

71M65xx
Energy Meter IC

 APPLICATION NOTE

REV 1.1 1

A Maxim Integrated Products Brand

AN_65XX_018 APRIL 2011

The SPI Interfaces of the 71M65xx
Introduction
Both the 71M653x and 71M654x families of electricity metering ICs offer SPI interfaces. These interfaces are de-
scribed only briefly in the data sheets.

This Application note provides a more detailed description of the SPI interfaces in the 71M653x and 71M654x fam-
ilies of electricity metering ICs.

SPI General Description
SPI (serial peripheral interface bus) is a standard interface for digital communication on the board level with peri-
pheral devices such as EEPROMs, ADCs and other devices. It implements a system consisting of one master and
one or several slave devices. SPI uses four discrete signals or pins (the pin names used on the 71M653x are
listed):

• PCSZ = chip select (sometimes referred to as “slave select”, in this case, “Z” is used to define a low-active
chip select signal)

• PSCK = clock (sometimes referred to as SCK, serial clock)
• PSDI = master output/slave input (sometimes referred to as MOSI)
• PSDO = master input/slave output (sometimes referred to as MISO)

The clock, PSDI, and PCSZ signals are generated by the SPI master. The PSDO signal is generated by the slave
device. In a multi-slave system, the slave is selected by an individual PCSZ signal.

SPI is generally a full-duplex interface, but individual implementations can be simplex, or half-duplex, depending
on the type of device used for the slave.

Various operation modes are defined, that differ in the definition of the clock edge polarity and the type of clock
edge used for PSDI and PSDO data. The SPI definition allows an almost completely free choice of message size,
content, and purpose.

SPI Implementation for the 71M653x and 71M654x Families
The 71M653x and 71M654x families use a half-duplex protocol, i.e. the slave will never generate data while the
master is emitting data. In terms of polarity, the 71M653x and 71M654x families use positive-going edges of the
PSCK signal for data capture and an active-low PCSZ signal.

Slave data are clocked in and master data are clocked out (into the 71M653x) on rising edges of the clock. This
operation mode is sometimes referred to as CPOL = 0 and CPHA = 0.

The SPI Interface of the 71M653x
General Description
SPI operations provide access to XRAM and to some, but not all, I/O RAM locations. The main purpose for this
type of interfacing is to provide the host access to metrology data generated by the CE without having to involve
the MPU of the 71M653x. This is particularly useful for configurations where the 71M653x acts as an FAE or me-
trology processor for the host.

The SPI Interfaces of the 71M65xx AN_65xx_018

2 REV 1.1

The 71M653x provides arbitration between competing accesses to the XRAM data. This is particularly critical for
accesses to CE RAM. CE RAM locations are routinely accessed by the CE, by the RTM, by the MPU, and by the
SPI port. This arbitration precludes simultaneous accesses to the same addresses, but does not guarantee validity
of the data. In other words, a datum accessed by the SPI may be overwritten during the next CE instruction cycle.
I/O RAM accesses require special care (see below).

The code executing in the SPI host processor has to be written carefully in order to synchronize with the processes
in the CE RAM.

Access speed for the 71M653x is up to 1 Mbit/s. The SPI port may operate at higher speeds under certain condi-
tions. For SPI speeds higher than 1 Mbit/s, the following conditions apply:

• Write operations can be issued by the host at up to 2 Mbits/s.
• Read operations can be issued at up to 2 Mbit/s, if a minimum gap of 1 µs is inserted by the host between

the last PSCK clock of the SPI address and the first clock of the data read. This gap will give the hardware
of the 71M653x sufficient time to fetch and provide the read data.

Table 1 lists the subset of I/O RAM registers that is accessible via the SPI port.

In order to avoid access conflicts and to ensure data integrity, the following procedure must be used when ac-
cessing I/O RAM registers:

1) The SPI host should send a command with the command word 100x xxxx or 110x xxxx before the actual
read or write command.
2) The SPI slave interface will load the command register and generate an INT2 interrupt upon receiving the
command.
3) The MPU should service the interrupt and halt any external data memory operations to effectively grant the
bus to the SPI.
4) When the SPI host finishes its I/O RAM access, it should send another command so the MPU can release
the bus.

