

STWLC03

Dual mode Qi/PMA wireless power receiver

Datasheet - production data

Features

- 1 W to 12 W output power
- Qi 1.1 and PMA wireless standard communication protocols
- Integrated high efficiency synchronous rectifier
- 800 kHz programmable step-down converter with input current and input voltage regulation loops
- Step-down converter efficiency up to 90%
- Simplified Li-Ion/Polymer charger function
- 32-bit, 16 MHz embedded microcontroller with 16 kB ROM and 2 kB RAM memory
- 2 kB NVM for customization
- Integrated driver for external supply switch
- Precise voltage and current measurements for received power calculation
- I²C interface
- Configurable GPIO output
- Rx coil NTC protection
- Thermal protection
- Low power dissipative rectifier overvoltage clamp

Flip Chip 77 bumps (3.12x4.73 mm)

Applications

- Cellular phones
- Power banks
- Navigation systems
- Tablets
- Medical and healthcare instrumentation

Description

The STWLC03 is an integrated wireless power receiver solution suitable for portable applications. The STWLC03 is able to operate with Qi 1.1 or PMA communication protocol. Thanks to the integrated low impedance synchronous rectifier and DC-DC step-down converter, the STWLC03 achieves high efficiency, low power dissipation and output power beyond 5 W. Digital control and precise analog control loops ensure stable operation. I²C interface allows many parameters to be customized in the device and this configuration can be stored in the embedded NVM.

The STWLC03 can deliver the output power in two modes: as a power supply with configured output voltage or as a simple CC/CV battery charger with configurable charging current.

The STWLC03 can detect an external (wired) power supply connection and drive an external power switch.

Table 1: Device summary

Order code	Description	Package	Packing
STWLC03JR	12 W output	Flip Chip 77 bumps (3.12x4.73 mm)	Tape and reel

March 2017

DocID029451 Rev 2

This is information on a product in full production.

Contents

Con	tents			
1	Introduct	ion		6
2	Pin confi	guration		7
3		-	1	
4	Electrica	characteristic	s 1	2
5	Device de	escription		7
	5.1	Using the STWLC	03 as a power supply	17
	5.2	Using the STWLC	03 as a battery charger	17
	5.3	Wireless standard	auto-detection	18
	5.4	Qi operation and	flow chart	19
		5.4.1 Receive	ed power calibration (FOD feature)	21
	5.5	PMA operation		21
	5.6	External power su	ipply	22
	5.7	The device interfa	ice	<u>2</u> 4
6	I ² C regist	er description		25
	6.1	ADC measured v	alues	31
	6.2	Service registers		33
7	Non-vola	ile memory		35
	7.1	•		
8	Applicati	on information		15
	8.1	Application schen	natic and recommended external components	45
	8.2	External passive	component selection	49
		8.2.1 Input re	sonant circuit component selection (L1, C1, C2)	49
		8.2.2 Voltage	clamp resistor selection (RCL1, RCL2)	49
		8.2.3 Load m	odulation capacitors selection (CM1, CM2)	49
			ck resistor divider components selection (RFB1, RFB2)	
			circuit component selection (RNTC, R1)	
			rt capacitor selection (C10)	
	0.0		I supply transistor selection	
•	8.3		ayout	
9	•		5	
	9.1		os (3.12x4.73 mm) package information	
10	Revision	history	ξ	55

List of tables

Table 1: Device summary	1
Table 2: Pin description	
Table 3: Absolute maximum ratings	.10
Table 4: Thermal data	.11
Table 5: Electrical characteristics	
Table 6: Recommended VRECT and VRMIN values for various VOUT	.17
Table 7: EPT reasons in Qi	.20
Table 8: EOC reasons in PMA	.22
Table 9: User register map	.25
Table 10: Control register	.25
Table 11: Target rectified voltage register (register address 02h)	.26
Table 12: Input voltage threshold for output power limitation register (register address 03h)	.26
Table 13: Input current limit register (register address 05h)	
Table 14: Overload threshold register (register address 06h)	.26
Table 15: Step-down output voltage register (register address 07h)	
Table 16: Step-down converter feedback voltages	
Table 17: Buck current limit register	
Table 18: Chip overtemperature threshold register (register address 09h)	.27
Table 19: Interrupt mask L register (register address 0Ah)	
Table 20: Interrupt mask H register (register address 0Bh)	
Table 21: Interrupt status L register (register address 0Ch)	
Table 22: Interrupt status H register	
Table 23: Interrupt latch L register	
Table 24: Interrupt latch H register	
Table 25: Operation mode detection status register	
Table 26: Operation mode detection control register (register address 11h)	
Table 27: Qi charge status register (register address 12h)	
Table 28: Charger status register (register address 13h)	.31
Table 29: Charger control register	
Table 30: ADC measured value register map	
Table 31: Rectified voltage (VRECT)	
Table 32: Rectified output current (IRECT)	
Table 33: RX coil NTC voltage	
Table 34: VOUT voltage	
Table 35: VDROP voltage	
Table 36: Chip temperature	
Table 37: Ground voltage	
Table 38: RX_POWER	
Table 39: Service register map	.34
Table 40: NVM control	
Table 41: I2C registers corresponding to bytes in NVM sector	34
Table 42: Non-volatile memory sector map	
Table 43: Map of NVM sector 04	
Table 44: Byte 0	
Table 45: Byte 1	
Table 46: Byte 2	
Table 47: Byte 3	
Table 48: Byte 4	
Table 49: Map of NVM sector 05	
Table 50: Map of NVM sector 07	
Table 50. Map of NVM sector 07	
Table 52: Map of NVM sector 10	
Table 53: Map of NVM sector 13	
י מטוב טט. ויומף טו זיניווי פכונטו דט	.+1

Table 54: Byte 0 Qi_EPT_threshold [7:0] Table 55: Byte 1, Qi_EPT_Time [7:0]	41
Table 56: Byte 2, Qi charger enable	42
Table 57: Qi target voltage	
Table 58: Byte 3, Q1_Precharge_Battery_overvoltage	
Table 59: Byte 4, Q1_Precharge and Fastcharge	
Table 60: Byte 8, PMA_EOC_theshold [7:0]	
Table 61: Byte 9, PMA_EOC_Time [7:0]	
Table 62: Byte 10, PMA_Target_Voltage [2:0]	
Table 63: PMA target voltage vs charging voltage	
Table 64: Byte 11 Table 65: Byte 12	44
Table 66: STWLC03 recommended external components	
Table 67: Flip Chip 77 bumps (3.12x4.73 mm) package mechanical data	
Table 68: Document revision history	

List of figures

Figure 1: Simplified block diagram	6
Figure 2: Pin configuration Flip Chip 77 bumps (3.12x4.73 mm)	7
Figure 3: Typical step-down converter efficiency	
Figure 4: Typical charging profile	18
Figure 5: Wireless standard detection flowchart	
Figure 6: Qi simplified flow diagram	20
Figure 7: PMA simplified flow diagram	21
Figure 8: External power supply situation	23
Figure 9: External power supply situation 1	23
Figure 10: STWLC03 application schematic	
Figure 11: STWLC03 charger configuration	46
Figure 12: VIO and digital interface in standalone application schematic	48
Figure 13: VIO and digital interface in platform application schematic	48
Figure 14: Top overlay	51
Figure 15: Top layer	51
Figure 16: Mid layer 1	51
Figure 17: Mid layer 2	
Figure 18: Bottom layer	52
Figure 19: Flip Chip 77 bumps (3.12x4.73 mm) package outline	53
Figure 20: Flip Chip 77 bumps (3.12x4.73 mm) recommended footprint	54

1 Introduction

The STWLC03 is a dual mode Qi/PMA wireless power receiver. It works as a voltage source with regulated output voltage, typically 5 V. It can be reconfigured into a simple battery charger mode (CC/CV) to charge directly Li-Ion or Li-Pol batteries. The STWLC03 can operate autonomously or can be controlled through I²C by the host system.

Figure 1: Simplified block diagram

2 Pin configuration

Figure 2: Pin configuration Flip Chip 77 bumps (3.12x4.73 mm)

A1	A2	A3	A4	A5	A6	A7	A8	A9	A10	A11
VCORE	N/C	NTCRX	VA	VFB	RESL	vsups	VSUP	5V5	VEXT	LX
B1	B2	B3	B4	B5	B6	B7	B8	B9	B10	B11
GND	N/C	N/C	agnd	agnd	FBGND	vsup	VSUP	5V5	LX	LX
C1	C2	C3	C4	C5	C6	C7	C8	C9	C10	C11
GND	USBOK	INT	AGND	AGND	VSUPS	COMP	BPGND	BPGND	BPGND	BPGND
D1	D2	D3	D4	D5	D6	D7	D8	D9	D10	D11
scL	RESET	N/C	sda	vout	GPIO0	swdrv	RPND	RPGND	RPGND	RPGND
E1	E2	E3	E4	E5	E6	E7	Е8	E9	E10	E11
GPIO3	GND	N/C	GPIO2	GPIO1	GND	RMOD	воот2	AC2	AC2	AC2
F1	F2	F3	F4	F5	F6	F7	F8	F9	F10	F11
GND	VCORE	gnd	GND	N/C	_{AC1}	AC1	CLAMP	CLMP2	VRECT	MOD2
G1	G2	G3	G4	G5	G6	G7	G8	G9	G10	G11
vio	GND	N/C	GND	CLMP1	MOD1	AC1	BOOT1	воот	VRECT	RMOD1

