EPC2203 – Automotive 80 V (D-S) **Enhancement Mode Power Transistor**

 V_{DS} , 80 V $R_{DS(on)}$, 80 m Ω I_D, 1.7 A AEC-Q101

Gallium Nitride's exceptionally high electron mobility and low temperature coefficient allows very low R_{DS(on)}, while its lateral device structure and majority carrier diode provide exceptionally low Q_G and zero Q_{RR}. The end result is a device that can handle tasks where very high switching frequency, and low on-time are beneficial as well as those where on-state losses dominate.

Maximum Ratings				
	PARAMETER	VALUE	UNIT	
V_{DS}	Drain-to-Source Voltage (Continuous)	80	V	
I _D	Continuous ($T_A = 25^{\circ}C$, $R_{\theta JA} = 314^{\circ}C/W$)	1.7	٨	
	Pulsed (25°C, T _{PULSE} = 300 µs)	17	A	
V _{GS}	Gate-to-Source Voltage	5.75	V	
	Gate-to-Source Voltage	-4	v	
٦J	Operating Temperature	-40 to 150	°C	
T _{STG}	Storage Temperature	-40 to 150		

	Thermal Characteristics				
	PARAMETER	ТҮР	UNIT		
R _{θJC}	Thermal Resistance, Junction-to-Case	6.5			
R _{θJB}	Thermal Resistance, Junction-to-Board	65	°C/W		
R _{θJA}	Thermal Resistance, Junction-to-Ambient (Note 1)	100			

Note 1: R_{BIA} is determined with the device mounted on one square inch of copper pad, single layer 2 oz copper on FR4 board. See https://epc-co.com/epc/documents/product-training/Appnote_Thermal_Performance_of_eGaN_FETs.pdf for details.

	Static Characteristics ($T_j = 25^{\circ}$ C unless otherwise stated)						
	PARAMETER	TEST CONDITIONS	MIN	ТҮР	MAX	UNIT	
BV _{DSS}	Drain-to-Source Voltage	$V_{GS} = 0 V, I_D = 300 \mu A$	80			V	
I _{DSS}	Drain-Source Leakage	$V_{DS} = 64 V, V_{GS} = 0 V$		5	250	μA	
	Gate-to-Source Forward Leakage	$V_{GS} = 5 V$		0.01	0.9	mA	
I _{GSS}	Gate-to-Source Reverse Leakage	$V_{GS} = -4 V$		2	250	μA	
V _{GS(TH)}	Gate Threshold Voltage	$V_{DS} = V_{GS}$, $I_D = 0.6 \text{ mA}$	0.8	1.5	2.5	V	
R _{DS(on)}	Drain-Source On Resistance	$V_{GS} = 5 V, I_D = 1 A$		53	80	mΩ	
V _{SD}	Source-Drain Forward Voltage [#]	$I_{S} = 0.35 \text{ A}, V_{GS} = 0 \text{ V}$		2.2		V	

All measurements were done with substrate connected to source. #Defined by design. Not subject to production test.

EFFICIENT POWER CONVERSION

EPC2203 eGaN® FETs are supplied only in passivated die form with solder bumps. Die Size: 0.9 mm x 0.9 mm

Applications

RoHS M

- Lidar/Pulsed Power Applications
- High Power Density DC-DC Converters
- Wireless Power
- Class-D Audio

Benefits

- Ultra High Efficiency
- Ultra Low R_{DS(on)}
- Ultra Low Q_G
- Ultra Small Footprint

1

EPC2203

Halogen-Free

	Dynamic Characteristics ($T_j = 25^{\circ}C$ unless otherwise stated)						
	PARAMETER	TEST CONDITIONS	MIN	ТҮР	MAX	UNIT	
C _{ISS}	Input Capacitance	$V_{DS} = 50 V, V_{GS} = 0 V$		73	88	-	
C _{RSS}	Reverse Transfer Capacitance			0.5			
C _{OSS}	Output Capacitance			47	71	pF	
C _{OSS(ER)}	Effective Output Capacitance, Energy Related (Note 2)	$V_{DS} = 0$ to 50 V, $V_{GS} = 0$ V		57			
C _{OSS(TR)}	Effective Output Capacitance, Time Related (Note 3)			72			
R _G	Gate Resistance			0.6		Ω	
Q _G	Total Gate Charge	$V_{DS} = 50 \text{ V}, V_{GS} = 5 \text{ V}, I_D = 1 \text{ A}$		670	830		
Q _{GS}	Gate-to-Source Charge	$V_{DS} = 50 V, I_D = 1 A$		220			
Q _{GD}	Gate-to-Drain Charge			120			
Q _{G(TH)}	Gate Charge at Threshold			154		pC	
Q _{OSS}	Output Charge	$V_{DS} = 50 V, V_{GS} = 0 V$		3600	5400		
Q _{RR}	Source-Drain Recovery Charge			0			

All measurements were done with substrate connected to source. Note 2: $C_{OSS(ER)}$ is a fixed capacitance that gives the same stored energy as C_{OSS} while V_{DS} is rising from 0 to 50% BV_{DSS}. Note 3: $C_{OSS(TR)}$ is a fixed capacitance that gives the same charging time as C_{OSS} while V_{DS} is rising from 0 to 50% BV_{DSS}.

Figure 1: Typical Output Characteristics at 25°C

Figure 9: Normalized Threshold Voltage vs. Temperature

Figure 10: Transient Thermal Response Curves

EPC2203

TAPE AND REEL CONFIGURATION

4.00

2.00

1.50

e f (Note 2)

g

3.90

1.95

1.50

4.10

2.05

1.60

- Note 1: MSL 1 (moisture sensitivity level 1) classified according to IPC/ JEDEC industry standard.
- Note 2: Pocket position is relative to the sprocket hole measured as true position of the pocket, not the pocket hole.

DIE MARKINGS

EPC2203

described herein; neither does it convey any license under its patent rights, nor the rights of others.

eGaN[®] is a registered trademark of Efficient Power Conversion Corporation. EPC Patent Listing: epc-co.com/epc/AboutEPC/Patents.aspx Information subject to change without notice. Revised June 2022