There are no issues with Data RAM access; SPI and the MPU will share the bus with no conflicts for Data RAM
access.

Table 1: I/O RAM Registers Accessible via SPI

Name Address (hex) Bit Range Read/Write
CE0 2000 7:3 RW
CE1 2001 7:0 RW
CE2 2002 5:3, 1:0 RW
CONFIG0 2004 7:6, 1:0 RW
CONFIG1 2005 5:2, 0 RW
VERSION 2006 7:0 R
CONFIG2 2007 7:0 RW
DIO0 2008 7, 4:0 RW
DIO1 to DIO6 2009 to 200E 6:4, 2:0 RW
− 200F 7:6, 3:2 RW
RTM0H 2060 1:0 RW
RTM0L 2061 7:0 RW
RTM1H 2062 1:0 RW
RTM1L 2063 7:0 RW
RTM2H 2064 1:0 RW
RTM2L 2065 7:0 RW
RTM3H 2066 1:0 RW
RTM3L 2067 7:0 RW
PLS_W 2080 7:0 RW
PLS_I 2081 7:0 RW
SLOT0 to SLOT9 2090 to 209A 7:0 RW

AN_65xx_018 The SPI Interfaces of the 71M65xx

REV 1.1 3

Name Address (hex) Bit Range Read/Write
CE3 209D 3:0 RW
CE4 20A7 7:0 RW
CE5 20A8 7:0 RW
WAKE 20A9 7:5, 3:0 R
CONFIG3 20AC 7:0 RW
CONFIG4 20AD 7:0 RW
− 20AF 2:0 RW
SPI0 20B0 4, 0 RW
SPI1 20B1 4, 0 R
VERSION 20C8 7:0 R
CHIP_ID 20C9 7:0 R
TRIMSEL 20FD 4:0 RW
TRIMX 20FE 0 RW
TRIM 20FF 7:0 RW

SFR locations, i.e. the control registers internal to the 71M653x MPU, are not accessible via the SPI port. In cases
where these registers have to be accessed, for example to control DIO pins, a protocol that uses the MPU has to
be used for read and write operations involving the SFRs.

A typical SPI transaction is as follows: While PCSZ is high, the port is held in an initialized/reset state. During this
state, PSDO is held in HiZ state and all transitions on PCLK and PSDI are ignored. When PCSZ falls, the port will
begin the transaction on the first rising edge of PCLK. The transaction ends when PCSZ is raised. At this point,
the SPI interrupt is generated. Some transactions may consist of a command only.

Typical read and write transactions are shown in Figure 1. The read transaction consists of the following parts:

1. 8-bit command word generated by the host
2. 16-bit address generated by the host
3. 8-bit datum provided by the slave (71M653x)
4. Optionally, more 8-bit data bytes (71M653x)

The write transaction consists of the following parts:

1. 8-bit command word generated by the host
2. 16-bit address generated by the host
3. 8-bit datum provided by the host
4. Optionally, more 8-bit data bytes provided by the host

The optional data bytes are part of an auto-increment mode, where the read or write address is incremented by 1
after every read or write operation and does not have to be generated by the host. This operation mode is useful
for quickly accessing fields of adjacent data in one long SPI command sequence.

The SPI Interfaces of the 71M65xx AN_65xx_018

4 REV 1.1

A15 A14 A1 A0C0

0 31

x

D7 D6 D1 D0 D7 D6 D1 D0

C5C6C7x

PCSZ

PSCK

PSDI

PSDO

8 bit CMD 16 bit Address DATA[ADDR] DATA[ADDR+1]

7 8 23 24 32 39
Extended Read . . .

SERIAL READ

A15 A14 A1 A0C0

0 31

C5C6C7x

PCSZ

PSCK

PSDI

PSDO

8 bit CMD 16 bit Address DATA[ADDR] DATA[ADDR+1]

7 8 23 24 32 39
Extended Write . . .

SERIAL WRITE

D7 D6 D1 D0 D7 D6 D1 D0 x

HI Z

HI Z

(From Host)

(From 653X)

(From Host)

(From 653X)
Figure 1: SPI Slave Port: Typical Read and Write operations

A read transaction performed at 2 Mbit/s is shown in Figure 2.

