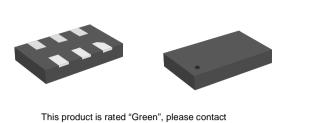


161.133 MHz LVPECL Oscillator 4MA161133Z3

High Performance Differential Oscillator

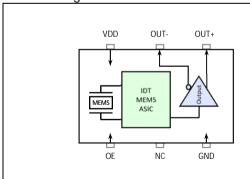

ADVANCE DATASHEET

Features

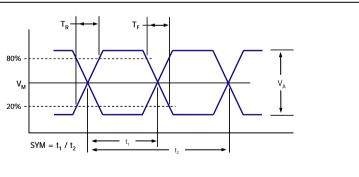
Frequency: 161.133 MHz Output Type: **LVPECL** Frequency Stability: ± 50ppm Supply Voltage: 2.5V & 3.3V

Standard Packages: 5.0 x 3.2 mm; 7.0 x 5.0 mm RMS phase jitter: 0.7ps typical (12k to 20MHz)

Operating Temperature: - 40 to 85 °C

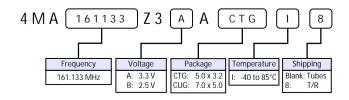

IDT for environmental compliancy information

Specification


Parameter	2.5 V Specifications			3.3 V Specifications			Units	Conditions
l arameter	Min	Тур	Max	Min	Тур	Max	2	condition.c
Supply Voltage (V _{DD})		2.50			3.30		V	
Output Frequency		161.133			161.133		MHz	
Frequency Stability			± 50			± 50	ppm	-40 to 85°C
Supply Current			100			100	mA	no load
Input LOW level			$0.3V_{DD}$			$0.3V_{DD}$	V	At OE pin
Input HIGH level	0. 7V _{DD}			$0.7V_{DD}$			V	At OE pin
Output LOW level			V_{DD} -1.6			V _{DD} -1.6	V	
Output HIGH level	V_{DD} -1.0			V _{DD} -1.0			V	
Rise Time (T _R)			300			300	ps	Maximum; 20/80% of V _A ; Output load (CL) = 2pF
Fall Time (T _F)			300			300	ps	Maximum; 20/80% of V _A ; Output load (CL) = 2pF
Amplitude (V _A)		0.75			0.75		V	Single Ended output swing (Pk-Pk)
Mid Level (V _M)		V_{DD} -1.3			V _{DD} -1.3		V	
Symmetry (SYM)	45		55	45		55	%	Worst case; measured at 50% of waveform
Period Jitter			3			3	ps	Measured over 10k cycles, rms
Phase Jitter			1.0			1.0	ps	12k to 20MHz, rms
Aging			± 5			± 5	ppm	25°C, 10 years

Note: Above specifications are typical at room temperature (25°C) unless otherwise specified. Frequency stability includes initial frequency tolerance, temperature variation, supply voltage variation, reflow drift, and aging (+25 °C, 10 years).

Block Diagram



Output Waveform

Part Ordering Information

Package Size	Voltage	Ordering Code
5.0 x 3.2 mm	3.3 V	4MA161133Z3AACTGI
5.0 X 5.2 IIIIII	2.5 V	4MA161133Z3BACTGI
7.0 x 5.0 mm	3.3 V	4MA161133Z3AACUGI
7.0 x 3.0 IIIIII	2.5 V	4MA161133Z3BACUGI

Package Outline and Dimensions Typical PCB Land Pattern **←**3.20 ±0.05→ 1.00 ±0.05 Pin #1 ID 0.85 ±0.05 Chamfer 0.0-0.05 0.30 x 45° 0.64 ±0.05 **VDD** OE 6L SMD OUT-NC 5.00 ±0.05 5.0 x 3.2mm 1.27 Bsc **GND** OUT+ 1.08 ±0.05 0.203 Ref. Pin #1 ID 0.85 ±0.05 5.0 ±0.05 → 1.30 ± 0.05 R 0.15° 0.0-0.05 OE **VDD** 1.50 ± 0.05 Pin Name Description 1 OF Output Enable* 2 NC No Connect 6L SMD OUT-3 GND Ground NC 7.00 +0.05 4 OUT+ Output 7.0 x 5.0mm 5 OUT-Output **↓**0.25 Ref 2.54 Bsc 6 VDD Power OUT+ GND 1.60-0.203 Ref. 1.60 Unit: (mm)

6024 Silver Creek Valley Road San Jose, California 95138 Sales +1 408-284-8200 Fax: 408-360-1738 Technical Support
MEMS_Support@idt.com
www.idt.com/go/MEMS

DISCLAIMER Integrated Device Technology, Inc. (IDT) and its subsidiaries reserve the right to modify the products and/or specifications described herein at any time and at IDT's sole discretion. All information in this document, including descriptions of product features and performance, is subject to change without notice. Performance specifications and the operating parameters of the described products are determined in the independent state and are not guaranteed to perform the same way when installed in customer products. The information contained herein is provided without representation or warranty of any kind, whether express or implied, including, but not limited to, the suitability of IDT's products for any particular purpose, an implied warranty of merchantability, or non-infringement of the intellectual property rights of others. This document is presented only as a guide and does not convey any license under intellectual property rights of IDT or any third parties.

DTs products are not intended for use in life support systems or similar devices where the failure or malfunction of an IDT product can be reasonably expected to significantly affect the health or safety of users. Anyone using an IDT product in such a manner does so at their own risk, absent an express, written agreement by IDT.

Integrated Device Technology, IDT and the IDT logo are registered trademarks of IDT. Other trademarks and service marks used herein, including protected names, logos and designs, are the property of IDT or their respective third party owners. Copyright 2010, 2011, 2012. All rights reserved.