

BCP120C

HIGH EFFICIENCY HETEROJUNCTION POWER FET CHIP (.25µm x 1200µm)

The BeRex BCP120C is a GaAs Power pHEMT with a nominal 0.25-micron by 1200-micron gate making this product ideally suited for applications where high-gain and medium power in the DC to 26.5 GHz frequency range are required. The product may be used in either wideband (6-18 GHz) or narrow-band applications. The BCP120C is produced using state of the art metallization with SI_3N_4 passivation and is screened to assure reliability.

PRODUCT FEATURES

- 30.5 dBm Typical Output Power
- 11 dB Typical Gain @ 12 GHz
- 0.25 X 1200 Micron Recessed Gate

APPLICATIONS

- Commercial
- Military / Hi-Rel.
- Test & Measurement

Chip dimensions : 540 X 390 microns Gate pad(GP) : 60 X 60 microns Drain pad(DP) : 70 X 90 microns Source pad1(SP1) : 70 X 90 microns Source pad2(SP2) : 80 X 90 microns Chip thickness : 75 microns

ELECTRICAL CHARACTERISTIC (TUNED FOR POWER) T_a = 25° C

	PARAMETER/TEST CONDITIONS	TEST FREQ.	MIN.	TYPICAL	MAX.	UNIT
P _{1dB}	Output Power @ P_{1dB} (V_{ds} = 8V, I_d = 180mA)	12 GHZ	29.0	30.5		dBm
1 108		18 GHz	28.0	29.5		
G _{1dB}	Gain @ P _{1dB} (V _{ds} = 8V, I _d = 180mA)	12 GHZ	9.5	11.0		dB
G1dB		18 GHz	6.5	8.0		
	PAE @ P _{1dB} (V _{ds} = 8V, I _d = 180mA)	12 GHZ		60		%
PAE		18 GHz		45		
I _{dss}	Saturated Drain Current ($V_{gs} = 0V$, $I_d = 1.0V$)	260	380	500	mA	
Gm	Transconductance ($V_{ds} = 2V$, Vgs = 180mA)		470		mS	
Vp	Pinch-off Voltage ($I_d = 1.2 \text{mA}$, $V_{ds} = 2V$)	-2.5	-1.2		V	
BV_{gd}	Drain Breakdown Voltage (Igd = 1.2mA, source		-15	-12	V	
BVgs	Source Breakdown Voltage (Ig = 1.2mA, drain o		-13		V	
R _{th}	Thermal Resistance (Au-Sn Eutectic Attach)		37		°C/W	

MAXIMUM RATING (T_a = 25° C)

	PARAMETERS	ABSOLUTE	CONTINUOUS	
Vds	Drain-Source Voltage	12V	8 V	
Vgs	Gate-Source Voltage	-6V	-3 V	
ld	Drain Current	I _{dss}	l _{dss}	
l _{gsf}	Forward Gate Current	60 mA	10 mA	
Pin	Input Power	29 dBm	@ 3 dB compression	
T_{ch}	Channel Temperature	175°C	150°C	
T _{stg}	Storage Temperature	-60°C ~ 150°C	-60°C ~ 150°C	
Pt	Total Power Dissipation	4.1 W	3.4 W	

Exceeding any of the above Maximum Ratings will result in reduced MTTF and may cause permanent damage to the device.

S-PARAMETERS (V_{ds} = 8V, I_{ds} = 180mA)