Figure 2: SPI Slave Port: Read Operation with Gap

Table 2 lists I/O RAM registers (bit fields) that are involved in SPI transactions.

Table 2: SPI Registers

Register Name Description
SP_ADDR[15:8]
SP_ADDR[7:0]

SPI Address. 16-bit address from the bus master. This register does not auto-incre-
ment and reading this register will not reflect the next available address after an auto-
increment command.

SP_CMD SPI command. 8-bit command from the bus master.
SPE SPI port enable. Enables the SPI interface.

SPI_FLAG
SPI interrupt flag. The flag is set by the hardware and is cleared by the firmware writ-
ing a 0. Firmware using this interrupt should clear the spurious interrupt indication
during initialization.

In order to allow access from the external host, the SPE bit has to be set. The SP_CMD and SP_ADDR[15:0] bit
fields contain a copy of the command word and address sent by the SPI master.

The SPI_FLAG flag bit will be set upon every SPI transaction regardless of whether the command is 11xx xxxx or
10xx xxxx. The SP_ADDR[15:0] bit field is for writing purposes by the host only. Data read from SP_ADDR[15:0]
will not contain the next available SPI address after an auto-increment operation.

PCLK

PSDI

PSDO

Command Address

1 µs min.0.5 µs

Data

PCSZ

7 6 5 4 3 1 0 15 6 5 4 3 1 014……………...….2 7 6 5 4 3 1 02

AN_65xx_018 The SPI Interfaces of the 71M65xx

REV 1.1 5

Note: The data sheets up to revision 1.2 misstated the effect of the command word on interrupt generation.

Table 3 lists the command description as given in the data sheets for the 71M6531/6532 after revision 1.3 and for
the 71M6533/6534 data sheets after revision 1.2 (future releases as of April 2011).

Table 3: SPI Command Description

Command Description

11xx xxxx ADDR Byte0 ... ByteN

Read data starting at ADDR. The address value provided in ADDR will
be automatically incremented until PCSZ is raised. Upon completion:

 SP__CMD=11xx xxxx
An MPU interrupt is generated.

10xx xxxx ADDR Byte0 ... ByteN
Write data starting at ADDR. The address value provided in ADDR will
be automatically incremented until PCSZ is raised. Upon completion:
SP_CMD=10xx xxxx

0xxx xxxx ADDR Byte0 ... ByteN Commands other than 1xxx xxxx are ignored, but an SPI interrupt is still
generated when PCSZ goes high.

Working with the SPI Interface of the 71M653x
System Diagram

Figure 3 shows how the 71M653x and the host processor can be connected. The striped lines to DIO3 and DIO4
of the host show optional connections for synchronization and reset. These options are:

• The YPULSE output can signal sag warnings to the host. This eliminates the overhead that would occur if
the host had to read the CE_STATUS register to detect sag warnings.

• The XPULSE output can signal zero crossing information to the host.
• The RESET pin, when connected to a DIO pin of the host, can be used by the host to force the 71M653x

to a defined state.
• The TMUXOUT pin can be used to select either the XFER_BUSY, CE_BUSY, or MUX_SYNC signals to

synchronize the host to the CE and ADC processes in the 71M653x.

The SPI Interfaces of the 71M65xx AN_65xx_018

6 REV 1.1

Figure 3: System Overview and Data Flow

Synchronizing Accesses with the CE Code Flow

Figure 4 was copied from the data sheet. It shows the CE activity in relation to the settings of the multiplexer in a
poly-phase application. ADC data are generated after two CK32 cycles for each input, usually in the sequence IA,
VA, IB, VB, IC, and VC. For this example, the entire ADC multiplexer frame lasts approximately 396 µs, which is
equivalent to a sample frequency of 2520.6 Hz. Note that the CE_BUSY signal going low indicates the completion
of a CE code run, but not necessarily the completion of all data collection (the ADC5 conversion occurs after
CE_BUSY is low in this example). In order to ensure that all ADC data is fresh and that the CE is in HALT mode,
the time period when MUX_SYNC is high should be used to access front-end data such as sampled raw data or
even intermediate CE. This is also the time period during which the RTM is active.