Table 2: Pin description

Pin name	Pin position	Description			
AC1	F6, F7, G7	RX coil circuit terminal connection			
AC2	E9, E10, E11	RX coil circuit terminal connection			
MOD1	G6	Load modulation capacitor 1 connection			
MOD2	F11	Load modulation capacitor 2 connection			
CLMP1	G5	Clamping capacitor/resistor 1 connection			
CLMP2	F9	Clamping capacitor/resistor 2 connection			
RMOD	E7	Modulation current sink connection, internally connected to VRECT			
RMOD1	G11	Load modulation external resistor connection. RM resistor is not necessary for most applications			
VRECT	F10, G10	Synchronous rectifier output			
BOOT1	G8	Bootstrap capacitor connection for the rectifier			
BOOT2	E8	Bootstrap capacitor connection for the rectifier			
BOOT	G9	Bootstrap capacitor connection for the step-down converter			
CLAMP	F8	Low power clamp connection			
VSUP	A8, B8, B7	Power supply input for the step-down converter			
VSUPS	A7, C6	Sensing terminal of the external current sensing resistor			

Pin configuration

Pin name	Pin position	Description
RESL	A6	Sensing terminal of the external current sensing resistor
VOUT	D5	Step-down output voltage
VFB	A5	Step-down feedback input
FBGND	B6	Ground connection of the resistor feedback divider for step- down converter
LX	A11, B11, B10	Step-down converter coil connection
NTCRX	A3	Comparator input for RX coil temperature sensing
		NTC thermistor has to be placed close to RX coil
VA	A4	LDO1 output to filtering capacitor. ADC supply and sensitive analog circuitries are connected to this LDO; any external circuit cannot be connected to this node
VCORE	F2	LDO2 output to filtering capacitor. The microcontroller core and logic supply. VCORE voltage can be used as a reference voltage for the RX coil NTC divider
V5V	A9, B9	LDO3 output to filtering capacitor
VIO	G1	VIO power supply for the digital interface. It can be connected to VCORE or provided externally
SCL	D1	I ² C clock input
SDA	D4	I ² C data
GPI00	D6	General purpose push-pull I/O pin. This function depends on firmware configuration
GPIO1	E5	General purpose push-pull I/O pin. This function depends on firmware configuration
GPIO2	E4	General purpose push-pull I/O pin. This function depends on firmware configuration
GPIO3	E1	Open drain output pin only. This function depends on firmware configuration
RESET	D2	Chip reset input, active low
INT	C3	Open drain interrupt output to the host platform
RPGND	D8, D9, D10, D11	Rectifier power ground
BPGND	C8, C9, C10, C11	Step-down converter power ground
GND	G2, F3	Digital ground
AGND	B4, C4, B5, C5	Analog ground
VEXT	A10	Detection of the external power supply voltage – adapter/USB voltage. 30 V spike tolerant
SWDRV	D7	External P-channel switch control for connecting adapter/USB voltage to VOUT
USBOK	C2	Digital input for the USBOK signal from platforms
COMP	C7	Step-down converter soft-start capacitor connection
GND	G4, F4	Reserved. Connect to ground
VCORE	A1	Reserved. Connect to VCORE

STWLC03

Pin configuration

Pin name	Pin position	Description
N/C	G3	Reserved. Do not connect
GND	B1, E2, E6, F1	Reserved. Connect to ground
N/C	B2, B3, D3, E3	Reserved. Do not connect
GND	C1	Reserved. Connect to ground
N/C	A2, F5	Reserved. Do not connect

3 Maximum ratings

 Table 3: Absolute maximum ratings

Pin	Parameter	Value	Unit
AC1, AC2	Input AC voltage	-0.3 to 20	V
MOD1, MOD2	Modulation transistor voltage	-0.3 to 20	V
CLMP1, CLMP2	Clamp transistor voltage	-0.3 to 20	V
BOOT1, BOOT2	Voltage on bootstraps	AC1, AC2 -0.3; AC1, AC2 + 6	V
BOOT	Voltage on bootstrap	VRECT-0.3; VRECT + 6	V
VRECT	Rectified voltage	-0.3 to 20	V
VRESL, VSUPS	Current sensing resistor connection voltage	-0.3 to 20	V
VRESL-VSUPS	Voltage on the current sensing resistor	-0.3 to 2	V
VSUP	Input voltage of the buck converter	-0.3 to 20	V
LX	Buck converter switching node voltage	-0.3 to 20	V
RMOD, RMOD1	Resistive modulation current source and transistor voltage	-0.3 to 20	V
FBGND	Internal feedback transistor VDS voltage	-0.3 to 20	V
VOUT	Output voltage range	-0.3 to 20	V
VFB	Buck converter feedback voltage	-0.3 to 3	V
VEXT, SWDRW	Detection pin for the external voltage and driver output for the external transistor	-0.3 to 30	V
NTCRX	RX coil NTC voltage	-0.3 to 2.3	V
VA, VCORE	LDO1,2 voltages	-0.3 to 2.3	V
V5V	LDO 3 voltage	-0.3 to 6	V
VIO	VIO voltage	-0.3 to 6	V
SCL, SDA, USBOK, INT, RESET	Digital interface voltage	-0.3 to VIO+0.3	V
GPIO0, GPIO1, GPIO2, GPIO3	General purpose I/O voltage	-0.3 to VIO+0.3	V
T _{STG}	Storage temperature range	-40 to 150	°C
Тор	Operating ambient temperature range	-40 to +85	°C
TJ	Maximum junction temperature	+125	°C
	Machine model	±100	V
ESD	Charged device model	±500	V
	Human body model	±2000	V

Absolute maximum ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied.

Table 4: Thermal data							
Package	Symbol	Parameter	Value	Unit			
Flip Chip 77 (3.12x4.73 mm)	Rthja	Junction-to-ambient thermal resistance ⁽¹⁾	35	°C/W			

Notes:

 $^{(1)}\mbox{This}$ parameter corresponds to the PCB board, 4-layer with 1 inch^2 of cooling area.

4

Electrical characteristics

-30 °C < T_A < 85 °C; typical values are at T_A = 25 °C, unless otherwise specified.

Table 5: Electrical characteristics

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
General section			I		I	
V _{IN}	AC input voltage	Peak-to-peak voltage between AC1- AC2 over the period			32	v
Vuvlo	Undervoltage	V _{SUP} rising		3.6	3.8	- V
VUVLO	lockout threshold	V _{SUP} falling	3.3	3.5		V
TIMEOUTRESET	Reset time-out for shutdown mode			1		ms
IQ	Current consumption in	RESET=0 (active low) duration>1 ms, measured at VEXT		10		μA
	the shutdown mode	RESET=0 (active low) duration>1 ms, measured at VRECT		2	4	mA
Ireset	Current consumption in the RESET condition	RESET=0 (active low), duration<1 ms, GPIO 0 floating		5		mA
lcc	Current consumption of the device	RESET=1 (inactive), GPIO 0 floating		7		mA
LDO 1				·		
VA	LDO 1 output voltage	I _A = 5 mA		1.8		V
IILIM	Load current limit			50		mA
LDO 2						
Vcore	LDO 2 output voltage	V _{SUP} = 3.6 V to 11 V, I _{CORE} = 5 mA		1.8		v
Iddlim	Load current limit			40		mA
LDO 3						
V _{5V}	LDO 3 output voltage	I _{V5V} = 20 mA, V _R = 5.5 V		5		V
I _{ILIM}	Load current limit			30		mA
Synchronous rect	ifier					

