

N-channel 950 V, 0.110 Ω typ., 38 A MDmesh[™] K5 Power MOSFET in a TO-247 long leads package

Datasheet - production data

Figure 1: Internal schematic diagram

Features

Order code	VDS	R _{DS(on)} max	ID	Ртот
STWA40N95K5	950 V	0.130 Ω	38 A	450 W

- Industry's lowest R_{DS(on)} x area
- Industry's best figure of merit (FoM)
- Ultra low gate charge
- 100% avalanche tested
- Zener-protected

Applications

• Switching applications

Description

This very high voltage N-channel Power MOSFET is designed using MDmesh[™] K5 technology based on an innovative proprietary vertical structure. The result is a dramatic reduction in on-resistance and ultra-low gate charge for applications requiring superior power density and high efficiency.

Table 1: Device summary

· ······ ,					
Order code	Marking	Package	Packaging		
STWA40N95K5	40N95K5	TO-247	Tube		

DocID028207 Rev 1

This is information on a product in full production.

Contents

Contents

1	Electric	al ratings	
2	Electric	al characteristics	4
	2.1	Electrical characteristics (curves)	6
3	Test cir	cuits	9
4	Packag	e mechanical data	
	4.1	TO-247 long leads package information	10
5	Revisio	on history	

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
Vgs	Gate- source voltage	± 30	V
I _D	Drain current (continuous) at $T_C = 25 \ ^{\circ}C$	38	А
ID	Drain current (continuous) at T _c = 100 °C	24	А
IDM ⁽¹⁾	Drain current (pulsed)	152	А
Ртот	Total dissipation at $T_C = 25 \text{ °C}$	450	W
I _{AR}	Max current during repetitive or single pulse avalanche	13	А
E _{AS}	Single pulse avalanche energy (starting $T_J = 25 \text{ °C}$, $I_D = 13 \text{ A}$, $V_{DD} = 50 \text{ V}$)	700	mJ
dv/dt (2)	Peak diode recovery voltage slope	4.5	V/ns
dv/dt ⁽³⁾	MOSFET dv/dt ruggedness	50	V/ns
T _j T _{stg}	Operating junction temperature Storage temperature	-55 to 150	°C

Notes:

 $^{(1)}$ Pulse width limited by safe operating area. $^{(2)}I_{SD} \leq$ 19 A, di/dt \leq 100 A/µs, V_{DS(peak)} \leq V_{(BR)DSS}. $^{(3)}V_{DS} \leq$ 760 V

Table 3: Thermal data

Symbol	Parameter	Value	Unit
R _{thj} -case	Thermal resistance junction-case max	0.28	°C/W
R _{thj-amb}	Thermal resistance junction-amb max	50	°C/W

(T_{case} =25 °C unless otherwise specified)

Table 4: On /off states						
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
$V_{(BR)DSS}$	Drain-source breakdown voltage	V_{GS} = 0, I_D = 1 mA	950			V
		$V_{GS} = 0, V_{DS} = 950 V$			1	μA
I _{DSS} Zero gate voltage drain current	$V_{GS} = 0, V_{DS} = 950 V,$ T _c =125 °C			50	μA	
I _{GSS}	Gate-body leakage current	V_{DS} =0, V_{GS} = ± 20 V			±10	μΑ
VGS(th)	Gate threshold voltage	$V_{DS} = V_{GS}$, $I_D = 100 \ \mu A$	3	4	5	V
R _{DS(on)}	Static drain-source on- resistance	$V_{GS} = 10 \text{ V}, \text{ I}_{D} = 19 \text{ A}$		0.110	0.130	Ω