MPU

CE

I/O RAM (Configuration RAM)

Pulses

Samples

XPULSE

MUX

C
on

tro
l

C
on

tro
l

XRAM

CE_BUSY
XFER_BUSY

TMUX

Host

SPI

Data Ready

Sag Warning

Interrupt

71M653x

DIO1/interrupt

DIO2/interrupt

4/5/2011

MUX_SYNC
XFER_BUSY

CE_BUSY
MUX_SYNC

DIO3/interrupt

YPULSE

Zero crossing
Wh VARh

TMUXOUT

Control

PCSZ

PSCK

PSDI

PSDO

DIO4
RESET

RESET

AN_65xx_018 The SPI Interfaces of the 71M65xx

REV 1.1 7

Figure 4: Timing Relationship between ADC MUX and Compute Engine

It can be useful to set the TMUXOUT pin of the 71M653x to select the CE_BUSY signal and make this signal ac-
cessible to the SPI host processor in order to synchronize the accesses of the SPI host processor to the ADC mul-
tiplexer frame.

If the SPI host processor is more interested in processed energy values, it can synchronize to the XFER_BUSY
interrupt, which also can be made accessible via the TMUXOUT pin of the 71M653x. At the end of each accumu-
lation interval, transfer variables such as WSUM_X, VnSQSUM_X, InSQSUM_X, FREQU_X, TEMP_X and so on are
available and stable, which is signaled by XFER_BUSY going low.

MPU Program

For several reasons, it is necessary to have a small MPU program in the flash memory of the 71M653x, even when
the host takes over all post-processing:

• The MPU has to be prevented from executing unrelated code. With the flash memory mostly empty, the
MPU will execute 0xFF op-codes until it runs into the CE code image. Executing the CE code image could
have undesired results, e.g., changes to core I/O RAM settings, and must therefore be avoided.

• The external host cannot access the SFRs of the MPU directly. However, SFR access is required for
accessing the DIO pins. A small “driver” must exist to support SFR access, for example if the host needs
to control the DIO pins.

• Access to I/O RAM locations by the external host need special precautions (see above).
• A small MPU program is useful to load the CE data image into the XRAM space, initialize core settings of

the IC (PRE_SAMPS, EQU, FIR_LEN, SUM_CYCLES and the interrupt vector table, set the CE_LCTN[7:0]
pointer, set the SECURE bit, enable the SPI port, start the CE and ADC, trigger the watchdog timer, and
perform other routine tasks in order to offload the external host.

• It is useful to provide an incrementing counter for XFER_BUSY interrupts for the host. This allows the host
to track the accumulation cycles, ensuring that no cycle is lost.

CK32

MUX_DIV Conversions (MUX_DIV=6 is shown) Settle

ADC MUX Frame

ADC EXECUTION

MUX_SYNC

CE_EXECUTION

RTM

140

MAX CK COUNT

0 300

150

600 900 1200 1500 1800

ADC0 ADC1 ADC2 ADC3 ADC4 ADC5

CK COUNT = CE_CYCLES + floor((CE_CYCLES + 2) / 4)

NOTES:
1. ALL DIMENSIONS ARE 4.9152 MHz CK COUNTS.
2. XFER_BUSY OCCURS ONCE EVERY (PRESAMPS * SUM_CYCLES) CODE PASSES.

CE_BUSY

XFER_BUSY

INITIATED BY A CE OPCODE AT END OF SUM INTERVAL

ADC TIMING

CE TIMING

RTM TIMING

The SPI Interfaces of the 71M65xx AN_65xx_018

8 REV 1.1

Interrupts

As stated before, an interrupt is generated for each completed SPI access. MPU codes based on two distinctive
SPI operations (as described in the 71M6531/6532 and 71M6533/6534 data sheets), i.e. one with interrupt
generation and one without interrupt generation, need to be modified so that they tolerate interrupt generation on
any SPI access.

The suggested program flow is shown in Figure 6:

• If the interrupt stems from a regular read operation, no action should be required.
• If the interrupt stems from a special read operation, indicated by a command word 110x xxxx, the MPU ex-

ecutes the commands associated with it. Examples are SFR write operations that require the MPU to
translate, or I/O RAM read operations.