Electrical characteristics

SymbolParameterTest conditionsMin.Typ.Max.Unit $Ros(w)$ Drain-source NMOS on-resistance low-side $l_{HECT} = 1.4 A$, $V_{RECT} = 8 V$ 90 l_{HEC} 90 l_{HEC} Drain-source nish-source NMOS on-resistance low- resistance low- side $l_{HECT} = 0.8 A,$ $V_{RECT} = 7 V,$ fineating = 430 kHz 70 91 90 90 EfficiencyRectifier efficiency resistance low- voltage QR $l_{HECT} = 0.8 A,$ $V_{RECT} = 10 V,$ fineating edge 8.75 91 90 IRACTIVEActive mode rectifier threshold voltage QR $V_{RECT} = 10 V,$ failing edge 3.25 500 $KH2$ factmereRectifier frequency range $V_{RECT} = 10 V,$ failing edge 3.25 500 $KH2$ VcLAMPRectifier frequency range $V_{RECT} = 10 V,$ failing edge 3.25 500 $KH2$ VcLAMPRectifier frequency range $V_{RECT} = 10 V,$ failing edge 3.25 500 $KH2$ VcLAMPRectifier frequency range $V_{RECT} = 10 V,$ failing edge 15.4 15.9 16.4 90 VcLAMPRectifier frequency range $V_{SUP} = 5 V$ 15.4 15.9 16.4 90 VoreVascor voltage active clamp hysteresis $V_{SUP} = 5 V$ 15.4 15.4 10.6 10.6 NoveVascor voltage clamp hysteresis $V_{SUP} = 5 V$ 15.6 41.0 90 NoveVascor voltage clamp $V_{SUP} = 5 V,$ 						I charact	ensucs
ROS(on)INMOS on- resistance low- sideIRECT = 1.4 Å, VRECT = 8 V90Image Point-source Total-source NOS on- resistance high- sideIRECT = 0.4 Å, VRECT = 7 V, freadmer = 130 kHz90Image Point-Source Total-Source Total-Source Point-Source Total-Source Point-So	Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
LateDrain-source NMOS on- resistance high- sideImage: Figure	Percent	NMOS on- resistance low- side			90		m0
$\begin{array}{c c c c c c c } \mbox{Final efficiency} & Vescr = 7 V, \\ freedier = 130 kHz & 91 & 91 & 91 & 91 \\ \begin{tabular}{ c c c c c c c } \mbox{Final efficiency} & Vescr = 10 V, \\ fising edge & 130 kHz & 8.75 & 1 & \\ \hline Peccr = 10 V, \\ failing edge & 3.25 & 1 & \\ \hline Vescr = 10 V, \\ failing edge & 50 & 1 & 500 & kHz \\ \hline Vescr = 10 V, \\ failing edge & 50 & 1 & 500 & kHz \\ \hline Vescr = 10 V, \\ failing edge & 50 & 1 & 500 & kHz \\ \hline Vescr = 10 V, \\ failing edge & 50 & 1 & 0 & \\ \hline Vescr = 10 V, \\ failing edge & 50 & 1 & 0 & \\ \hline Vescr = 10 V, \\ failing edge & 50 & 1 & 1 & V \\ \hline Vescr = 10 V, \\ failing edge & 50 & 1 & 1 & V \\ \hline Vescr = 10 V, \\ failing edge & 50 & 1 & 1 & V \\ \hline Vescr = 10 V, \\ failing edge & 50 & 1 & 1 & 0 & \\ \hline Vescr = 10 V, \\ failing edge & 10 & 17.4 & V \\ \hline Vescr = 10 V, \\ failing edge & 10 & 11 & 0 & \\ \hline Vescr = 10 V, \\ failing edge & 1 & 1 & 0 & \\ \hline Vescr = 10 V, \\ failing edge & 1 & 1 & 0 & \\ \hline Vescr = 10 V, \\ failing edge & 1 & 1 & 0 & \\ \hline Vescr = 10 V, \\ \hline Vescr = 10 V, \\ failing edge & 1 & 1 & 0 & \\ \hline Vescr = 10 V, \\ \hline Vescr = 10 V$	TUS(on)	NMOS on- resistance high-			70		11122
IRACTIVEActive mode redifier threshold, voltage @Rsrising edge8.75Image redifier reside dege8.75Image reside degefrectifier frequency rangeRectifier frequency range5003.25MVVcLAMPClamp of the rectified voltageIcLAMP = 1 mA17.4VVActive clamp diverIcLAMP = 1 mA17.4VVActive clamp diverIcLAMP = 1 mA17.4VVActive clamp diverVsuP = 5 V100VovPVrect voltage clamp15.415.916.4VVovP hystVrect voltage 	Efficiency	Rectifier efficiency	V _{RECT} = 7 V,		91		%
voltage @ RsVRECT = 10 V, falling edge3.25frecurrerRectifier frequency range50500kHzVCLAMPClamp of the rectified voltagelcLAMP = 1 mA17.4VVActive clamp driversIcLAMP = 1 mA17.4VVRDS(on)CLMP1.2Active clamp MOS RDS(on)VSUP = 5 V11 Ω VovPVRECT voltage active clamp15.415.916.4VVVovPVRECT voltage active clamp600mVVovP hystVECT voltage active clamp1 Ω Noster sistVSUP = 5 V15.415.916.4VVovP hystVECT voltage active clamp600mVNoster sistVSUP = 5 V151 Ω IMODMOS RDS(on)VSUP = 5 V15410mAIMODMOUlation current toleranceVSUP = 5 V, RM = 2 Ω10 M IMAXMOD1Image: Sign = 5 to 12 V, RM = 2 Ω10 M IMAXMOD1Image: Sign = 5 to 12 V, RM = 2 Ω10 M Image: Sign = 5 to 12 V, RM = 2 Ω10 M Image: Sign = 5 to 12 V, RM = 2 Ω10 M Image: Sign = 5 to 12 V, RM = 2 Ω10 M Image: Sign = 5 to 12 V, R					8.75		- m\/
TRECTIFIERfrequency range50500KHzVCLAMPClamp of the rectified voltage $l_{CLAMP} = 1 \text{ mA}$ 17.4VVActive clamp drive- RDS(on)CLMP1.2Active clamp MOS ROS(on)VSUP = 5 V11 Ω VovPVRECT voltage treshold of active clamp hysteresisVSUP = 5 V115.916.4VVovP hystVRECT voltage active clamp hysteresisIS.415.916.4VRDS(on)MOD1.2VRECT voltage active clamp hysteresisVSUP = 5 V1MOMVLoad modulation MOS RDS(on)VSUP = 5 V15110 Ω MoD IMODMOS RDS(on)VSUP = 5 V15410mAIMODModulation current rangeVSUP = 5 V1510%IMAXMOD1Image VSUP = 5 V, RM = 2 Ω 10%%VLDMAXOvercurrent protection g@ RsVLDMAX = 0Fh1.71.7ATOL_VLDMAXTolerance of the VLDMAX = 0Fh-5.450%					3.25		IIIV
VCLAMPrectified voltageICLAMP = ITINAIT.4VActive clamp driversActive clamp MOS RDS(on)VSUP = 5 V1 Ω RDS(on)CLMP1.2Active clamp MOS RDS(on)VSUP = 5 V11 Ω VovPVRECT voltage threshold of active clamp hysteresisVSUP = 5 V11 Ω VovP hystVRECT voltage active clamp hysteresisVSUP = 5 V15.415.916.4VLoad modulation MOS RDS(on)VSUP = 5 V11 Ω Ω IMODLoad modulation MOS RDS(on)VSUP = 5 V15410mAIMODRMOD pin sink current rangeVSUP = 5 V15410mAIMODQuerter toleranceVSUP = 5 V, RM = 2 Ω 10 $\%$ $\%$ IMAXMOD1Overcurrent protection threshold, voltage @ RsVLDMAX = 0Fh1.7 1.7 \checkmark \checkmark VLDMAXOvercurrent trole, VLDMAX = 0Fh -5 -5 $+5$ $\%$	frectifier			50		500	kHz
$\begin{array}{ c c c c } \hline RDS(on)CLIMP1.2 & Active clamp MOS \\ RDS(on) & VSUP = 5 V & 1 & 1 & \Omega \\ \hline VOVP & VOVP & VRECT VOltage \\ threshold of active clamp \\ vove clamp & vRect voltage active clamp \\ hysteresis & 0 & 0 & 0 & 0 & 0 \\ \hline VOVP hyst & VRECT VOltage \\ active clamp & VRECT VOltage \\ active clamp & VRECT VOLTAGE \\ rect voltage active clamp & VSUP = 5 V & 0 & 0 & 0 & 0 \\ \hline Load modulation & VSUP = 5 V & 1 & 0 & \Omega \\ \hline RDS(on)MOD1.2 & Load modulation & VSUP = 5 V & 15 & 410 & mA \\ \hline MOS RDS(on) & VSUP = 5 V & 15 & 410 & mA \\ \hline MOD & WSUP = 5 V & 15 & 10 & 0 & 0 \\ \hline Modulation & VSUP = 5 V & 15 & 10 & 0 & 0 \\ \hline Modulation & VSUP = 5 V & 15 & 0 & 0 & 0 \\ \hline MAXMOD1 & VSUP = 5 V & 15 & 10 & 0 & 0 & 0 \\ \hline MAXMOD1 & VSUP = 5 V & 15 & 10 & 0 & 0 & 0 \\ \hline MAXMOD1 & VSUP = 5 V & 15 & 10 & 0 & 0 & 0 \\ \hline VLDMAX. & OVECUTTENT & VSUP = 5 V & 15 & 10 & 0 & 0 & 0 \\ \hline VLDMAX. & VLDMAX = 0 & 0 & 0 & 0 & 0 & 0 \\ \hline TOL_VLDMAX & VLDMAX = 0 & VLDMAX = 0 & 0 & 0 & 0 & 0 \\ \hline TOL_VLDMAX & VLDMAX & VLDMAX = 0 & 0 & -5 & 0 & +5 & 0 \\ \hline \end{array}$	VCLAMP		I _{CLAMP} = 1 mA		17.4		V
$\begin{array}{ c c c c } \hline RDS(on) & VSUP = 3 \ V & I & $	Active clamp drive	ers					
Vovpthreshold of active clamp15.415.916.4VVovp hystVRECT voltage active clamp hysteresisImageImageImageImageImageLoad modulation MOS RDS(on)VSUP = 5 VImageImageImageImageImageRbs(on)MOD1.2Load modulation MOS RDS(on)VSUP = 5 VImageImageImageImageImageRmodulation MOS RDS(on)VSUP = 5 VImageImageImageImageImageRmodulation current rangeVSUP = 5 to 12 V, Image = 80 mAImageImageImageImageImaxmod1ImageVSUP = 5 V, RM = 2 QImageImageImageImageImageVLDMAX.Overcurrent protection threshold, voltage @ RsVLDMAX = 0FhImageImageImageImageVLDMAX.Tolerance of the VLDMAXVLDMAX = 0FhImageImageImageImageTOL_VLDMAXTolerance of the VLDMAXVLDMAX = 0FhImageImageImageImageTOL_VLDMAXImageImageImageImageImageImageImageImageTol_VLDMAXImageImageImageImageImageImageImageImageTol_VLDMAXImageIm	RDS(on)CLMP1,2		V _{SUP} = 5 V		1		Ω
VovP hystactive clamp hysteresismVLoad modulationmVRDS(on)MOD1,2Load modulation MOS RDS(on)Vsup = 5 V1 Ω Modulation Load modulation MOS RDS(on)Vsup = 5 V15410mAModulation current rangeVsup = 5 to 12 V, IMOD = 80 mA10%%ImaxMOD1ImaxVsup = 5 V, RM = 2 Ω 2AProtectionsVsup = 5 V, RM = 2 Ω 2AVLDMAX.Overcurrent protection threshold, voltage @ RsVLDMAX = 0Fh1.71.7VLDMAX.Tolerance of the VLDMAXVLDMAX = 0Fh-5.45%	Vovp	threshold of active		15.4	15.9	16.4	v
$ \begin{array}{c c c c c c } R_{DS(on)MOD1,2} & Load modulation \\ MOS R_{DS(on)} & V_{SUP} = 5 \ V & 1 & 1 & \Omega \\ \hline \\ Modulation \\ current range & V_{SUP} = 5 \ V & 15 & 410 & mA \\ \hline \\ Modulation \\ current tolerance & V_{SUP} = 5 \ V & 15 & 10 & 10 & \% \\ \hline \\ Modulation \\ current tolerance & V_{SUP} = 5 \ V & 15 & 10 & 10 & \% \\ \hline \\ Modulation \\ current tolerance & V_{SUP} = 5 \ V & 15 & 2 & 0 & \% \\ \hline \\ MaxMOD1 & V_{SUP} = 5 \ V & R_{M} = 2 \ \Omega & 2 & A & A & A & A & A & A & A & A & A$	VovP hyst	active clamp			600		mV
$\frac{\text{RDS}(\text{on})\text{MOD1},2}{\text{IMOD}} \qquad \frac{\text{MOS RDS}(\text{on})}{\text{MOS RDS}(\text{on})} \qquad \frac{\text{V}_{\text{SUP}} = 5 \text{ V}}{\text{V}_{\text{SUP}} = 5 \text{ V}} \qquad 11 \qquad 1 \qquad \Omega$ $\frac{\text{R}_{\text{MOD}} \text{ pin sink}}{\text{current range}} \qquad \frac{\text{V}_{\text{SUP}} = 5 \text{ V}}{\text{NoD} = 80 \text{ mA}} \qquad 15 \qquad 410 \qquad \text{mA}$ $\frac{\text{Modulation}}{\text{current tolerance}} \qquad \frac{\text{V}_{\text{SUP}} = 5 \text{ to } 12 \text{ V},}{\text{ImoD} = 80 \text{ mA}} \qquad 10 \qquad 9\%$ $\frac{\text{ImaxmoD1}}{\text{Imax}} \qquad \frac{\text{V}_{\text{SUP}} = 5 \text{ V},}{\text{R}_{\text{M}} = 2 \Omega} \qquad 2 \qquad A$ $\frac{\text{Protections}}{\text{V}_{\text{SUP}} = 5 \text{ V},}$ $\frac{\text{V}_{\text{RM}} = 2 \Omega}{\text{V}_{\text{RM}} = 2 \Omega} \qquad 11 \qquad 10 \qquad 9\%$ $\frac{\text{V}_{\text{CURENT}}}{\text{V}_{\text{CURENT}}} \qquad \frac{\text{V}_{\text{CURENT}}}{\text{V}_{\text{RM}} = 2 \Omega} \qquad 10 \qquad 2 \qquad A$ $\frac{\text{V}_{\text{CURENT}}}{\text{V}_{\text{CURENT}}} \qquad \frac{\text{V}_{\text{CURENT}}}{\text{V}_{\text{CURENT}} = 0 \text{ Fh}} \qquad 1.7 \qquad 0.875 \qquad 9\%$	Load modulation	•			•		
IMODcurrent range $VSUP = 5V$ 15410MAModulation current tolerance $VSUP = 5$ to 12 V, IMOD = 80 mA1010%IMAXMOD1VSUP = 5 V, RM = 2 Q2AProtectionsVSUP = 5 V, RM = 2 Q117AVLDMAX.Overcurrent protection threshold, voltage @ RsVLDMAX = 0Fh1.7VVLDMAX.Tolerance of the VLDMAXVLDMAX = 0Fh0.875 $+5$ $\%$	RDS(on)MOD1,2		V _{SUP} = 5 V		1		Ω
Modulation current tolerance $V_{SUP} = 5 \text{ to } 12 \text{ V},$ $I_{MOD} = 80 \text{ mA}$ 10%Imaxmod1 $V_{SUP} = 5 \text{ V},$ $R_M = 2 \Omega$ 2AProtectionsVLDMAX. O vercurrent protection threshold, voltage $@ R_S$ $VLD_{MAX} = 0Fh$ 1.7 V_{V} $VLD_{MAX} = 04h$ 0.875 0.875 $VLD_{MAX} = 0Fh$ 0.875 -5 $+5$ $\%$			V _{SUP} = 5 V	15		410	mA
$\begin{array}{ c c c c c }\hline \mbox{MaxMOD1} & & & & & & & & & & & & & & & & & & &$	IMOD				10		%
VLDMAX.Overcurrent protection threshold, voltage $@$ RsVLDMAX = 0Fh1.7VVLDMAX = 04h0.875TOL_VLDMAXTolerance of the VLDMAXVLDMAX = 0Fh-5+5%	IMAXMOD1				2		А
VLDMAX.protection threshold, voltage $@ Rs$ VLDMAX = 0Fh1.7VVLDMAX = 04h0.875VLDMAX = 0Fh0.875TOL_VLDMAXTolerance of the VLDMAXVLDMAX = 0Fh-5+5%	Protections	l	I	1	1		
TOL_VLDMAX Tolerance of the VLDMAX = 0Fh -5 +5	VLDMAX.	protection threshold, voltage	VLD _{MAX} = 0Fh		1.7		V
TOL_VLD _{MAX} VLD _{MAX} = 0Fh -5 +5 %		VLD _{MAX} = 04h			0.875		
	TOL_VLD _{MAX}		VLD _{MAX} = 0Fh	-5		+5	%
	_	VLD _{MAX} = 04h		-10		+10	

