Clock Generator, Crystal to 25 MHz, 100 MHz, 125 MHz, 200 MHz, 3.3 V, with Dual HCSL #### **Description** The NB3N5573 is a precision, low phase noise clock generator that supports PCI Express and Ethernet requirements. The device accepts a 25 MHz fundamental mode parallel resonant crystal and generates a differential HCSL output at 25 MHz, 100 MHz, 125 MHz or 200 MHz clock frequencies. Outputs can interface with LVDS with proper termination (See Figure 4). This device is housed in 5.0 mm x 4.4 mm narrow body TSSOP 16 pin package. #### **Features** - Uses 25 MHz Fundamental Mode Parallel Resonant Crystal - External Loop Filter is Not Required - HCSL Differential Output or LVDS with Proper Termination - Four Selectable Multipliers of the Input Frequency - Output Enable with Tri-State Outputs - PCIe Gen1, Gen2, Gen3, Gen4, QPI, UPI Jitter Compliant - Phase Noise: @ 100 MHz Offset Noise Power -109.4 dBc 100 Hz 1 kHz -127.8 dBc 10 kHz -136.2 dBc 100 kHz -138.8 dBc 1 MHz -138.2 dBc 10 MHz -161.4 dBc 20 MHz -163.00 dBc - Typical Period Jitter RMS of 1.5 ps - Operating Range 3.3 V ±10% - Industrial Temperature Range -40°C to +85°C - These are Pb-Free Devices ON Semiconductor® www.onsemi.com A = Assembly Location = Wafer Lot Y = Year W = Work Week ■ Pb-Free Package (Note: Microdot may be in either location) ### **ORDERING INFORMATION** See detailed ordering and shipping information in the package dimensions section on page 6 of this data sheet. Figure 1. NB3N5573 Simplified Logic Diagram Figure 2. Pin Configuration (Top View) ### **Table 1. PIN DESCRIPTION** | Pin | Symbol | I/O | Description | |--------|------------------|------------------------|---| | 1 | S0 | Input | LVTTL/LVCMOS frequency select input 0. Internal pullup resistor to V_{DD} . See output select table 2 for details. | | 2 | S1 | Input | LVTTL/LVCMOS frequency select input 1. Internal pullup resistor to V _{DD} . See output select Table 2 for details. | | 12, 16 | V_{DD} | Power Supply | Positive supply voltage pins are connected to +3.3 V supply voltage. | | 4 | X1/CLK | Input | Crystal or Clock input. Connect to 25 MHz crystal source or single-ended clock. | | 5 | X2 | Input | Crystal input. Connect to a 25 MHz crystal or leave unconnected for clock input. | | 6 | OE | Input | Output enable tri-states output when connected to GND. Internal pullup resistor to V _{DD} . | | 7, 13 | GND | Power Supply | Ground 0 V. These pins provide GND return path for the devices. | | 9 | I _{REF} | Output | Output current reference pin. Precision resistor (typ. 475 Ω) is connected to set the output current. | | 11 | CLK1 | HCSL or
LVDS Output | Noninverted clock output. (For LVDS levels see Figure 4) | | 10 | CLK1 | HCSL or
LVDS Output | Inverted clock output. (For LVDS levels see Figure 4) | | 15 | CLK0 | HCSL or
LVDS Output | Noninverted clock output. (For LVDS levels see Figure 4) | | 14 | CLK0 | HCSL or
