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress. Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges. Use may be limited by and subject to the applicable Cypress software license agreement. Document #: 38-05353 Rev. *F Revised March 29, 2010 Page 28 of 28