STWLC03

characteristics STWLCO.						VLC03
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
VNTCTRIG	NTC trigger voltage for RX			0.6		V
TOL_VNTCTRIG	NTC trigger voltage tolerance			3		%
Hyst_Vntctrig	NTC trigger voltage hysteresis			100		mV
t _{SHDN}	Thermal shutdown			150		°C
t _{shdnhyst}	Thermal shutdown hysteresis			20		°C
Current-to-voltage	e converter					
EOC_CURRENT	End-of-charge current threshold	R_{S} = 0.05 Ω 1%, V _{SUP} = 5 to 15 V	0		400	mA
	Tolerance of the	$\begin{array}{l} R_{\rm S} = 0.05 \ \Omega \ 1\%, \\ V_{\rm SUP} = 5 \ to \ 15 \ V, \\ EOC_CURRENT \\ = 50 \ mA \end{array}$		20		%
TOL _{EOC_CURRENT}	EOC threshold			10		%
Step-down conve	rter					
Vvout	Output voltage range		3		7	V
Tolvout	VOUT tolerance	VOUTreg = 011, VOUT = 4.2 V		0.5		%
OVP _{VOUT}	Overvoltage protection threshold			8.5		V
Ivout + Ifb	Output leakage current	Step-down is off, VOUT = 5 V,			1	μA
IFB	Feedback pin bias current				500	nA
	Coil current limit		250		4000	mA
ILIM	Coil current limit accuracy	CURRLIM reg = 1111		10		%
Iovercurr	Overcurrent/short- circuit protection	V _{SUP} = 5 to 12 V		4500		mA
DIVvout	Output voltage internal divider ratio			6		nA
fsw	Switching frequency			0.8		MHz
VSUP	Input voltage range	I _{OUT} = 2 A	5.5		12	V

STWLC03

Electrical characteristics

Symbol	Parameter	Test conditions	Min	Min. Typ. Max.			
Symbol	i arameter			iyp.	ινίαλ.	Unit	
$N-R_{DS(on)SW}$	NMOS R _{DS(on)} high-side	Back-to-back connected transistors		130		mΩ	
$N-R_{DS(on)SW}$	$\begin{array}{l} NMOS \; R_{DS(on)} \; \text{low-} \\ side \end{array}$			60		mΩ	
[ficiana)	Step-down	POUT = 5 W		89		0/	
Efficiency	efficiency	POUT = 12 W		80		- %	
R _{FBGND}	VOUT feedback divider grounding switch resistance	I _{FBGND} = 500 μA			40	Ω	
	Buck convertor	C ₁₀ = 1 μF,					
tstart	Buck converter soft-start time	P _{LOAD} = 0		1		s	
		to 12 W					
Input voltage loo	p for output power lir	niting					
	Minimum rectified	VRMIN = 00h		5			
VRMIN	voltage threshold for output power limitation	VRMIN = 0Ah		7		V	
TOLVRMIN	VRMIN threshold tolerance			5		%	
Input current lim	itation loop						
	Input current	IRREG = F6h		82.5			
IRREG	limitation threshold, voltage @ R _s	IRREG = 32h		17.55		mV	
	IRREG threshold	IRREG = F6h		5			
TOLIRREG	tolerance	IRREG = 32h		10		%	
External voltage	switch driver	11					
V _{EXTUVLO}	External supply undervoltage threshold		4.2	4.4	4.6	v	
VEXTOVP	External supply overvoltage threshold		5.25	5.55	5.9	V	
lextcons	Input consumption current	VEXT = 5 V, VRECT = 0 V, RESET = 1 (active low)		8		mA	
Vswdrv	Switch driver voltage drop	VEXT = 5 V, SWDRV low		200		mV	
GPIO pins							
IOUT _{GPIO0/1/2}	GPIO pin current capability	GPIO0/1/2 high, V _{IO} = 1.8 V, V _{GPIO0/1/2} = 1.4 V	3			mA	

Electrical characteristics

STWLC03

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vgp100/1/2/3	GPIO pin drop	GPIO0/1/2/3 low, V _{IO} = 1.8 V, I _{GPIO0/1/2} = 3 mA		360		mV
VIL	Low level input voltage				0.3*VIO	V
VIH	High level input voltage		0.7*VIO			V
Microcontroller						
Architecture				32		bit
NVM	Memory size for customization			2		kbit
Clock generator						
fosc	Clock generator frequency	V _{SUP} = 4.5 to 15 V		16		MHz
TOLFOSC	Tolerance of the clock generator frequency	T _{AMB} = 0 °C to 85 °C	-4		+4	%

5 Device description

5.1 Using the STWLC03 as a power supply

The STWLC03 is configured as a power supply with 5 V output voltage by default. Output voltage can be adjusted in 8 steps in runtime through I²C or as a new default start-up configuration in NVM. Output voltage can be also slightly fixed in the range among the software steps, by tuning the resistor feedback divider.