FREQ.	S11	S11	S21	S21	S12	S12	S22	S22
[GHZ]	[MAG]	[ANG.]	[MAG]	[ANG.]	[MAG]	[ANG.]	[MAG]	[ANG.]
1.0	0.89	-96.37	14.58	124.56	0.031	41.61	0.32	-59.57
2.0	0.86	-135.03	8.94	101.11	0.037	28.72	0.26	-84.06
3.0	0.85	-154.35	6.30	87.04	0.039	24.32	0.25	-96.48
4.0	0.85	-166.92	4.82	76.51	0.039	23.30	0.25	-104.53
5.0	0.85	-176.70	3.89	67.06	0.039	25.12	0.26	-110.74
6.0	0.86	175.03	3.24	58.26	0.041	25.20	0.29	-116.71
7.0	0.86	167.52	2.76	50.23	0.040	28.71	0.31	-122.84
8.0	0.87	161.16	2.39	42.43	0.040	29.58	0.33	-128.07
9.0	0.88	155.07	2.08	34.71	0.040	30.55	0.36	-133.66
10.0	0.89	149.79	1.83	27.63	0.040	31.41	0.39	-138.71
11.0	0.89	145.66	1.61	21.04	0.043	34.48	0.42	-145.31
12.0	0.90	141.61	1.42	14.39	0.044	36.56	0.45	-150.89
13.0	0.91	138.47	1.27	8.44	0.045	37.21	0.49	-156.42
14.0	0.92	135.64	1.13	2.84	0.046	35.22	0.52	-161.10
15.0	0.93	132.70	1.02	-2.73	0.050	36.77	0.56	-165.49
16.0	0.93	130.92	0.92	-7.66	0.051	36.01	0.59	-169.36
17.0	0.94	129.56	0.83	-12.31	0.056	36.28	0.63	-172.90
18.0	0.94	126.87	0.77	-17.21	0.055	33.51	0.66	-176.39
19.0	0.94	125.28	0.70	-21.95	0.059	34.15	0.69	-179.10
20.0	0.94	122.60	0.64	-26.82	0.058	32.57	0.72	178.04
21.0	0.93	121.02	0.58	-30.45	0.064	31.89	0.75	175.64
22.0	0.92	118.80	0.54	-34.76	0.067	30.36	0.78	173.29
23.0	0.91	115.04	0.50	-39.90	0.076	28.09	0.79	170.43
24.0	0.91	111.50	0.46	-44.45	0.076	23.74	0.81	167.25
25.0	0.90	107.90	0.41	-49.08	0.078	23.62	0.81	163.82
26.0	0.91	101.67	0.37	-52.23	0.079	21.55	0.81	160.37

Note: S-parameters include bond wires. Reference planes are at edge of substrates shown on "Wire Bonding Information" figure below.

WIRE BONDING INFORMATION

Proper ESD procedures should be followed when handling this device.

DIE ATTACH RECOMMENDATIONS:

BeRex recommends the "Eutectic" die attach using Au-Sn (80%-20%) pre-forms. The die attach station must have accurate temperature control, and the operation should be performed with parts no hotter than 300°C for less than 60 seconds. An inert forming gas (90% N₂-10% H₂) or clean, dry N₂ should be used.

Use of conductive epoxy (gold or silver filled) may also be acceptable for die-attaching low power devices.

HANDLING PRECAUTIONS:

GaAs FETs are very sensitive to and may be damaged by Electrostatic Discharge (ESD). Therefore, proper ESD precautions must be taken whenever you are handling these devices. It is critically important that all work surfaces, and assembly equipment, as well as the operator be properly grounded when handling these devices to prevent ESD damage.

STORAGE & SHIPPING:

The BeRex standard chip device shipping package consists of an antistatic "Gel-Pak", holding the chips, placed inside a sealed antistatic and moisture barrier bag. This packaging is designed to provide a reasonable measure of protection from both mechanical and ESD damage.

Chip devices should be stored in a clean, dry Nitrogen gas environment at room temperature until they are required for assembly. Only open the shipping package or perform die assembly in a work area with a class 10,000 or better clean room environment to prevent contamination of the exposed devices.

DISCLAIMER

BEREX RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. BEREX DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN.

LIFE SUPPORT POLICY

BEREX PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES WITHOUT THE EXPRESS WRITTEN APPROVAL OF BEREX.

- Life support devices or systems are devices or systems which (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labeling, can be reasonably expected to result in significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.