	Tesistance					
		Table 5: Dynamic				
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Ciss	Input capacitance		-	3300	-	pF
Coss	Output capacitance	V _{GS} =0, V _{DS} =100 V, f=1 MHz	-	250	-	pF
Crss	Reverse transfer capacitance	133-0, 193-100 0, 1-1 1112	-	2	-	pF
Co(tr) ⁽¹⁾	Equivalent capacitance time related		-	398	-	pF
Co(er) ⁽²⁾	Equivalent capacitance energy related	$V_{GS} = 0, V_{DS} = 0$ to 760 V	-	142	-	pF
R _G	Intrinsic gate resistance	f = 1 MHz, I _D =0	-	5	-	Ω
Qg	Total gate charge	$V_{DD} = 760 \text{ V}, \text{ I}_{D} = 38 \text{ A}$	-	93	-	nC
Qgs	Gate-source charge	V _{GS} =10 V	-	18.7	-	nC
Q _{gd}	Gate-drain charge	(see Figure 16: "Gate charge test circuit")		63.4	-	nC

Notes:

 $^{(1)}$ Time related is defined as a constant equivalent capacitance giving the same charging time as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS}

 $^{(2)}$ energy related is defined as a constant equivalent capacitance giving the same stored energy as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS}

Symbol	Parameter	Test conditions	Min.	Тур.	Max	Unit
t _{d(on)}	Turn-on delay time	V _{DD} = 475 V, I _D = 19 A,	-	33.5	-	ns
tr	Rise time	$R_G = 4.7 \Omega$, $V_{GS} = 10 V$	-	51	-	ns
t _{d(off)}	Turn-off-delay time	(see Figure 15: "Switching times test circuit for resistive load")	-	91.5	-	ns
t _f	Fall time		-	10	-	ns

Table 6: Switching times

	Table 7: Source drain diode							
Symbol	Parameter	Test conditions	Min.	Тур.	Мах	Unit		
Isd	Source-drain current		-		38	А		
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)		-		152	А		
Vsd ⁽²⁾	Forward on voltage	$I_{SD} = 38 \text{ A}, V_{GS} = 0$	-		1.5	V		
trr	Reverse recovery time	I _{SD} = 38 A, di/dt = 100 A/µs	-	706		ns		
Qrr	Reverse recovery charge	V _{DD} = 60 V	-	22		μC		
Irrm	Reverse recovery current	(see Figure 18: "Unclamped inductive load test circuit")	-	62		А		
t _{rr}	Reverse recovery time	I _{SD} = 38 A, di/dt = 100 A/µs	-	886		ns		
Qrr	Reverse recovery charge	V _{DD} = 60 V T _J = 150 °C	-	28.2		μC		
Irrm	Reverse recovery current	(see Figure 18: "Unclamped inductive load test circuit")	-	64		А		

Notes:

⁽¹⁾Pulse width limited by safe operating area.

 $^{(2)}\text{Pulsed:}$ pulse duration = 300 $\mu\text{s},$ duty cycle 1.5%

Table 8: Gate-source Zener diode

Symbol	Parameter	Test conditions	Min	Тур.	Max.	Unit
V _(BR) GSO	Gate-source breakdown voltage	$I_{GS} = \pm 1 \text{mA}, I_{D}=0$	30	-	-	V

The built-in back-to-back Zener diodes have specifically been designed to enhance the device's ESD capability. In this respect the Zener voltage is appropriate to achieve an efficient and cost-effective intervention to protect the device's integrity. These integrated Zener diodes thus avoid the usage of external components.

57

Electrical characteristics

STWA40N95K5

3 Test circuits

57

DocID028207 Rev 1

9/13

4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

4.1 TO-247 long leads package information

Figure 21: TO-247 long leads package outline

Package mechanical data

Table 9: TO-247 long leads package mechanical data				
Dim		mm.		
Dim.	Min.	Тур.	Max.	
A	4.90	5.00	5.10	
A1	2.31	2.41	2.51	
A2	1.90	2.00	2.10	
b	1.16		1.26	
b2			3.25	
b3			2.25	
С	0.59		0.66	
D	20.90	21.00	21.10	
E	15.70	15.80	15.90	
E2	4.90	5.00	5.10	
E3	2.40	2.50	2.60	
е	5.34	5.44	5.54	
L	19.80	19.92	20.10	
L1			4.30	
Р	3.50	3.60	3.70	
Q	5.60		6.00	
S	6.05	6.15	6.25	

Revision history 5

Table 10: Document revision history

Date	Revision	Changes
05-Aug-2015	1	First release.

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2015 STMicroelectronics - All rights reserved