When the output voltage changes, the related parameters have to be taken into account: rectified voltage V_{RECT} and input voltage threshold for output limitation V_{RMIN} . The table below shows the recommended values.

Parameter	Min.	Тур.	Max.
VOUT	5 V	6 V	7 V
VRECT	7 V	8 V	9 V
VRMIN	5.6 V	5.6 V	5.6 V

Table 6: Recommended VREC	T and VRMIN values for various VOUT

Input current limit and overload threshold should be fixed according to maximum expected peak load in the application.

The STWLC03 monitors continuously the rectifier current. If the current drops below the defined threshold for the defined time, the power transfer is over. This configuration is stored in NVM, values Qi_EPT_Threshold, Qi_EPT_Time, PMA_EOC_Threshold, PMA_EOC_Time. This configuration is common for power supply mode and battery charger mode. To avoid power transfer termination, zero-current and maximum time have to be fixed.

5.2 Using the STWLC03 as a battery charger

The STWLC03 is equipped with a software feature allowing the input current limitation loop to control the charging current. In this manner the STWLC03 can operate as a CC/CV

charger without HW output current control loop. VOUT pin leakage is minimized to save battery operation time.

The STWLC03 can be switched to battery charger mode instantly by I²C register (evaluation only, not recommended for production) or as a new default start-up configuration in NVM (safe recommended solution).

Figure 4: Typical charging profile

Thanks to very low leakage from VOUT pin, the STWLC03 can remain connected to the battery and does not cause any discharge.

5.3 Wireless standard auto-detection

The STWLC03 automatically detects the operating standard when it is placed on a wireless transmitter. Detection is based on combination of operating frequency and receiving FSK signaling from the transmitter.

The STWLC03 can be also configured to skip the auto-detection and use directly the preconfigured wireless standard.

5.4 Qi operation and flow chart

The STWLC03 follows Qi 1.1.2 version.

When Qi state machine starts, it proceeds through ping and identification and configuration phases to power transfer phase according to Qi wireless power transfer, volume I: low power 1.1.2 specification.

End-power-transfer can be requested because of the following reasons:

Table 7: EPT reasons in Qi

Reason	EPT code		
I ² C "Force EPT" bit set			
VEXT above UVLO	Unknown (00h)		
USBOK digital input			
Termination current reached	Charge complete (01h)		
Charger in unexpected state			
Step-down overload	Internal fault (02h)		
Step-down output overvoltage			
Rx coil NTC above threshold	Overtemperature (02b)		
Chip temperature above threshold	Overtemperature (03h)		
Rectifier output overvoltage	Overvoltage (04h)		
Rectifier output overcurrent	Overcurrent (05h)		
Charger output voltage above threshold	Battery failure (06h)		
I ² C "Reconfigure" bit set	Reconfigure (07h)		

5.4.1 Received power calibration (FOD feature)

Although the STWLC03 is well-trimmed, inaccuracy in the received power estimation can be caused in the target application due to manufacturing different environment conditions. Different serial resistances of used receiver coil or different shieldings of the receiver coil (e.g. battery or ground plane in a near proximity of the coil) are the main issues. The STWLC03 features dedicated adjustment options placed in NVM.

5.5 **PMA** operation

The STWLC03 follows PMA1 SR1 specification. When PMA state machine starts, it proceeds through ping and identification phase to power transfer phase according to PMA inductive wireless power and charging receiver specifications, system release 1.

Figure 7: PMA simplified flow diagram

End-of-charge can be requested due to the following reasons:

Table 8: EOC reasons in PMA					
Reasons					
I ² C "Force EOC" bit set					
VEXT above UVLO					
USBOK digital input					
Termination current reached					
Charger in unexpected state					
Step-down overload					
Step-down output overvoltage					
Rx coil NTC above threshold					
Chip temperature above threshold					
Rectifier output overvoltage					
Rectifier output overcurrent					
Charger output voltage above threshold					

5.6 External power supply

Figure 8: "External power supply situation" illustrates the situation where the STWLC03 detects the external voltage presence and drives SWDRV (external voltage) to the output. The STWLC03 also terminates the wireless power transfer.

Figure 9: "External power supply situation 1" illustrates the situation where the STWLC03 is assembled in a system with another PMIC that serves multiple power supply inputs. PMIC uses digital line to let the STWLC03 know that there is a higher priority power supply available and the wireless power transfer should be terminated.

For proper operation, RESETn pin must be high. Connecting VEXT power supply, consumption from VIO increases if VIO supply is provided externally. (It has not effect if VIO is connected to VCORE).

57

57

Device description

Figure 9: External power supply situation 1

5.7 The device interface

The STWLC03 is equipped with I²C interface with an open-drain interrupt line to connect with the host system. If I²C connection is not used by the host platform, SDA and SCL lines should be pulled-up to VIO voltage. The STWLC03 contains RESETn input. The device under reset conditions has very low power consumption. If reset is not controlled by the host platform it should be pulled-up to VIO voltage. USBOK is a digital input, which terminates power transfer if another preferred power supply is available. The STWLC03 features GPIO pins. By default GPIO 0 only is active and detects power transfer state on wireless interface.

6 I²C register description

The device I²C address is 14h (0010100b).

Table 9:	User	register	map
----------	------	----------	-----

Address	Register
00h	Control
01h	Reserved
02h	Target rectified voltage
03h	Input voltage threshold for output limitation
04h	Reserved
05h	Input current limit
06h	Overload threshold
07h	Buck output voltage
08h	Buck current limit
09h	Chip overtemperature
0Ah	Interrupt mask L
0Bh	Interrupt mask H
0Ch	Interrupt status L
0Dh	Interrupt status H
0Eh	Interrupt latch L
0Fh	Interrupt latch H
10h	Operation mode detection status
11h	Operation mode detection control
12h	Qi charge status packet content
13h	Charger status
14h	Charger control

Table 10: Control register

b7	b6	b5	b4	b3	b2	b1	b0	
Force/EPT	Disable/EPT on error	Qi reconfigure	-	-	-	-	USBcon_cnf	R/W
Loaded from NVM at startup								Default

USBcon_cnf:

0: auto connect switch + disable buck + send EPT@VEXT/disable buck + send EPT@USBOK

1: ignore VEXT/USBOK completely

Qi reconfigure:

0: no action

1: send reconfigure packet (auto-clear)

Disable EPT on error:

0: automatically send EPT to OVP, overload, overtemperature or buck fault

1: do not send EPT automatically, wait for master

Force EPT:

0: no action

1: send EPT (auto-clear)

Table 11: Target rectified voltage register (register address 02h)

b7	b6	b5	b4	b3	b2	b1	b0	
TARGET_VRECT[7:0]							R/W	
	Loaded from NVM at startup							Default

The target rectifier output voltage.

Rectified voltage = 0.25 V * TARGET_VRECT

Valid range 14h - 30h (5 V - 12 V).

Table 12: Input voltage threshold for output power limitation register (register address 03h)

b7	b6	b5	b4	b3	b2	b1	b0	
-	-			R/W				
	Loaded from NVM at startup							

VRMIN represents a VRECT voltage threshold where step-down converter applies output power limitation to prevent VRECT from dropping too low.

Threshold = 5.0 V + VRMIN * 0.2 V

Valid range from 00h to 0Ah (5.0 V - 7 V). Recommended value is 01h (5.2 V).

Table 13: Input current limit register (register address 05h)

b7	b6	b5	b4	b3	b2	b1	b0			
	INPUT_CURR_LIMIT[7:0]									
		Loa	ded from N	VM at sta	rtup			Default		

Output power does not exceed this input current limit. The current is sensed on the sensing resistor (Rs).

Input current limit = (1.625 mV + INPUT_CURR_LIMIT * 0.325 mV) / Rs.

Valid range from 00h to F6h (0.001625 V - 0.0816 V \sim 16.25 mA - 816 mA @ 100 m Ω Rs).

Table 14: Overload threshold register (register address 06h)

b7	b6	b5	b4	b3	b2	b1	b0	
-	-	-	-		R/W			
	Loaded from NVM at startup							Default

This register configures overcurrent protection threshold, sensed on the sensing resistor (R_s). Voltage represents the voltage drop caused by current flowing through the sensing

D	ocID029451	Rev	2

resistor. Overcurrent protection threshold = (6.25 mV + OVERLOAD_THRD * 6.25 mV) / R_s .

Valid range 00h – 0Fh (6.25 mV – 100 mV ~ 0.0625 A – 1 A @ 100 m Ω Rs.

Table 15: Step-down output voltage register (register address 07h)

b7	b6	b5	b4	b3	b2	b2 b1 b0					
-	-	-	-	-	STEP_D	STEP_DOWN_OUTPUT_VOLT[2:0]					
	Loaded from NVM at startup										

This register sets step-down converter feedback reference voltage. Output voltage is derived from the feedback voltage through the feedback resistor divider.

Table below shows values of the reference voltage of the step-down converter for each setting and the VOUT voltage assuming the typical recommended feedback resistor divider.

BUCK_OUTPUT_VOLT	STEP_DOWN FB REF [V]	VOUT [V]								
000	0.57	3.30								
001	0.62	3.60								
010	0.70	4.10								
011	0.72	4.20								
100	0.86	5.00								

Table 16: Step-down converter feedback voltages

Table 17: Buck current limit register

b7	b6	b5	b4	b3	b2	b1	b0	
-	-	-	-		R/W			
	Loaded from NVM at startup							

This register sets the peak coil current limit value of the buck converter.

Peak current = 250 mA + BUCK_ILIM * 250 mA.

Valid range from 00h to 04h (250 mA - 1250 mA).