LVDS Output | Inverted clock output. (For LVDS levels see Figure 4) | | 3, 8 | NC | | Do not connect | ## Table 2. OUTPUT FREQUENCY SELECT TABLE WITH 25MHz CRYSTAL | S1* | S0* | CLK Multiplier | f _{CLKout} (MHz) | |-----|-----|----------------|---------------------------| | L | L | 1x | 25 | | L | Н | 4x | 100 | | Н | L | 5x | 125 | | Н | Н | 8x | 200 | ^{*}Pins S1 and S0 default high when left open. ## **Recommended Crystal Parameters** | Crystal | Fundamental AT–Cut | |------------------------------|--------------------| | Frequency | 25 MHz | | Load Capacitance | 16-20 pF | | Shunt Capacitance, C0 | 7 pF Max | | Equivalent Series Resistance | 50 Ω Max | | Initial Accuracy at 25 °C | ±20 ppm | | Temperature Stability | ±30 ppm | | Aging | ±20 ppm | | Drive Level | 100 μW Max | | | | **Table 3. ATTRIBUTES** | Characte | Value | | | | | |--|------------------------|----------------------|--|--|--| | ESD Protection | Human Body Model | > 2 kV | | | | | RPU - OE, S0 and S1 Pull-up Res | 100 kΩ | | | | | | Moisture Sensitivity, Indefinite Time | Level 1 | | | | | | Flammability Rating | Oxygen Index: 28 to 34 | UL 94 V-0 @ 0.125 in | | | | | Transistor Count | 7623 | | | | | | Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test | | | | | | ^{1.} For additional information, see Application Note AND8003/D. Table 4. MAXIMUM RATINGS (Note 2) | Symbol | Parameter | Condition 1 | Condition 2 | Rating | Unit | |-------------------|--|--------------------|----------------------------|----------------------------------|--------------| | V_{DD} | Positive Power Supply | GND = 0 V | | 4.6 | ٧ | | VI | Input Voltage (V _{IN}) | GND = 0 V | $GND \leq V_I \leq V_{DD}$ | -0.5 V to V _{DD} +0.5 V | V | | T _A | Operating Temperature Range | | | -40 to +85 | °C | | T _{stg} | Storage Temperature Range | | | -65 to +150 | °C | | θ_{JA} | Thermal Resistance (Junction-to-Ambient) | 0 lfpm
500 lfpm | TSSOP-16
TSSOP-16 | 138
108 | °C/W
°C/W | | $\theta_{\sf JC}$ | Thermal Resistance (Junction-to-Case) | (Note 3) | TSSOP-16 | 33 to 36 | °C/W | | T _{sol} | Wave Solder | | | 265 | °C | Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. Table 5. DC CHARACTERISTICS (V_{DD} = 3.3 V $\pm 10\%$, GND = 0 V, T_A = -40° C to $+85^{\circ}$ C, Note 4) | Symbol | Characteristic | Min | Тур | Max | Unit | |--------------------|---|-----------|-----|-----------------------|------| | VDD | Power Supply Voltage | 2.97 | 3.3 | 3.63 | V | | I _{DD} | Power Supply Current | | 120 | 135 | mA | | I _{DDOE} | Power Supply Current when OE is Set Low | | | 65 | mA | | V _{IH} | Input HIGH Voltage (X/CLK, S0, S1, and OE) | 2000 | | V _{DD} + 300 | mV | | V _{IL} | Input LOW Voltage (X/CLK, S0, S1, and OE) | GND - 300 | | 800 | mV | | V _{OH} | Output HIGH Voltage for HCSL Output (See Figure 5) | 660 | 700 | 850 | mV | | V _{OL} | Output LOW Voltage for HCSL Output (See Figure 5) | -150 | 0 | 150 | mV | | V _{cross} | Crossing Voltage Magnitude (Absolute) for HCSL Output | 250 | | 550 | mV | | ΔV_{cross} | Change in Magnitude of V _{cross} for HCSL Output | | | 150 | mV | NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. ^{2.} Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and not valid simultaneously. If stress limits are exceeded device functional operation is not implied, damage may occur and reliability may be affected. ^{3.