• If the interrupt stems from a regular write operation, no action should be required.
• If the interrupt stems from a special write operation, indicated by a command word 100x xxxx, the MPU

executes the commands associated with it. Examples are SFR write operations that require the MPU to
translate, or I/O RAM write operations.

Tools
A variety of tools can be used to test the SPI port function. Maxim has successfully used the following:

• FT2232H (by FTDI, www.ftdichip.com) Mini-Module, used with Maxim FT2232H-to-SPI Adapter
• FT4232H (by FTDI, www.ftdichip.com) USB High-Speed Evaluation Module, used with Maxim FT4232H-

to-SPI Adapter (see Figure 5).

Figure 5: Board Adapter for FT4232H USB High-Speed Evaluation Module

Title

Size Document Number Rev

Date: Sheet of

1

USB-SPI ADAPTER

A

1 1Monday , January 10, 2011

GNDGND

T_GND

VCC

T_CS

T_GND

TP1

T_VCC

1

TP2

T_CS

1

TP3

T_CLK

1

ADUM1401

U1

VDD1
1

GND1
2

VIA
3

VIB
4

GND1
8 VE1
7 VOD
6 VIC
5

GND2
9VE2
10VID
11VOC
12VOB
13VOA
14GND2
15VDD2
16

TP4

T_DI

1

TP5

T_DO

1

TP6

T_GND

1

T_DO

T_GND

T_DI

T_CLKT_VCC

T_CS

J1

CN2

1
3
5
7
9

11
13
15
17
19
21
23
25

2
4
6
8
10
12
14
16
18
20
22
24
26

J2

CN3

1
3
5
7
9

11
13
15
17
19
21
23
25

2
4
6
8
10
12
14
16
18
20
22
24
26

Isolation Barrier

FT4232H Mini-Module Adapter

R1

10K

R2
10K

J3

SPI SOCKET

1
3
5
7
9

2
4
6
8
10

T_GND
T_VCC

T_DI
T_DO
T_CLK
T_CS

C1
0.1uF

C2
0.1uF

CLK

T_GND

DO T_DO

GND

DI

DO T_DI
T_CLKCLK

CS

CS

T_CS

T_DODI

T_VCCVCC

T_GND

VCC

http://www.ftdichip.com/�
http://www.ftdichip.com/�

AN_65xx_018 The SPI Interfaces of the 71M65xx

REV 1.1 9

Firmware to support cyclical testing based on Visual Basic can be provided on request.

Figure 6: Interrupt Processing Flow Chart

START

Execute
MPU code

SPI Interrupt?

Disable SPI Interrupts

SPI_CMD = 111x
xxxx?

no

yes

yes (regular SPI read)

Enable SPI Interrupts

no

SPI_CMD = 101x
xxxx?

no

(regular SPI write)yes

Execute command
transmitted in bits 0–4,
e.g. SFR transaction,
I/O RAM transaction...

SPI_CMD = 110x
xxxx?

no

yes

Execute command
transmitted in bits 0–4,
e.g. SFR transaction,
I/O RAM transaction...

(special SPI read)

SPI_CMD = 100x
xxxx?

yes (special SPI write)

no

Unknown SPI
command. Ignore

The SPI Interfaces of the 71M65xx AN_65xx_018

10 REV 1.1

The SPI Interface of the 71M654x
The description of the SPI interface in the 71M754x family of electricity metering ICs will be added at a later time.

AN_65xx_018 The SPI Interfaces of the 71M65xx

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses
are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

Maxim Integrated Products, 120 San Gabr iel Dr ive, Sunnyvale, CA 94086 408- 737-7600
 2011 Maxim Integrated Products Maxim is a registered trademark of Maxim Integrated Products.

Revision History
Revision Date Description
1.0 4/8/2011 First publication.
1.1 4/18/2011 DRAFT

Fixed typos and inconsistent signal names. Added timing diagram for 2Mbit/s read
transaction and schematics for FT4232 USB-SPI Adapter.

	Introduction
	SPI General Description
	SPI Implementation for the 71M653x and 71M654x Families
	The SPI Interface of the 71M653x
	General Description
	Working with the SPI Interface of the 71M653x
	System Diagram
	Synchronizing Accesses with the CE Code Flow
	MPU Program
	Interrupts

	Tools

	The SPI Interface of the 71M654x
	Revision History