Table 18: Chip overtemperature threshold register (register address 09h)

b7	b6	b5	b4	b3	b2	b1	b0	
	CHIP_OVERTEMP_THRESHOLD[7:0]							
	Loaded from NVM at startup							

This threshold is compared to the value read by the AD converter from the chip temperature channel divided by 4.

Table 19: Interrupt mask L register (register address 0Ah)

b7	b6	b5	b4	b3	b2	b1	b0		
	INT_MASK_L								
	Loaded from NVM at startup								

Interrupt mask register (INT output only is masked, no effect on EPT):

b0: buck fault

b1: overload

b2: chip overtemperature

b3: coil overtemperature

b4: VRECT overvoltage

b5: VEXT (external voltage connection)

b6: USB OK (USB connection)

b7: standard detection finished

- 0 = interrupt not masked
- 1 = interrupt masked

Table 20: Interrupt mask H register (register address 0Bh)

b7	b7 b6 b5 b4 b3 b2 b1 b0								
	INT_MASK_H								
		Load	ded from N	VM at starti	up			Default	

Interrupt mask register (INT output only is masked, no effect on EPT):

- b0: charging finished
- b1: charger internal fault
- b2: charger battery fail
- b3: not used
- b4: not used
- b5: not used
- b6: not used
- b7: not used
- 0 = interrupt not masked
- 1 = interrupt masked

Table 21: Interrupt status L register (register address 0Ch)

b7	b6	b5	b4	b3	b2	b1	b0	
		Read only						
0	0	0	0	0	0	0	0	Default

b0: N/A

b1: N/A

b2: chip overtemperature

b3: coil overtemperature

b4: N/A

b5: VEXT (external voltage connection)

b6: USB OK (USB connection)

b7: standard detection finished

Bit value 1 means valid, 0 means not valid.

Table 22: Interrupt status H register

b7	b6	b5	b4	b3	b2	b1	b0	
		Read only						
1	0	0	0	0	0	0	0	Default

b0: charging finished

b1: charger internal fault

b2: charger battery fail

b3: N/A

b4: N/A

b5: N/A

b6: N/A

b7: N/A

Bit value 1 means valid, 0 means not valid.

Table 23: Interrupt latch L register

b7	b6	b5	b4	b3	b2	b1	b0	
		Read/clear						
0	0	0	0	0	0	0	0	Default

b0: buck fault

b1: overload

b2: chip overtemperature

b3: coil overtemperature

b4: VRECT overvoltage

b5: VEXT (external voltage connection)

b6: USB OK (USB connection)

b7: standard detection finished

Bit value 1 means valid, 0 means not valid.

Table 24: Interrupt latch H register

b7	b6	b5	b4	b3	b2	b1	b0	
		Read/clear						
0	0	0	0	0	0	0	0	Default

b0: charging finished

b1: charger internal fault

b2: charger battery fail

DocID029451 Rev 2

29/56

b3: N/A b4: N/A

b5: N/A

b6: N/A

b7: power ON in I2C driven standard detection mode

Bit value 1 means valid, 0 means not valid.

Table 25: Operation mode detection status register

b7	b6	b5	b4	b3	b2	b1	b0	
Wireless powered			Forced	C	DP_STA	NDAR	C	Read only
0	0	0	0	0	0	0	0	Default

Wireless powered:

0: no wireless supply (i.e. USB supply)

1: the device is engaged with a wireless pad

FORCED:

0: standard is based on auto-detection

1: standard is forced by NVM configuration

OP_STANDARD:

0: unknown

- 1: PMA1
- 2: PMA4 (low frequency + advertising)
- 3: Qi 1.0 / Qi 1.1
- 4: reserved

FORCED flag set + unknown standard means that standard has been detected but it is forbidden by detection configuration

Table 26: Operation mode detection control regis	ister (register address 11h)
--	------------------------------

b7	b6	b5	b4	b3	b2	b1	b0	
-	-	-	-		OP_STA	NDARD		R/W
0	0	0	0	0	0	0	0	Default

OP_STANDARD:

1: PMA1

- 2: PMA4 (low frequency + advertising)
- 3: Qi 1.0 / Qi 1.1
- 4: reserved

This register is functional only in combination with "I²C master driven" detection configuration

b7	b6	b5	b4	b3	b2	b1	b0			
	Qi_CHARGE_PACKET									
1	1 1 1 1 1 1 1 1									

Available in Qi mode only. It contains a value that is sent to the Qi charge status packet. Values in the range from 0 to 100 provide percentage of the battery capacity. If there is no need to use the charge status packets, this register should be set to FFh.

Table 28: Charger status register (register address 13h)

b7	b6	b5	b4	b3	b2	b1	b0	
	R/W							
х	Default							

CHARGER_STATUS:

0: off

1: pre-charge

2: fast charge

3: termination counter running

4: battery OVP

Table 29: Charger control register

b7	b6	b5	b4	b3	b2	b1	b0	
	R/W							
	Default							

CHARGER_CONTROL:

0: disabled

1: enabled

6.1 ADC measured values

Table 30: ADC measured value register map

Address	Register
20-21h	Rectified voltage
22-23h	Rectifier output current
24-25h	Rx coil NTC voltage
26-27h	Output voltage
28-29h	Rectifier internal drop voltage
2A-2Bh	Chip temperature

STWLC03

Address	Register
2C-2Dh	ADC calibration channel
2E-2Fh	Received power (Qi only)

Table	31:	Rectified	voltage	(VRECT)
IUNIC	••••	neounica	vonuge	(****=**)

			Addre	ss 20h	1			Address 21h							
b7	7 b6 b5 b4 b3 b2 b1 b0							b7	b6	b5	b4	b3	b2	b1	b0
-	-	-	-	-	-	VRECT_MEAS[9:0]									

Rectified voltage VRECT is sensed on VRECT pin.

VRECT = VRECT_MEAS * VRECT_Div * 1.46 mV.

Nominal VRECT_Div value is 11 but the real value is trimmed for each device to match internal analog parameters.

Table 32: Rectified output current (IRECT)

			Addre	ss 22h	1			Address 23h							
b7	b7 b6 b5 b4 b3 b2 b1 b0						b0	b7	b6	b5	b4	b3	b2	b1	b0
-	-	-	-	-	-	LOAD_CURR_MEAS[9:0]									

Load current ILD is measured as a voltage drop VLD on the current sensing resistor (Rs).

V_{LD} = (LOAD_CURR_MEAS - VLD_offset) / VLD_Gain * 1.46 mV.

Nominal VLD_Gain value is 12 but the real value is trimmed for each device to match internal analog parameters.

Nominal VLD_Offset value is 341 but the real value is trimmed for each device to match internal analog parameters.

 $I_{LD} = V_{LD}/R_S$

Table 33: RX coil NTC voltage

			Addre	ss 24h	1			Address 25h							
b7	b7 b6 b5 b4 b3 b2 b1 b0						b0	b7	b6	b5	b4	b3	b2	b1	b0
-	-	-	-	-	-	RX_NTCMEAS[9:0]									

NTC voltage V_{NTC} is sensed on NTCRX pin.

 V_{NTC} = RX_NTC_MEAS * 1.46 mV.

Voltage to temperature conversion depends on the used NTC and the R1 divider.

Table 34: VOUT voltage

			Addre	ss 26h	1						Addre	ss 27h	1		
b7	b6	b5	b4	b3	b2 b1 b0 b7 b6 b						b4	b3	b2	b1	b0
-	-	-	-	-	-	VOUTMEAS[9:0]									

Output voltage VOUT is sensed on VOUT pin

VOUT = VOUT MEAS * VOUT Div * 1.46 mV

Nominal VOUT_Div value is 6 but the real value is trimmed for each device to match internal analog parameters.

			Addre	ss 28h	n			Address 29h							
b7	b7 b6 b5 b4 b3 b2 b1 b0						b0	b7	b6	b5	b4	b3	b2	b1	b0
-	-	-	-	-	-	VDROPMEAS[9:0]									

Table 35: VDROP voltage

Rectifier drop voltage V_{DROP} is sensed internally on rectifier power stages.

V_{DROP} = (VDROP_MEAS – VDROP_Offset) / VDROP_Gain * 1.46 mV.

Nominal VDROP_Gain value is 6 but the real value is trimmed for each device to match internal analog parameters.

Nominal VDROP_Offset value is 136 but the real value is trimmed for each device to match internal analog parameters.

Table 36	: Chip	temperature
----------	--------	-------------

			Addre	ss 28h	1				Address 29h						
b7	b7 b6 b5 b4 b3 b2 b1 b0						b0	b7	b6	b5	b4	b3	b2	b1	b0
-	-	-	-	-	-	CHIP_TEMP_MEAS[9:0]									

Chip temperature TJ measured internally.

T_J = CHIP_TEMP_MEAS * (-0.57) + 430

Table 37: Ground voltage

	Address 2Ch 7 b6 b5 b4 b3 b2 b1 b							Address 2Dh							
b7	b7 b6 b5 b4 b3 b2 b1 b0							b7	b6	b5	b4	b3	b2	b1	b0
-	-	-	-	-	-	GND_MEAS[9:0]									

Ground voltage V_G is sensed directly on internal ground node.

 $V_G = GND_MEAS * 1.46 \text{ mV}.$

Table 38: RX_POWER

		4	Addre	ss 2Eh	n			Address 2Fh							
b7								b7	b6	b5	b4	b3	b2	b1	b0
		RX	b7 b6 b5 b4 b3 b2 b1 b0 RX_POWER[15:8]							R	X_POV	VER[7	:0]		

This value is valid in Qi mode only. It contains the last calculated received power. RX_POWER[15:8] corresponds to the data sent, the 8-bit received, power packet sent during communication with Qi transmitter. RX_POWER[7:0] is a fraction of 256.

6.2 Service registers

These registers allow access the NVM and the firmware version number. Registers in address range 50h-5Fh are used as data buffer for operations with non-volatile memory (NVM). Register at address 4Fh serves as a command register.

	Table 39: Service register map
Address	Register
40h	Firmware version
4Fh	NVM control
50-5Fh	Data manipulation registers

Table	40:	NVM	control

b7	b6	b5	b4	b3	b2	b1	b0	
NVM_WR	NVM_RD			NVM_SECT[R/W
0	0 0		0	0	0	0	0	Default

NVM_WR bit:

0: no action

1: write data into NVM sector (auto-clear)

NVM_RD bit:

0: no action

1: read data from NVM sector (auto-clear)

 $\mathsf{NVM}_\mathsf{SECT}$ contains the address of the sector in the $\mathsf{NVM},$ which should be used for reading or writing operations.

Data to write must be prepared in data manipulation registers before starting writing operation into the control register.

Byte 00 of the NVM sector is located in data manipulation register address 50h, byte 01 in register 51h etc. according to the following table:

				<u> </u>				U								
Data manipulation register	50	51	52	53	54	55	56	57	58	59	5A	5B	5C	5D	5E	5F
NVM byte	00	01	02	03	04	05	06	07	08	09	0A	0B	0C	0D	0E	0F

Table 41: I2C registers corresponding to bytes in NVM sector

7 Non-volatile memory

Non-volatile memory (NVM) contains 2048 bits organized into 16 sectors. The first 15 sectors are available for the firmware. I²C access is through service registers.

7.1 NVM sector maps

Sector	Content
00	Trimming and configuration data
01	Trimming and configuration data
02	Trimming and configuration data
03	Trimming and configuration data
04	Platform HW parameters (Resr, Rs, FOD offset)
05	Default values for user registers in Qi mode
06	Reserved for future use
07	Qi identification and configuration packet content (ID, vendor, power class)
08	Reserved for future use
09	Reserved for future use
0A	Reserved for future use
0B	Reserved for future use
0C	Reserved for future use
0D	Termination current, charging parameters
0E	Reserved for future use

Sector 00, 01, 02, 03

These sectors contain trimming and configuration data. Any modification could degrade the performance of the device.

Sector 04

This sector contains hardware parameters.

Table 43: Map of NVM sector 04

Byte	Parameter	STWLC03 default value			
00	Deer	00h			
01	Resr	01h			
02	RxPower offset	DCh			
03	RXPOwer onset	05h			
04	Rs	33h			
05		Not used			

STWLC03

Non-volatile memory

Byte	Parameter	STWLC03 default value
06		
07		
08		
09		
10		
11		
12		
13		
14		
15		

Table 44: Byte 0

Byte 0										
b7	b6	b5	b4	b3	b2	b1	b0			
Resr [7:0] (LSB)										

Table 45: Byte 1

Byte 1										
b7	b6	b5	b4	b3	b2	b1	b0			
Resr [15:8] (MSB)										

Rx coil resistance. Resr is a 16 bit unsigned valued in Ohm multiplied by 1024. This value is used when power losses are estimated during RxPower calculation in Qi mode.

Table	46:	Bvte	2
1 4010			_

Byte 2										
b7	b6	b5	b4	b3	b2	b1	b0			
RxPower offset [7:0] (LSB)										

Table 47: Byte 3

Byte 3										
b7	b6	b5	b4	b3	b2	b1	b0			
RxPower offset [15:8] (MSB)										

RxPower offset is a 16-bit signed value that is added to the RxPower calculated in Qi mode. It tunes the accuracy and compensates potential additional losses in the magnetic field caused by a presence of other objects such as the PCB or battery.

Table 48: Byte 4					
Byte 4					
b7 b6 b5 b4 b3 b2 b1 b0					
Rs[7:0]					

This parameter represents the value of the current sensing resistor R_s in Ohm multiplied by 1024. This value is necessary for RxPower calculation in Qi mode.

Sector 05

This sector contains default register values for Qi mode that are loaded into internal I²C registers after the startup of the microcontroller.

Byte	Target I ² C register	STWLC03 default value
00	00h	01h
01	01h	0Fh
02	02h	18h
03	03h	00h
04	04h	01h
05	05h	4Eh
06	06h	05h
07	07h	04h
08	08h	04h
09	09h	80h
10	0Ah	00h
11	0Bh	00h
12		
13		Netwood
14		Not used
15		

Table 49: Map of NVM sector 05

Sector 06

This sector is reserved for future use.

Sector 07

This sector contains data used in identification and configuration packets in Qi mode.

*	Table 50: Map of NVM sector 07						
Byte	Parameter	STWLC03 default value					
00	Manufacturer code MSB	00h					
01	Manufacturer code LSB	16h					
02	Basic device identifier MSB	01h					
03	Basic device identifier	02h					
04	Basic device identifier	03h					
05	Basic device identifier LSB	04h					
06	Extended device identifier MSB	11h					
07	Extended device identifier	12h					
08	Extended device identifier	13h					
09	Extended device identifier	14h					
10	Extended device identifier	15h					
11	Extended device identifier	16h					
12	Extended device identifier	17h					
13	Extended device identifier LSB	18h					
14	Maximum power	0Ah					
15	Unused	00h					

Sector 08

This sector contains default register values for PMA mode that are loaded into internal ${\rm I}^2{\rm C}$ registers after start-up of the microcontroller.

STWLC03

Table 51: Map of NVM sector 08						
Byte	Target I ² C register	STWLC03 default value				
00	00h	01h				
01	01h	19h				
02	02h	1Dh				
03	03h	01h				
04	04h	0Ah				
05	05h	C3h				
06	06h	09h				
07	07h	04h				
08	08h	0Dh				
09	09h	7Ah				
10	0Ah	00h				
11	0Bh	00h				
12		Not used				
13		Not used				
14		Not used				
15		Not used				

Sector 09

This sector is reserved for future use.

Sector 10

This sector contains PMA RXID and its CRC.

Table 52: Map of NVM sector 10							
Byte	Parameter	Default value					
00	Preamble	00h					
01	Message ID	AAh					
02	Certification version	10h					
03	RXID LSB	00h					
04	RXID	00h					
05	RXID	00h					
06	RXID	25h					
07	RXID	50h					
08	RXID MSB	02h					
09	CRC LSB	63h					
10	CRC MSB	25h					
11	Not used	00h					
12	Not used	00h					
13	Not used 00h						
14	Not used	00h					
15	Not used	00h					

Sector 11, 12

These sectors are reserved for future use.

Sector 13

Charging parameters are stored in this sector.

Table 53: Map of NVM sector 13					
Byte	STWLC03 default value				
00	26h				
01	24h				
02	03h				
03	4Ch				
04	CCh				
05	Not used				
06	Not used				
07	Not used				
08	4Dh				
09	24h				
10	03h				
11	4Ch				
12	CCh				
13	Not used				
14	Not used				
15	Not used				

Table 54: Byte 0 Qi_EPT_threshold [7:0]

Byte 0							
b7	b6	b5	b4	b3	b2	b1	b0
Qi_EPT_threshold [7:0]							

It sets the threshold for charging termination. Current has not be sensed on the output but on R_{S} sensing resistor.

Qi_EPT_threshold is directly compared with (LOAD_CURR_MEAS/2).

This parameter is active both in fixed output voltage mode and in charger mode.

Table	55:	Bvte	1.	Qi	EPT	Time	[7:0]
10010			-,				L 1

Byte 1							
b7	b6	b5	b4	b3	b2	b1	b0
Qi_EPT_Time [7:0]							

Qi_EPT_Time is end-of-power transfer deglitch time in minutes. If the charging current is permanently lower than Qi_EPT_threshold for more than Qi_EPT_Time, the end-of-power transfer packet is sent to the transmitter.

This parameter is active both in fixed output voltage mode and in charger mode.

Table 56: Byte 2, Qi charger er	nable
---------------------------------	-------

			Byte 2				
b7	b6	b5	b4	b3	b2	b1	b0
Qi charger enable	-	-	-	-	Qi ta	arget voltage	[2:0]

Qi charger enable bit:

0: charging algorithm is not active after startup

1: charging algorithm is active after startup

Table 57: Qi target voltage

Qi target voltage	Charging voltage [V]
0	3.3
1	3.6
2	4.1
3	4.2
4	5.0

Table 58: Byte 3, Q1_Precharge_Battery_overvoltage

	Ву	/te 3					
b7	b6	b5	b4	b3	b2	b1	b0
Qi_Precharge	e_voltage [1:0]		Qi_Ba	attery_ov	ervoltage	e [5:0]	

Qi_Precharge_voltage:

00b: 2.5 V 01b: 2.7 V 10b: 2.9 V

11b: 3.1 V

Battery OVP threshold = (3.3 V + Qi_Battery_overvoltage * 100 mV) / 1024 * 1000

Table 59: Byte 4, Q1_Precharge and Fastcharge

	Byte 4						
b7	b6	b5	b4	b3	b2	b1	b0
Qi_Precharge		Qi_F	astcharge	e_current	t [5:0]		

Qi_Precharge_current

00b: 2.5 mV / Rs (50 mA @ 50 mΩ Rs)

01b: 5 mV / Rs (100 mA @ 50 mΩ Rs)

10b: 7.5 mV / Rs (150 mA @ 50 mΩ Rs)

DocID029451 Rev 2

11b: 10 mV / R_s (200 mA @ 50 mΩ R_s)

Qi Fastcharge current = (Qi_Fastcharge_current * 2.5 mV + 5 mV) / Rs

Table 60: Byte 8, PMA_EOC_theshold [7:0]

	Byte 8							
b7	b7 b6 b5 b4 b3 b2 b1 b0							
	PMA_EOC_theshold [7:0]							

It sets the threshold for charging termination. Current has not be sensed on the output but on R_{S} sensing resistor.

PMA_EOC_threshold is directly compared with (LOAD_CURR_MEAS / 2).

