

v04.0614

Typical Applications

The HMC659LC5 wideband PA is ideal for:

- Telecom Infrastructure
- Microwave Radio & VSAT
- Military & Space
- Test Instrumentation
- Fiber Optics

Features

P1dB Output Power: +27.5 dBm Gain: 19 dB Output IP3: +35 dBm Supply Voltage: +8V @ 300 mA 50 Ohm Matched Input/Output 32 Lead Ceramic 5 x 5 mm SMT Package: 25 mm²

POWER AMPLIFIER, DC - 15 GHz

HMC659LC5

GaAs PHEMT MMIC

Functional Diagram

General Description

The HMC659LC5 is a GaAs MMIC pHEMT Distributed Power Amplifier which is housed in a leadless 5 x 5 mm RoHS compliant ceramic SMT package operating between DC and 15 GHz. The amplifier provides 19 dB of gain, +35 dBm output IP3 and +27.5 dBm of output power at 1 dB gain compression, while requiring 300mA from a +8V supply. Gain flatness is excellent at \pm 1.4 dB from DC - 15 GHz making the HMC659LC5 ideal for EW, ECM, Radar and test equipment applications. The HMC659LC5 amplifier I/Os are internally matched to 50 Ohms with no external components. The HMC659LC5 is compatible with high volume surface mount manufacturing techniques.

Electrical Specifications, T_a = +25 °C, Vdd= +8V, Vgg2= +3V, Idd= 300 mA*

Parameter	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Units
Frequency Range		DC - 6			6 - 11			11 - 15		GHz
Gain	16	19		15	18		14	17		dB
Gain Flatness		± 0.7			± 0.4			± 0.7		dB
Gain Variation Over Temperature		0.015			0.019			0.022		dB/ °C
Input Return Loss		20			18			17		dB
Output Return Loss		19			20			15		dB
Output Power for 1 dB Compression (P1dB)	23.5	26.5		24.5	27.5		23.5	26.5		dBm
Saturated Output Power (Psat)		28.0			28.5			27.5		dBm
Output Third Order Intercept (IP3)		35			32			29		dBm
Noise Figure		3.0			2.5			3.5		dB
Supply Current (Idd) (Vdd= 8V, Vgg1= -0.8V Typ.)		300			300			300		mA

*Adjust Vgg1 between -2 to 0V to achieve Idd= 300 mA typical.

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

v04.0614

Gain & Return Loss

Input Return Loss vs. Temperature

Reverse Isolation vs. Temperature

GaAs PHEMT MMIC POWER AMPLIFIER, DC - 15 GHz

Gain vs. Temperature

Output Return Loss vs. Temperature

Noise Figure vs. Temperature

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

GaAs PHEMT MMIC

v04.0614

Output P1dB vs. Temperature

Output IP3 vs. Temperature

Psat vs. Temperature

POWER AMPLIFIER, DC - 15 GHz

Output IP3 vs. Output Power @ 5GHz

Gain, Power & Output IP3 vs. Supply Voltage @ 7 GHz, Fixed Vgg

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

v04.0614

Power Compression @ 2 GHz

Power Compression @ 15 GHz

Absolute Maximum Ratings

-
9 Vdc
-2 to 0 Vdc
+2V to +4V
+20 dBm
175 °C
3.3 W
27.3 °C/W
-65 to 150 °C
-40 to 85 °C
Class 1A

GaAs PHEMT MMIC POWER AMPLIFIER, DC - 15 GHz

Power Dissipation

Typical Supply Current vs. Vdd

Vdd (V)	ldd (mA)
7.5	299
8.0	300
8.5	301

ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

GaAs PHEMT MMIC

POWER AMPLIFIER, DC - 15 GHz

v04.0614

Outline Drawing

- .030" MAX HEIGHT REQUIREMENTS. UTILIZE MAXIMUM CHARACTER HEIGHT BASED ON LID DIMENSIONS AND BEST FIT. LOCATE APPROX. AS SHOWN.
- 6. PACKAGE WARP SHALL NOT EXCEED 0.05 mm DATUM -C-
- 7. ALL GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED TO PCB RF GROUND.

Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking ^[2]
HMC659LC5	Alumina, White	Gold over Nickel	MSL3 ^[1]	H659 XXXX

[1] Max peak reflow temperature of 260 °C

[2] 4-Digit lot number XXXX

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

v04.0614

GaAs PHEMT MMIC POWER AMPLIFIER, DC - 15 GHz

Pin Descriptions

Pin Number	Function	Description	Interface Schematic
1, 2, 4, 7 - 12, 14, 16 - 20, 23 - 30	N/C	No connection. These pins may be connected to RF ground. Performance will not be affected.	
3	Vgg2	Gate Control 2 for amplifier. +3V should be applied to Vgg2 for nominal operation.	Vgg2
5	RFIN	This pad is DC coupled and matched to 50 Ohms.	
13	ACG3	Low frequency termination. Attach bypass capacitor per application circuit herein.	RFIN ACG3
15	Vgg1	Gate Control 1 for amplifier.	Vgg10
22	RFOUT & Vdd	RF output for amplifier. Connect the DC bias (Vdd) network to provide drain current (Idd). See application circuit herein.	
31	ACG2		ACG1 O RFOUT & Vdd
32	ACG1	Low frequency termination. Attach bypass capacitor per application circuit herein.	
6, 21 Ground Paddle	GND	Ground paddle must be connected to RF/DC ground.	

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

v04.0614

GaAs PHEMT MMIC POWER AMPLIFIER, DC - 15 GHz

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

Evaluation PCB

HMC659LC5

v04.0614

GaAs PHEMT MMIC POWER AMPLIFIER, DC - 15 GHz

U1 CAL Vgg2 J3 C2 Vgg2 J2 Vgg2 J2 Vgg1 J2

List of Materials for Evaluation PCB 117494 [1]

Item	Description	
J1, J2	SMA-SRI-NS	
J3, J4	2 mm Molex Header	
C1, C2	4.7 μF Capacitor	
C3	0.1 μF Capacitor, 0603 Pkg.	
C4, C5	100 pF Capacitor, 0402 Pkg.	
C6, C7	10k pF Capacitor, 0402 Pkg.	
C8, C9	0.47 µF Capacitor, 0402 Pkg	
U1	HMC659LC5	
PCB [2]	117492 Evaluation PCB	

J1

[1] Reference this number when ordering complete evaluation PCB

[2] Circuit Board Material: Rogers 4350

The circuit board used in the final application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads and package bottom should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation board should be mounted to an appropriate heat sink. The evaluation circuit board shown is available from Hittite upon request. -INEAR & POWER AMPLIFIERS - SMT

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.