} JEDEC standard multilayer board – 2S2P (2 signal, 2 power). ^{4.} Measurement taken with outputs terminated with R_S = 33.2 Ω , R_L = 49.9 Ω , with test load capacitance of 2 pF and current biasing resistor set at 475 Ω . See Figure 3. Table 6. AC CHARACTERISTICS (V_{DD} = $3.3~V \pm 10\%$, GND = 0~V, $T_A = -40^{\circ}C$ to $+85^{\circ}C$; Note 5) | Symbol | Characteristic | Min | Тур | Max | Unit | |-----------------------|---|-----|-------------|-----|--------| | f _{CLKIN} | Clock/Crystal Input Frequency | | 25 | | MHz | | f _{CLKOUT} | Output Clock Frequency | 25 | | 200 | MHz | | θ_{NOISE} | Phase–Noise Performance f _{CLKx} = 200 MHz/100 MHz | | | | dBc/Hz | | | @ 100 Hz offset from carrier | | -103/-109 | | | | | @ 1 kHz offset from carrier | | -118/-127.8 | | 1 | | | @ 10 kHz offset from carrier | | -122/-136.2 | | 1 | | | @ 100 kHz offset from carrier | | -130/-138.8 | | 1 | | | @ 1 MHz offset from carrier | | -132/-138.2 | | 1 | | | @ 10 MHz offset from carrier | | -149/-164 | | 1 | | t _{JITTER} | Period Jitter Peak-to-Peak (Note 6) f _{CLKx} = 200 MHz | | 10 | 20 | ps | | | Period Jitter RMS (Note 6) f _{CLKx} = 200 MHz | | 1.5 | 3 | | | | Cycle-Cycle RMS Jitter (Note 7) f _{CLKx} = 200 MHz | | 2 | 5 | | | | Cycle-to-Cycle Peak to Peak Jitter (Note 7) f _{CLKx} = 200 MHz | | 20 | 35 | ps | | $t_{JIT(\Phi)}$ | Additive Phase RMS Jitter, Integration Range 12 kHz to 20 MHz | | 0.4 | | ps | | OE | Output Enable/Disable Time | | 10 | | μs | | tDUTY_CYCLE | Output Clock Duty Cycle (Measured at cross point) | 45 | 50 | 55 | % | | t _R | Output Risetime (Measured from 175 mV to 525 mV, Figure 5) | 175 | 340 | 700 | ps | | t _F | Output Falltime (Measured from 525 mV to 175 mV, Figure 5) | 175 | 340 | 700 | ps | | Δt_R | Output Risetime Variation (Single-Ended) | | | 125 | ps | | Δt_{F} | Output Falltime Variation (Single-Ended) | | | 125 | ps | | Stabilization
Time | Stabilization Time From Powerup V _{DD} = 3.3 V | | 3.0 | | ms | NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. ^{5.} Measurement taken from differential output on single–ended channel terminated with R_S = 33.2 Ω, R_L = 49.9 Ω, with test load capacitance of 2 pF and current biasing resistor set at 475 Ω. See Figure 3. 6. Sampled with 10000 cycles. 7. Sampled with 1000 cycles. Table 7. ELECTRICAL CHARACTERISTICS - PHASE JITTER PARAMETERS | Symbol | Parameter | Conditions (Notes 8 and 9) | Min | Тур | Max | Industry
Limit | Unit | |-------------------------|------------------|---|-----|------|------|-------------------|-------------| | t _{jphPCleG1} | | PCle Gen 1 (Notes 10 and 11) | | 10 | 16 | 86 | ps (p-p) | | | | PCIe Gen 2 Lo Band
10 kHz < f < 1.5 MHz (Note 10) | | 0.2 | 0.25 | 3 | ps
(rms) | | ^t jphPCleG2 | | PCIe Gen 2 High Band
1.5 MHz < f < Nyquist (50 MHz)
(Note 10) | | 0.9 | 1.2 | 3.1 | ps
(rms) | | t _{jphPCle} G3 | RMS Phase Jitter | PCIe Gen 3
(PLL BW of 2–4 MHz, CDR = 10 MHz)
(Note 10) | | 0.2 | 0.3 | 1 | ps
(rms) | | t _{jphPCleG4} | | PCIe Gen 4
(PLL BW of 2–4 MHz, CDR = 10 MHz)
(Note 10) | | 0.21 | 0.3 | 0.5 | ps
(rms) | | t _{jphUPI} | | UPI