This parameter is active both in fixed output voltage mode and in charger mode.

Table 61: Byte 9, PMA	_EOC_Time [7:0]
-----------------------	-----------------

	Byte 9							
b7	b6	b5	b4	b3	b2	b1	b0	
	PMA_EOC_Time [7:0]							

PMA_EOC_Time is end-of-power transfer deglitch time in minutes. If the charging current is permanently lower than PMA_EOC_theshold for more PMA_EOC_Time, the end-of-charging signal is sent to the transmitter.

This parameter is active both in fixed output voltage mode and in charger mode.

Table 62: Byte 10, PMA_Target_Voltage [2:0]

Byte 10							
b7	b6	b5	b4	b3	b2	b1	b0
PMA charger enable	-	-	-	-	PMA_	Target_Voltag	ge [2:0]

PMA charger enable bit:

0: charging algorithm is not active after startup

1: charging algorithm is active after startup

Non-volatile memory

Table 63: PMA target voltage vs charging voltage					
PMA target voltage	Charging voltage				
0	3.3				
1	3.6				
2	4.1				
3	4.2				
4	5.0				
5	5.5				
6	6.0				
7	7.0				

Table 64: Byte 11

Byte 11							
b7	b6	b5	b4	b3	b2	b1	b0
PMA_Precharge_voltage[1:0] - - PMA_Battery_overvoltage [5]					age [5:0]		

PMA_Precharge_voltage:

00b: 2.5 V

01b: 2.7 V

10b: 2.9 V

11b: 3.1 V

Bat OVP threshold = (3.3 V + PMA_Battery_overvoltage * 100 mV) / 1024 * 1000

Table 65: Byte 12

	Byte 12							
b7		b6	b5	b4	b3	b2	b1	b0
PMA_Precharge_ current[1:0]				PMA_	Fastchar	ge_curre	nt [5:0]	

PMA_Precharge_current:

00b: 2.5 mV / Rs (50 mA @ 50 mΩ Rs)

01b: 5 mV / $R_{\rm S}$ (100 mA @ 50 m Ω $R_{\rm S})$

10b: 7.5 mV / Rs (150 mA @ 50 mΩ Rs)

11b: 10 mV / Rs (200 mA @ 50 mΩ Rs)

PMA Fastcharge current = PMA_Fastcharge_current * 2.5 mV + 5 mV

Sector 14

This sector is reserved for future use.

8 Application information

8.1 Application schematic and recommended external components

Figure 10: STWLC03 application schematic

RM is an optional component and it is not needed for a typical application. If VEXT detection is disabled, C8 and TRSWDRV are optional.

Before connecting the battery, the STWLC03 has to be configured as a battery charger in NVM.

Component	Manufacturer	Part Number	Value	Size
L1	Wurth	760308103215	14.3 uH	48x32x1 mm
	ТДК	760308103202	12 µH	48x32x1 mm
	токо	DFE252012F-1R5	1.5 µH/3.8 A	2.5x2.0x1.2 mm
L2	CYNTEC	PILE25201D-2R2MS-11	2.2 µH/3.1 A	2.5x2.0x1.4 mm
		PIME041B-2R2MS-11		4.4x4.2x1 mm
	701	SPM3010T-1R0	1 µH/4.5 A	3x3.2x1mm
	TDK	TFM1R0GHM	1 µH	2x1.6x1 mm
C1	MURATA	3x GRM188R72A104KA35	100 nF/X7R	0603
C2	MURATA	GRM155R71H332KA01	3.3 nF/C0G	0603
C3	MURATA	2x GRM188R61C106KAAL	10 µF/16 V	0603
03	ТDК	2x C1608X5R1C106M	10 µF/16 V	0603
C4	MURATA	GRM188R61C106KAAL	10 µF/16 V	0603
CBOOT1, CBOOT2, CBOOT	MURATA	GRM155R61H473KE14	47 nF/50 V	0402
C5	MURATA	2x GRM188R61C106KAAL	10 µF/16 V	0603

Table 66: STWLC03 recommended external components

STWLC03

Application information

Component	Manufacturer	Part Number	Value	Size
C6, C7	MURATA	GRM155R61A105KE15	1 μF/10 V	0402
CM1	MURATA	GRM155R71H563KE14	56 nF/50 V	0402
CM2	MURATA	GRM155R71H393KE14	39 nF/50 V	0402
RCL1, RCL2	PANASONIC	ERJ-PA2J150V	15R	0603
RM (optional)			12 Ω	0603
CFB	MURATA	GRM1555C1H150GA01	15 pF	0402
RS	PANASONIC	ERJ-L03KF50MV	0.05 Ω/1%	0603
R1			51 kΩ	0402
RFB1	TE- CONNECTIVITY	CPF0402B160KE	160 kΩ	0402
RFB2	PANASONIC	ERA-2AEB3322X	33.2 kΩ	0402
RNTC	MURATA		100 kΩ	0402
CCHG (filter)	MURATA	4x GRM188R61C106KAAL	10 µF/16 V	0603
DCHG (filter)	STMICROELECT RONICS	STPS3L45AF	3 A/45 V	SMA flat
C8	MURATA	GRM155R61E225KE11	2.2 µF/25 V	0402
TRswdrw	FAIRCHILD	FDMA1027P	20 V/3 A dual P-channel FET	2x2x0.8 mm
C10	TDK	GRM155R6YA474KE01	470 nF/35 V	0402
C11	TDK	GRM155R61H104KE19D	100 nF/50 V	0402

Figure 13: VIO and digital interface in platform application schematic

8.2 External passive component selection

8.2.1 Input resonant circuit component selection (L1, C1, C2)

The selected RX coil should be optimized by the requested transferred power. The inductance of the coil together with C_1 and C_2 capacitors create an input resonant circuit. Components have to be carefully selected both to keep the resonant frequency compliant with the wireless standard specification and to deliver the power. For more details please see wireless standard specifications.

The following equations show the resonant frequencies, where L1' is self-inductance of L1 placed on the transmitter:

Equation 1:

$$f_{s} = \frac{1}{2 * \pi * \sqrt{L_{1}' * C_{1}}}$$

Equation 2:

$$f_D = \frac{1}{2 * \pi * \sqrt{L_1 * \left(\frac{1}{C_1} + \frac{1}{C_2}\right)^{-1}}}$$

It is recommended to use high grade ceramic capacitors with C0G dielectrics type. X5R, X7R capacitors can be used for 5 W output power applications.

8.2.2 Voltage clamp resistor selection (RCL1, RCL2)

The purpose of these resistors is to load the rectifier output by decreasing the rectified voltage below overvoltage threshold – hysteresis (V_{OVP}-V_{OVPHYST}), when V_{OVP} is reached. 0.2 W resistors with pulse withstanding character are recommended for this application.

8.2.3 Load modulation capacitors selection (CM1, CM2)

These capacitors fulfill the backscatter modulation of the communication from the receiver to the transmitter. X5R dielectrics type capacitors are suitable for this purpose. Higher values of these capacitors help to comply to PMA standard, but increase the ripple in the system.

8.2.4 Feedback resistor divider components selection (RFB1, RFB2)

Feedback voltage divider gives the ratio between the desired step-down converter output voltage and the given feedback reference voltage. The R_{FB1} and R_{FB2} resistors should be 0.1% or 0.5% tolerance class.

8.2.5 Rx NTC circuit component selection (RNTC, R1)

To protect the receiver coil from overtemperature, the STWLC03 is equipped with a comparator input. If the input voltage crosses certain level (see *Table 4: "Thermal data"*), the STWLC03 can react by terminating the power transfer and sending an interrupt to the host system – depending on the configuration. The input voltage given as a ratio from R_{NTC} thermistor and R_1 common resistor divider. The divider can be supplied from LDO1 (VA pin) filtering capacitor.

8.2.6 Soft-start capacitor selection (C10)

The soft-start capacitor C10 connected to COMP pin influences the ramp-up time of the step-down converter. The nominal V_{REF} voltage is 1.2 V and the time needed to reach the nominal voltage is given by the following equation:

Equation 3:

 $t_{SOFTSTART} = C \cdot 10^6 \cdot VREF[s, F, -, V]$

Example: 470 nF ~ 560 ms

8.2.7 External supply transistor selection

The device contains the function of the connection external voltage supply directly to V_{OUT} by the external dual P-channel transistor back-to-back connected so to avoid the leakage from V_{OUT} to the external voltage supply.

STWLC03

9 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

9.1 Flip Chip 77 bumps (3.12x4.73 mm) package information

Figure 19: Flip Chip 77 bumps (3.12x4.73 mm) package outline

Package information

STWLC03

Tak	Table 67: Flip Chip 77 bumps (3.12x4.73 mm) package mechanical data						
Dim	mm						
Dim.	Min.	Тур.	Max.				
A	0.50	0.55	0.60				
A1	0.17	0.20	0.23				
A2	0.28	0.30	0.32				
b	0.23	0.26	0.29				
D	4.67	4.70	4.73				
D1		4.00					
E	3.06	3.09	3.12				
E1		2.40					
е		0.40					
SD		0.20					
SE		0.20					
fD		0.352					
fE		0.346					
\$		0.05					
ссс		0.075					

The terminal A1 on the bump side is identified by a distinguishing feature (for instance by a circular "clear area", typically 0.1 mm diameter) and/or a missing bump. The terminal A1 on the backside of the product is identified by a distinguishing feature (for instance by a circular "clear area", typically between 0.1 and 0.5 mm diameter, depending on the die size).

Figure 20: Flip Chip 77 bumps (3.12x4.73 mm) recommended footprint

DocID029451 Rev 2

10 Revision history

Date	Revision	Changes
09-Nov-2016	1	Initial release.
14-Mar-2017	2	Updated Section 8.2.1: "Input resonant circuit component selection (L1, C1, C2)".

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics – All rights reserved