(9.6 Gb/s, 10.4 Gb/s or 11.2 Gb/s, 100 MHz, 12 UI) | | 0.62 | 0.7 | 1.0 | ps
(rms) | | | | QPI & SMI
(100.00 MHz or 133.33 MHz,
4.8 Gb/s, 6.4 Gb/s 12UI) (Note 12) | | 0.1 | 0.3 | 0.5 | ps
(rms) | | t _{jphQPI} SMI | | QPI & SMI
(100.00 MHz, 8.0 Gb/s, 12UI) (Note 12) | | 0.1 | 0.15 | 0.3 | ps
(rms) | | | | QPI & SMI
(100.00 MHz, 9.6 Gb/s, 12UI) (Note 12) | | 0.07 | 0.1 | 0.2 | ps
(rms) | Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. - 9. Guaranteed by design and characterization, not tested in production - 10. See http://www.pcisig.com for complete specs - 11. Sample size of at least 100K cycles. This figures extrapolates to 108 ps pk-pk @ 1M cycles for a BER of 1-12. - 12. Calculated from Intel-supplied Clock Jitter Tool v 1.6.3. ## **HCSL INTERFACE** ^{8.} Applies to all outputs. ### LVDS COMPATIBLE INTERFACE Figure 4. Typical Termination for LVDS Device Load Figure 5. HCSL Output Parameter Characteristics ### **ORDERING INFORMATION** | Device | Package | Shipping [†] | |---------------|-----------------------|-----------------------| | NB3N5573DTG | TSSOP-16
(Pb-Free) | 96 Units / Rail | | NB3N5573DTR2G | TSSOP-16
(Pb-Free) | 2500 / Tape & Reel | [†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. 0.10 (0.004) D -T- SEATING PLANE TSSOP-16 CASE 948F-01 ISSUE B **DATE 19 OCT 2006** #### NOTES - JIES: DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. CONTROLLING DIMENSION: MILLIMETER. DIMENSION A DOES NOT INCLUDE MOLD FLASH. PROTRUSIONS OR GATE BURRS. MOLD EL ROLL OF GATE BURDS SUAL NO. - MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE. - DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION. TERMINAL NUMBERS ARE SHOWN FOR - REFERENCE ONLY. - DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-. | | MILLIN | IETERS | RS INCHE | | |-----|--------|--------|-----------|-------| | DIM | MIN | MAX | MIN | MAX | | Α | 4.90 | 5.10 | 0.193 | 0.200 | | В | 4.30 | 4.50 | 0.169 | 0.177 | | С | | 1.20 | | 0.047 | | D | 0.05 | 0.15 | 0.002 | 0.006 | | F | 0.50 | 0.75 | 0.020 | 0.030 | | G | 0.65 | BSC | 0.026 | BSC | | Н | 0.18 | 0.28 | 0.007 | 0.011 | | J | 0.09 | 0.20 | 0.004 | 0.008 | | J1 | 0.09 | 0.16 | 0.004 | 0.006 | | Κ | 0.19 | 0.30 | 0.007 | 0.012 | | K1 | 0.19 | 0.25 | 0.007 | 0.010 | | Г | 6.40 | | 0.252 BSC | | | М | 0 ° | 8° | 0 ° | 8 ° | #### **SOLDERING FOOTPRINT** G #### **GENERIC MARKING DIAGRAM*** 168888888 XXXX XXXX **ALYW** 188888888 XXXX = Specific Device Code Α = Assembly Location = Wafer Lot L Υ = Year W = Work Week = Pb-Free Package *This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present. | DOCUMENT NUMBER: 98ASH70247A Electronic versions are uncontrolled except when accessed directly from the Document of Docum | | | | | |--|----------|--|-------------|--| | DESCRIPTION: | TSSOP-16 | | PAGE 1 OF 1 | | **DETAIL E** ON Semiconductor and unare trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others. onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer pu #### **PUBLICATION ORDERING INFORMATION** LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com onsemi Website: www.onsemi.com TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative